Activity

Filter

Cancel
Date Panel Item Activity
3000 actions
Mendeliome v0.9488 EXOSC5 Zornitza Stark reviewed gene: EXOSC5: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Cerebellar ataxia, brain abnormalities, and cardiac conduction defects, MIM# 619576; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9488 PRPH2 Zornitza Stark edited their review of gene: PRPH2: Changed phenotypes: Leber congenital amaurosis 18, MIM#608133, Macular dystrophy, vitelliform, 3, MIM#608161, Retinitis pigmentosa 7 and digenic form, MIM#608133, Choroidal dystrophy, central areolar 2, MIM#613105, Macular dystrophy, patterned, 1, MIM#169150 Retinitis punctata albescens, MIM#136880
Mendeliome v0.9488 PRPH2 Zornitza Stark Marked gene: PRPH2 as ready
Mendeliome v0.9488 PRPH2 Zornitza Stark Phenotypes for gene: PRPH2 were changed from Leber congenital amaurosis 18, MIM#608133; Macular dystrophy, vitelliform, 3, MIM#608161; Retinitis pigmentosa 7 and digenic form, MIM#608133 to Leber congenital amaurosis 18, MIM#608133; Macular dystrophy, vitelliform, 3, MIM#608161; Retinitis pigmentosa 7 and digenic form, MIM#608133; Choroidal dystrophy, central areolar 2, MIM#613105; Macular dystrophy, patterned, 1, MIM#169150; Retinitis punctata albescens, MIM#136880
Mendeliome v0.9487 PRPH2 Zornitza Stark Phenotypes for gene: PRPH2 were changed from to Leber congenital amaurosis 18, MIM#608133; Macular dystrophy, vitelliform, 3, MIM#608161; Retinitis pigmentosa 7 and digenic form, MIM#608133
Mendeliome v0.9484 PRPH2 Zornitza Stark reviewed gene: PRPH2: Rating: GREEN; Mode of pathogenicity: None; Publications: 32660024; Phenotypes: Leber congenital amaurosis 18, MIM#608133 Macular dystrophy, vitelliform, 3, MIM#608161 Retinitis pigmentosa 7 and digenic form, MIM#608133 Choroidal dystrophy, central areolar 2, MIM#613105 Macular dystrophy, patterned, 1, MIM#169150 Retinitis punctata albescens, MIM#136880; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.9484 XBP1 Zornitza Stark Marked gene: XBP1 as ready
Mendeliome v0.9481 BCL9L Zornitza Stark Marked gene: BCL9L as ready
Mendeliome v0.9479 BCL9L Zornitza Stark reviewed gene: BCL9L: Rating: AMBER; Mode of pathogenicity: None; Publications: 30366904; Phenotypes: Congenital heart disease; Mode of inheritance: None
Mendeliome v0.9479 IMPDH1 Zornitza Stark Marked gene: IMPDH1 as ready
Mendeliome v0.9476 KCNJ13 Zornitza Stark Marked gene: KCNJ13 as ready
Mendeliome v0.9473 KCNJ13 Zornitza Stark changed review comment from: LCA and bi-allelic variants: at least 4 individuals reported. Green.

Single family reported with snowflake vitreoretinal degeneration and mono-allelic variant, supportive functional data. Amber/Red.; to: Variants in KCNJ13 are associated with two retinal disorders; Leber congenital amaurosis (LCA) and snowflake vitreoretinal degeneration (SVD), though individuals with bi-allelic variants and LCA with subsequent fibrovascular proliferation described (PMID 31647904).

LCA and bi-allelic variants: at least 4 individuals reported. Green.

Single family reported with snowflake vitreoretinal degeneration and mono-allelic variant, supportive functional data. Amber/Red.
Mendeliome v0.9473 LRIT3 Zornitza Stark Marked gene: LRIT3 as ready
Mendeliome v0.9473 LRIT3 Zornitza Stark Phenotypes for gene: LRIT3 were changed from to Night blindness, congenital stationary (complete), 1F, autosomal recessive, MIM# 615058
Mendeliome v0.9470 LRIT3 Zornitza Stark reviewed gene: LRIT3: Rating: GREEN; Mode of pathogenicity: None; Publications: 23246293, 24598786, 31578364, 27428514; Phenotypes: Night blindness, congenital stationary (complete), 1F, autosomal recessive, MIM# 615058; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9470 NYX Zornitza Stark Marked gene: NYX as ready
Mendeliome v0.9470 NYX Zornitza Stark Phenotypes for gene: NYX were changed from to Night blindness, congenital stationary (complete), 1A, X-linked MIM#310500
Mendeliome v0.9469 BCL9L Krithika Murali gene: BCL9L was added
gene: BCL9L was added to Mendeliome. Sources: Literature,Expert list,Other
Mode of inheritance for gene: BCL9L was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BCL9L were set to 23035047; 8757136
Phenotypes for gene: BCL9L were set to Heterotaxy; Congenital Heart Disease
Review for gene: BCL9L was set to AMBER
Added comment: Novel gene disease assocaition. Saunders et al., 2012 (PMID: 23035047) report biallelic BCL9L variants in 2 affected brothers with heterotaxy and congenital heart disease, heterozygous in unaffected parents. Functional evidence in zebrafish (PMID 8757136)
Sources: Literature, Expert list, Other
Mendeliome v0.9467 NYX Zornitza Stark reviewed gene: NYX: Rating: GREEN; Mode of pathogenicity: None; Publications: 11062471, 11062472, 16670814, 23714322, 34064005, 34165036; Phenotypes: Night blindness, congenital stationary (complete), 1A, X-linked MIM#310500; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.9467 ACTC1 Krithika Murali gene: ACTC1 was added
gene: ACTC1 was added to Mendeliome. Sources: Literature,Expert list
Mode of inheritance for gene: ACTC1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ACTC1 were set to 17947298; 31430208
Phenotypes for gene: ACTC1 were set to Atrial septal defect 5 - MIM# 612794; Cardiomyopathy, dilated, 1R - MIM# 613424; Cardiomyopathy, hypertrophic, 11 - #612098; Left ventricular noncompaction 4 - #613424
Review for gene: ACTC1 was set to GREEN
Added comment: Three families reported with congenital heart disease and variants in this gene. Gene is also associated with cardiomyopathies, including paediatric onset.
Sources: Literature, Expert list
Mendeliome v0.9467 GRM6 Zornitza Stark Marked gene: GRM6 as ready
Mendeliome v0.9467 GRM6 Zornitza Stark Phenotypes for gene: GRM6 were changed from to Night blindness, congenital stationary (complete), 1B, autosomal recessive 257270
Mendeliome v0.9464 GRM6 Zornitza Stark reviewed gene: GRM6: Rating: GREEN; Mode of pathogenicity: None; Publications: 22008250; Phenotypes: Night blindness, congenital stationary (complete), 1B, autosomal recessive 257270; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9464 GRK1 Zornitza Stark Marked gene: GRK1 as ready
Mendeliome v0.9461 GPR179 Zornitza Stark Marked gene: GPR179 as ready
Mendeliome v0.9461 GPR179 Zornitza Stark Phenotypes for gene: GPR179 were changed from to Night blindness, congenital stationary (complete), 1E, autosomal recessive (MIM#614565)
Mendeliome v0.9458 GPR179 Zornitza Stark reviewed gene: GPR179: Rating: GREEN; Mode of pathogenicity: None; Publications: 22325361; Phenotypes: Night blindness, congenital stationary (complete), 1E, autosomal recessive (MIM#614565); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9458 GNAT2 Zornitza Stark Marked gene: GNAT2 as ready
Mendeliome v0.9452 CABP4 Zornitza Stark Marked gene: CABP4 as ready
Mendeliome v0.9449 ATF6 Zornitza Stark Marked gene: ATF6 as ready
Mendeliome v0.9446 AIPL1 Zornitza Stark Marked gene: AIPL1 as ready
Mendeliome v0.9443 GNAS-AS1 Zornitza Stark Marked gene: GNAS-AS1 as ready
Mendeliome v0.9443 GNAS-AS1 Zornitza Stark Phenotypes for gene: GNAS-AS1 were changed from to Pseudohypoparathyroidism type 1b MIM no: 603233
Mendeliome v0.9439 GNAS-AS1 Zornitza Stark reviewed gene: GNAS-AS1: Rating: RED; Mode of pathogenicity: None; Publications: 22378814, 15592469, 29959430, 25005734; Phenotypes: Pseudohypoparathyroidism type 1b MIM no: 603233; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, maternally imprinted (paternal allele expressed)
Mendeliome v0.9439 IFT74 Zornitza Stark Phenotypes for gene: IFT74 were changed from Bardet-Biedl syndrome 20, MIM# 617119; Joubert syndrome to Bardet-Biedl syndrome 20, MIM# 617119; Joubert syndrome; Spermatogenic failure 58, MIM# 619585
Mendeliome v0.9437 IFT74 Zornitza Stark edited their review of gene: IFT74: Added comment: Limited evidence for association with spermatogenic failure: two unrelated individuals with same homozygous missense variant.; Changed publications: 27486776, 32144365, 33531668, 33689014; Changed phenotypes: Bardet-Biedl syndrome 20, MIM# 617119, Joubert syndrome, Spermatogenic failure 58, MIM# 619585
Mendeliome v0.9437 SFTPC Zornitza Stark Marked gene: SFTPC as ready
Mendeliome v0.9437 SFTPC Zornitza Stark Phenotypes for gene: SFTPC were changed from to Surfactant metabolism dysfunction, pulmonary, 2, MIM# 610913
Mendeliome v0.9434 SFTPC Zornitza Stark reviewed gene: SFTPC: Rating: GREEN; Mode of pathogenicity: None; Publications: 11207353, 11991887, 11893657, 15557112, 19443464; Phenotypes: Surfactant metabolism dysfunction, pulmonary, 2, MIM# 610913; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9434 SFTPB Zornitza Stark Marked gene: SFTPB as ready
Mendeliome v0.9434 SFTPB Zornitza Stark Phenotypes for gene: SFTPB were changed from to Surfactant metabolism dysfunction, pulmonary, 1, MIM# 265120
Mendeliome v0.9431 SFTPB Zornitza Stark reviewed gene: SFTPB: Rating: GREEN; Mode of pathogenicity: None; Publications: 8163685, 8021783, 10378403, 10571948; Phenotypes: Surfactant metabolism dysfunction, pulmonary, 1, MIM# 265120; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9431 SFTPA2 Zornitza Stark Marked gene: SFTPA2 as ready
Mendeliome v0.9431 SFTPA2 Zornitza Stark Phenotypes for gene: SFTPA2 were changed from to Pulmonary fibrosis, idiopathic, MIM# 178500
Mendeliome v0.9428 SFTPA2 Zornitza Stark reviewed gene: SFTPA2: Rating: GREEN; Mode of pathogenicity: None; Publications: 19100526, 32602668; Phenotypes: Pulmonary fibrosis, idiopathic, MIM# 178500; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9428 SFTPD Zornitza Stark Marked gene: SFTPD as ready
Mendeliome v0.9425 SLC7A7 Zornitza Stark Marked gene: SLC7A7 as ready
Mendeliome v0.9422 JAG2 Zornitza Stark Phenotypes for gene: JAG2 were changed from muscular dystrophy to Muscular dystrophy, limb-girdle, autosomal recessive 27, MIM# 619566; muscular dystrophy
Mendeliome v0.9421 JAG2 Zornitza Stark reviewed gene: JAG2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Muscular dystrophy, limb-girdle, autosomal recessive 27, MIM# 619566; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9421 STX16 Zornitza Stark Marked gene: STX16 as ready
Mendeliome v0.9421 STX16 Zornitza Stark Phenotypes for gene: STX16 were changed from to Pseudohypoparathyroidism type 1b MIM#: 603233
Mendeliome v0.9418 STX16 Zornitza Stark reviewed gene: STX16: Rating: GREEN; Mode of pathogenicity: None; Publications: 1456170, 15579741, 15800843, 33320452, 32337648, 33247854, 29959430; Phenotypes: Pseudohypoparathyroidism type 1b MIM no: 603233; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, paternally imprinted (maternal allele expressed)
Mendeliome v0.9417 STOX1 Zornitza Stark Marked gene: STOX1 as ready
Mendeliome v0.9414 CHRNA5 Zornitza Stark Marked gene: CHRNA5 as ready
Mendeliome v0.9412 TBX4 Zornitza Stark edited their review of gene: TBX4: Changed publications: 31761294, 31965066; Changed phenotypes: Ischiocoxopodopatellar syndrome with or without pulmonary arterial hypertension MIM#147891, Amelia, posterior, with pelvic and pulmonary hypoplasia syndrome, MIM# 601360
Mendeliome v0.9412 ZNHIT3 Zornitza Stark Marked gene: ZNHIT3 as ready
Mendeliome v0.9409 ADGRG1 Zornitza Stark Marked gene: ADGRG1 as ready
Mendeliome v0.9409 ADGRG1 Zornitza Stark Phenotypes for gene: ADGRG1 were changed from to Polymicrogyria, bilateral frontoparietal, MIM#606854
Mendeliome v0.9406 ADGRG1 Zornitza Stark reviewed gene: ADGRG1: Rating: GREEN; Mode of pathogenicity: None; Publications: 16240336, 33299078; Phenotypes: Polymicrogyria, bilateral frontoparietal, MIM#606854; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9406 FGF12 Zornitza Stark Marked gene: FGF12 as ready
Mendeliome v0.9403 KCNAB3 Zornitza Stark Marked gene: KCNAB3 as ready
Mendeliome v0.9402 TBK1 Zornitza Stark Marked gene: TBK1 as ready
Mendeliome v0.9399 OSTC Zornitza Stark Marked gene: OSTC as ready
Mendeliome v0.9398 KCNC2 Zornitza Stark Marked gene: KCNC2 as ready
Mendeliome v0.9396 KCTD13 Zornitza Stark Marked gene: KCTD13 as ready
Mendeliome v0.9392 KCTD13 Daniel Flanagan gene: KCTD13 was added
gene: KCTD13 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: KCTD13 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: KCTD13 were set to PMID: 33409479
Review for gene: KCTD13 was set to RED
Added comment: Mouse model and in vitro evidence suggesting the deletion of KCTD13 has a similar metabolic affect as adenylosuccinate lyase deficiency, which has seizures and autistic features.
Sources: Expert list
Mendeliome v0.9392 KCNC2 Daniel Flanagan gene: KCNC2 was added
gene: KCNC2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: KCNC2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KCNC2 were set to PMID:32392612; 31972370
Phenotypes for gene: KCNC2 were set to epileptic encephalopathy; spastic tetraplegia; opisthotonos attacks; intellectual disability; West syndrome
Review for gene: KCNC2 was set to AMBER
Added comment: PMID: 31972370. De novo missense variant (p.Val471Leu) identified in a child with early severe developmental and epileptic encephalopathy, spastic tetraplegia, opisthotonos attacks.

PMID: 32392612. De novo missense variant (p.Asp167Tyr) identified in a neurofibromatosis type 1 related West syndrome patient. Functional analysis showed a significant reduction of the mean potassium current and a shift in the voltage dependence of steady-state activation. Maternally inherited NF1 variant (p.T1951Nfs*5) also identified, the mother was "clinically unremarkable".
Sources: Expert list
Mendeliome v0.9392 OSTC Belinda Chong gene: OSTC was added
gene: OSTC was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: OSTC was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: OSTC were set to PMID: 32267060
Phenotypes for gene: OSTC were set to Oligosaccharyltransferase complex-congenital disorders of glycosylation
Review for gene: OSTC was set to RED
Added comment: A patient with microcephaly, dysmorphic facies, congenital heart defect, focal epilepsy, infantile spasms, skeletal dysplasia, and a type 1 serum transferrin isoelectrofocusing due to a novel CDG caused by a homozygous variant in the oligosaccharyltransferase complex noncatalytic subunit (OSTC) gene involved in glycosylation and confirmed by serum transferrin electrophoresis.
Patient was homozygous for a canonical splice variant (c.431 + 1G > A), mRNA from patient's fibroblast showed mRNA transcript reduced 80-90%/aberrant splicing - predicting NMD.
GnomAD - 10 hets, 0 hom
Sources: Literature
Sources: Literature
Mendeliome v0.9392 KCNAB3 Daniel Flanagan gene: KCNAB3 was added
gene: KCNAB3 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: KCNAB3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KCNAB3 were set to PMID: 32990398
Phenotypes for gene: KCNAB3 were set to febrile seizures; afebrile seizure; genetic epilepsy with febrile seizures plus
Review for gene: KCNAB3 was set to RED
Added comment: Missense variant identified in a single Han Chinese family with febrile seizures plus. Three affected carriers and one unaffected carrier. Patch clamp functional studies indicates that the variant accelerates the inactivation of the potassium channels.
Sources: Expert list
Mendeliome v0.9392 DENND5A Zornitza Stark Marked gene: DENND5A as ready
Mendeliome v0.9392 DENND5A Zornitza Stark Phenotypes for gene: DENND5A were changed from to Epileptic encephalopathy, early infantile, 49, MIM# 617281
Mendeliome v0.9389 DENND5A Zornitza Stark reviewed gene: DENND5A: Rating: GREEN; Mode of pathogenicity: None; Publications: 27431290, 27866705, 32705489; Phenotypes: Epileptic encephalopathy, early infantile, 49, MIM# 617281; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9389 ZAR1 Zornitza Stark Marked gene: ZAR1 as ready
Mendeliome v0.9389 ZAR1 Zornitza Stark Gene: zar1 has been classified as Red List (Low Evidence).
Mendeliome v0.9389 ZAR1 Zornitza Stark gene: ZAR1 was added
gene: ZAR1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: ZAR1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZAR1 were set to 29574422; 31598710; 12539046
Phenotypes for gene: ZAR1 were set to Multi locus imprinting disturbance in offspring
Review for gene: ZAR1 was set to RED
Added comment: Single report of biallelic variants in this gene in a mother of a child with Multi locus imprinting disturbance (MLID) with some features of Beckwith Wiedemann Syndrome. Shown to be a maternal effect gene that functions at the oocyte to embryo transition.
Sources: Expert Review
Mendeliome v0.9388 UHRF1 Zornitza Stark Marked gene: UHRF1 as ready
Mendeliome v0.9388 UHRF1 Zornitza Stark gene: UHRF1 was added
gene: UHRF1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: UHRF1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UHRF1 were set to 29574422; 28976982
Phenotypes for gene: UHRF1 were set to Multi locus imprinting disturbance in offspring
Review for gene: UHRF1 was set to RED
Added comment: Single report of biallelic variants in this gene in a mother of a child with Multi locus imprinting disturbance (MLID) and Silver Russell Syndrome phenotype. Maenohara et al demonstrate functions of UHRF1 during the global epigenetic reprogramming of oocytes and early embryos.
Sources: Expert Review
Mendeliome v0.9387 MAGEL2 Zornitza Stark Marked gene: MAGEL2 as ready
Mendeliome v0.9384 L3MBTL1 Zornitza Stark Marked gene: L3MBTL1 as ready
Mendeliome v0.9384 L3MBTL1 Zornitza Stark gene: L3MBTL1 was added
gene: L3MBTL1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: L3MBTL1 was set to MONOALLELIC, autosomal or pseudoautosomal, maternally imprinted (paternal allele expressed)
Publications for gene: L3MBTL1 were set to 23543057; 15123827; 30794780
Phenotypes for gene: L3MBTL1 were set to Affected tissue: myeloid lineages; Phenotype resulting from under expression: lymphoid malignancy
Review for gene: L3MBTL1 was set to RED
Added comment: Germline variation in this imprinted gene is not currently associated with disease.

Somatic deletions of 20q are associated with chronic myeloid malignancies. Aziz et al showed that a single heterozygous 20q deletion consistently resulted in the complete loss of expression of the imprinted genes L3MBTL1 and SGK2, indicative of a pathogenetic role for loss of the active paternally inherited locus. Concomitant loss of both L3MBTL1 and SGK2 dysregulated erythropoiesis and megakaryopoiesis.
Sources: Expert Review
Mendeliome v0.9383 KCNQ1OT1 Zornitza Stark Marked gene: KCNQ1OT1 as ready
Mendeliome v0.9383 KCNQ1OT1 Zornitza Stark gene: KCNQ1OT1 was added
gene: KCNQ1OT1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: KCNQ1OT1 was set to MONOALLELIC, autosomal or pseudoautosomal, maternally imprinted (paternal allele expressed)
Publications for gene: KCNQ1OT1 were set to 22205991; 15372379; 23511928; 30794780; 29377879; 10220444; 32447323; 33177595; 29047350
Phenotypes for gene: KCNQ1OT1 were set to Beckwith-Wiedemann syndrome OMIM:130650; Russell-Silver Syndrome
Review for gene: KCNQ1OT1 was set to AMBER
Added comment: Limited evidence that isolated intragenic variation in KCNQ1OT1 is definitively associated with a phenotype.

KCNQ1OT1 encodes the regulatory antisense non-coding RNA KCNQ1OT1 (KCNQ1 overlapping) and is located within the KCNQ1OT1:TSS DMR (imprinting control region 2; IC2) at 11p15.5. IC2 is located within KCNQ1 intron 10. KCNQ1OT1 is maternally imprinted and paternally expressed. On the paternal chromosome, KCNQ1OT1 is transcribed and represses in cis the flanking imprinted genes, including the growth inhibitor CDKN1C, which is normally transcribed from the maternal allele. In 50% of the BWS patients, loss of methylation (LOM) of IC2 leads to biallelic expression of KCNQ1OT1 and biallelic silencing of CDKN1C (PMID 30635621). Expression is increased in BWS due to IC2 epimutations or paternal UPD.

Single nucleotide variants within KCNQ1OT1 have not been definitively associated with human disease. A heterozygous maternally inherited non-coding variant was identified in an individual with isolated omphalocele. This variant was shown to alter the methylation pattern of the imprinted allele (PMID 29047350).

Eggerman et al (PMID 32447323) described a 132 base pair deletion within KCNQ1OT1 associated with growth retardation in the case of paternal but not maternal transmission. This intragenic deletion did not affect IC2 methylation.

Microdeletions of IC2 involving KCNQ1OT1 on the paternal allele have been identified in a small number of patients with Russell-Silver syndrome. Similarly, microdeletions of IC2 involving KCNQ1OT1 on the maternal allele have been identified in a small number of patients with BWS. These deletions also variably involve KCNQ1 or CDKN1C. LoF in CDKN1C is a known cause of BWS. There is some evidence to suggest that disruption of KCNQ1 prevents maternal methylation at IC2 (PMID 30778172).
Sources: Expert Review
Mendeliome v0.9382 H19 Zornitza Stark Marked gene: H19 as ready
Mendeliome v0.9382 H19 Zornitza Stark gene: H19 was added
gene: H19 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: H19 was set to MONOALLELIC, autosomal or pseudoautosomal, paternally imprinted (maternal allele expressed)
Publications for gene: H19 were set to 20007505; 15743916; 23118352; 21863054; 21571108; 18245780; 24916376; 25943194
Phenotypes for gene: H19 were set to Phenotypes resulting from gene over expression: Silver-Russell Syndrome (proven effects of dosage alteration rather than gene muation); Affected tissue: all; Phenotype resulting from under expression: Beckwith-Wiedemann Syndrome
Review for gene: H19 was set to RED
Added comment: Methylation changes rather than sequence variation are associated with BWS/RSS.
Sources: Expert Review
Mendeliome v0.9381 GBF1 Zornitza Stark Phenotypes for gene: GBF1 were changed from Axonal Neuropathy to Charcot-Marie-Tooth disease, dominant intermediate A, MIM# 606483; Axonal Neuropathy
Mendeliome v0.9380 GBF1 Zornitza Stark reviewed gene: GBF1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Charcot-Marie-Tooth disease, dominant intermediate A, MIM# 606483; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9379 OOEP Zornitza Stark Marked gene: OOEP as ready
Mendeliome v0.9379 OOEP Zornitza Stark gene: OOEP was added
gene: OOEP was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: OOEP was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: OOEP were set to 29574422
Phenotypes for gene: OOEP were set to Multi locus imprinting disturbance in offspring
Review for gene: OOEP was set to RED
Added comment: Single report of biallelic variants in this gene in a mother of a child with Multi locus imprinting disturbance (MLID) and a transient neonatal diabetes mellitus phenotype.

This gene encodes part of the subcortical maternal complex (SCMC). Other genes in this group act as 'maternal effect' genes and are associated with early embryonic arrest, recurrent hydatiform mole and MLID in offspring.

As is the case for other genes encoding components of the SCMC, the pathogenicity of variants can be difficult to establish as reproductive outcomes are not recorded in genomic databases and variants may be listed in population databases as they are not classed as pathogenic in males or women with no reproductive history.

Functional studies of genes encoding components of the SCMC are limited as their expression is restricted to the oocyte and early embryo.
Sources: Literature
Mendeliome v0.9378 ZNF445 Zornitza Stark Marked gene: ZNF445 as ready
Mendeliome v0.9378 ZNF445 Zornitza Stark gene: ZNF445 was added
gene: ZNF445 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZNF445 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZNF445 were set to 34039421; 30602440; 30846001
Phenotypes for gene: ZNF445 were set to Temple syndrome; Multi locus imprinting disturbance (MLID)
Review for gene: ZNF445 was set to RED
Added comment: Single report (Kagami 2021) of a child with Temple syndrome and MLID found to have a novel homozygous truncating variant in ZNF445.

ZNF445 has been shown to play a critical role in the maintenance of postfertilisation methylation imprints (Takahashi 2019). Mechanism and parent of origin effects remain uncertain.
Sources: Literature
Mendeliome v0.9377 NSRP1 Zornitza Stark Marked gene: NSRP1 as ready
Mendeliome v0.9376 NSRP1 Zornitza Stark gene: NSRP1 was added
gene: NSRP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NSRP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NSRP1 were set to 34385670
Phenotypes for gene: NSRP1 were set to Epilepsy; Cerebral palsy; microcephaly; Intellectual disability
Review for gene: NSRP1 was set to GREEN
Added comment: Novel gene regulating splicing. Biallelic LoF pathogenic variants reported in 6 individuals from 3 unrelated families associated with a phenotype characterized by developmental delay, epilepsy, microcephaly, and spastic cerebral palsy.
Sources: Literature
Mendeliome v0.9373 ERGIC1 Zornitza Stark edited their review of gene: ERGIC1: Added comment: Pehlivan et al. 2019 (PMID:31230720) identified the third case of arthrogryposis in a child who harboured a previously unreported homozygous variant (c.782G>A; p.Gly261Asp) in this gene. Parents were heterozygous carriers. Functional studies were not performed.; Changed rating: GREEN; Changed publications: 28317099, 34037256, 31230720
Mendeliome v0.9370 GABRD Zornitza Stark changed review comment from: Limited reports. The variant originally reported in PMID 15115768 in association with epilepsy is present in >4,000 hets in gnomad and 55 homs which is not consistent with a Mendelian disorder.; to: Susceptibility to epilepsy, MIM#613060: Limited reports. The variant originally reported in PMID 15115768 in association with epilepsy is present in >4,000 hets in gnomad and 55 homs which is not consistent with a Mendelian disorder.
Mendeliome v0.9370 GABRD Zornitza Stark edited their review of gene: GABRD: Added comment: 10 individuals with 7 unique variants reported in individuals with neurodevelopmental disorders and epilepsy. Six of the variants were demonstrated to be GoF, and those individuals with neurodevelopmental disorders with behavioural issues, various degrees of intellectual disability, generalized epilepsy with atypical absences and generalized myoclonic and/or bilateral tonic-clonic seizures. In contrast, the one individual carrying a loss-of-function variant had normal intelligence, no seizure history but has a diagnosis of autism spectrum disorder and suffering from elevated internalizing psychiatric symptoms.; Changed rating: GREEN; Changed publications: 15115768, 34633442; Changed phenotypes: Intellectual disability, Epilepsy, Susceptibility to epilepsy, MIM#613060
Mendeliome v0.9370 NLRP5 Zornitza Stark Phenotypes for gene: NLRP5 were changed from Early embryonic arrest to Early embryonic arrest; Multi locus imprinting disturbance in offspring
Mendeliome v0.9366 NLRP5 Zornitza Stark edited their review of gene: NLRP5: Added comment: 'Maternal effect gene'
Part of the subcortical maternal complex

Report of five mothers carrying either monoallelic or biallelic variants in NLRP5, who had both unaffected offspring and offspring with BWS-MLID (Doherty 2015). Report of one family where the mother carried biallelic variants in NLRP5, had one offspring with BWS, one unaffected offspring and multiple miscarriages (Sparago 2019).

Reports of at least three unrelated individuals with recurrent early embryonic arrest carrying biallelic variants in NLRP5. Functional work suggesting protein degradation in affected human cell lines (Mu 2019, Xu 2020).; Changed rating: GREEN; Changed publications: 32222962, 31829238, 30877238, 26323243, 34440388; Changed phenotypes: Early embryonic arrest, Multi locus imprinting disturbance in offspring; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.9365 DSTYK Zornitza Stark changed review comment from: Mono-allelic variants and CAKUT: Multiple families reported, zebrafish model has multiple congenital anomalies including of the GU tract. Established gene-disease association.

Bi-allelic variants and HSP: Three families reported, but all had same intragenic deletion/insertion, suggestive of founder effect.; to: Mono-allelic variants and CAKUT: Multiple families reported, zebrafish model has multiple congenital anomalies including of the GU tract. Disputed gene-disease association as original variants present at relatively high pop frequency as per review by Ain Roesley.

Bi-allelic variants and HSP: Three families reported, but all had same intragenic deletion/insertion, suggestive of founder effect.
Mendeliome v0.9364 DSTYK Ain Roesley reviewed gene: DSTYK: Rating: RED; Mode of pathogenicity: None; Publications: 23862974; Phenotypes: Congenital anomalies of kidney and urinary tract 1, MIM# 610805, Spastic paraplegia 23, MIM# 270750; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9364 KCTD3 Zornitza Stark Marked gene: KCTD3 as ready
Mendeliome v0.9361 GYPC Zornitza Stark Marked gene: GYPC as ready
Mendeliome v0.9357 TARS2 Zornitza Stark Publications for gene: TARS2 were set to 24827421; 26811336; 33153448
Mendeliome v0.9356 TARS2 Zornitza Stark Classified gene: TARS2 as Green List (high evidence)
Mendeliome v0.9356 TARS2 Zornitza Stark Gene: tars2 has been classified as Green List (High Evidence).
Mendeliome v0.9355 TARS2 Krithika Murali reviewed gene: TARS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 33153448, 24827421, 34508595; Phenotypes: Combined oxidative phosphorylation deficiency 21 - 615918, Epilepsy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9355 SLC4A3 Daniel Flanagan gene: SLC4A3 was added
gene: SLC4A3 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: SLC4A3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SLC4A3 were set to PMID: 29167417; 34557911
Phenotypes for gene: SLC4A3 were set to Short QT syndrome
Review for gene: SLC4A3 was set to AMBER
Added comment: Moderate evidence for autosomal dominant short QT syndrome 1 by ClinGen /gene curation expert panel (PMID: 34557911). A single missense variant (absent gnomAD) identified in two SQTS families. In family 1, it segregated with SQTS (QTc<370ms) in 23 carriers, and 19 non-carriers had a QTc>370ms. In family 2, it segregated in 4 individuals. Experimental evidence from in vitro and zebrafish models suggests reduced membrane localization of the mutated protein leads to intracellular alkalinization and shortening of the cardiomyocyte action potential duration.
ClinGen expert panel was divided between strong (4 votes) and moderate (5 votes).
Sources: Expert Review
Mendeliome v0.9355 USP48 Zornitza Stark Marked gene: USP48 as ready
Mendeliome v0.9355 USP48 Zornitza Stark Added comment: Comment when marking as ready: Borderline Green: one of the variants is present at a high frequency in the normal population. However, even if just two families are considered, supportive functional data including zebrafish model.
Mendeliome v0.9354 MARS Zornitza Stark Marked gene: MARS as ready
Mendeliome v0.9354 MARS Zornitza Stark Added comment: Comment when marking as ready: New HGNC approved gene name is MARS1.
Mendeliome v0.9354 MARS Zornitza Stark Gene: mars has been classified as Green List (High Evidence).
Mendeliome v0.9354 MARS Zornitza Stark Tag new gene name tag was added to gene: MARS.
Mendeliome v0.9354 MARS Zornitza Stark Marked gene: MARS as ready
Mendeliome v0.9354 MARS Zornitza Stark Gene: mars has been classified as Green List (High Evidence).
Mendeliome v0.9354 MARS Zornitza Stark Phenotypes for gene: MARS were changed from to Interstitial lung and liver disease, MIM#615486; Charcot-Marie-Tooth disease, axonal, type 2U, MIM# 616280; Trichothiodystrophy, MONDO:0018053
Mendeliome v0.9353 MARS Zornitza Stark Publications for gene: MARS were set to
Mendeliome v0.9352 MARS Zornitza Stark Mode of inheritance for gene: MARS was changed from Unknown to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.9351 MARS Zornitza Stark changed review comment from: Association with CMT: Two families reported. One mutation positive family member was asymptomatic. Second case is proband only testing with no segregation or functional data. Note one of the variants identified in dominant MARS1-associated neuropathy, p.Arg618Cys, has also been reported in AR MARS1-related pulmonary interstiatial/liver disease.; to: Association with CMT and mono-allelic variants: Two families reported. One mutation positive family member was asymptomatic. Second case is proband only testing with no segregation or functional data. Note one of the variants identified in dominant MARS1-associated neuropathy, p.Arg618Cys, has also been reported in AR MARS1-related pulmonary interstiatial/liver disease.
Mendeliome v0.9351 MARS Zornitza Stark changed review comment from: Association with interstitial lung and liver disease: More than 5 unrelated families reported. Founder variants in Reunion Island, p.Ser567Leu and p.Ala393Thr, in cis.

Pathologic examination of lung lavage is consistent with pulmonary alveolar proteinosis.; to: Association with interstitial lung and liver disease and bi-allelic variants: More than 5 unrelated families reported. Founder variants in Reunion Island, p.Ser567Leu and p.Ala393Thr, in cis.

Pathologic examination of lung lavage is consistent with pulmonary alveolar proteinosis.
Mendeliome v0.9351 MARS Zornitza Stark changed review comment from: Two families reported. One mutation positive family member was asymptomatic. Second case is proband only testing with no segregation or functional data. Note one of the variants identified in dominant MARS1-associated neuropathy, p.Arg618Cys, has also been reported in AR MARS1-related pulmonary interstiatial/liver disease.; to: Association with CMT: Two families reported. One mutation positive family member was asymptomatic. Second case is proband only testing with no segregation or functional data. Note one of the variants identified in dominant MARS1-associated neuropathy, p.Arg618Cys, has also been reported in AR MARS1-related pulmonary interstiatial/liver disease.
Mendeliome v0.9351 MARS Zornitza Stark edited their review of gene: MARS: Added comment: Association with interstitial lung and liver disease: More than 5 unrelated families reported. Founder variants in Reunion Island, p.Ser567Leu and p.Ala393Thr, in cis.

Pathologic examination of lung lavage is consistent with pulmonary alveolar proteinosis.; Changed rating: GREEN; Changed publications: 23729695, 24354524, 29655802, 24103465, 25913036; Changed phenotypes: Interstitial lung and liver disease, MIM#615486, Charcot-Marie-Tooth disease, axonal, type 2U, MIM# 616280; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.9351 AARS Zornitza Stark Phenotypes for gene: AARS were changed from Epileptic encephalopathy, early infantile, 29, MIM# 616339; Charcot-Marie-Tooth disease, axonal, type 2N, MIM# 613287 to Epileptic encephalopathy, early infantile, 29, MIM# 616339; Charcot-Marie-Tooth disease, axonal, type 2N, MIM# 613287; trichothiodystrophy, MONDO:0018053
Mendeliome v0.9350 AARS Zornitza Stark Publications for gene: AARS were set to 28493438; 25817015; 20045102; 22009580; 22206013; 30373780; 26032230
Mendeliome v0.9347 USP48 Eleanor Williams gene: USP48 was added
gene: USP48 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: USP48 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: USP48 were set to 34059922
Phenotypes for gene: USP48 were set to non-syndromic hearing loss; nonsyndromic genetic deafness, MONDO:0019497
Penetrance for gene: USP48 were set to Incomplete
Review for gene: USP48 was set to GREEN
Added comment: PMID: 34059922 - Bassani et al 2021 - 3 cases reported with variants in USP48 and non syndromic hearing loss. They first analysed 4-generation Italian family with 6 individuals with hearing loss. The only rare variant segregating with the disease was a missense variant in USP48 (NM_032234.7:c.1216G > A, NP_115612.4:p.(Gly406Arg)). The variant is present in GnomAD v2.1.1 with a minor allele frequency (MAF) of 6.7 × 10−5 (17 allele out of 251 304 with no homozygotes). They also observed one hearing individual in the family who was heterozygous for the variant, suggesting incomplete penetrance.
In a Dutch family the found by exome sequencing a missense variant in USP48 (NM_032236.7:c.2215_2216delinsTT, NP_115612.4:p.(Thr739Leu)). The probands mother and uncle were also affected by no sequence data was available for analysis.
In a French family a proband is reported with right profound sensorineural hearing impairment (at 12 months), but normal left hearing (at 6 years old). The patient is heterozygote for a de novo splice variant in USP48 (NM_032236.7:c.3058 + 2 T > C, NP_115612.4:p.?;) which is not found in GnomAD and is predicted to result in a frameshift resulting in either NMD or a truncated protein.
In functional experiments they showed that the two missense variants found in the Italian and Dutch families, and a shortened protein as predicted for the variant found in the French variant, showed an impaired ability to cleave tetra-ubiquitin into tri-, di- and mono-ubiquitin. Using immunohistology, they show that the human USP48 protein is present in fetal inner ear specimens.
In addition zebrafish lacking usp48 showed a significant decrease of auditory response in acoustic startle response assays at 600 and 800 Hz wavelengths.
Sources: Literature
Mendeliome v0.9347 MARS Eleanor Williams reviewed gene: MARS: Rating: ; Mode of pathogenicity: None; Publications: 33909043; Phenotypes: trichothiodystrophy, MONDO:0018053; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9347 AARS Eleanor Williams changed review comment from: PMID: 33909043 - Botta et al 2021 - using WES or WGS analysis of 34 unsolved cases with multi-system phenotypes, but with hair alterations that are typical of trichothiodystrophy but no reported photosensitivity, they identified 2 unrelated cases carrying 4 potentially pathogenic variants in the AARS1 gene (previously known as AARSB. Both patients had very rare compound heterozygous missense variants. In one family there was an older affected sibling but segregation data was not available for either family.; to: PMID: 33909043 - Botta et al 2021 - using WES or WGS analysis of 34 unsolved cases with multi-system phenotypes, but with hair alterations that are typical of trichothiodystrophy but no reported photosensitivity, they identified 2 unrelated cases carrying 4 potentially pathogenic variants in the AARS1 gene (previously known as AARSB. Both patients had very rare compound heterozygous missense variants. In one family there was an older affected sibling but segregation data was not available for either family. Functional studies suggest that the variants affects gene product stability.
Mendeliome v0.9347 AARS Eleanor Williams reviewed gene: AARS: Rating: ; Mode of pathogenicity: None; Publications: 33909043; Phenotypes: trichothiodystrophy, MONDO:0018053; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9347 AIP Zornitza Stark Marked gene: AIP as ready
Mendeliome v0.9347 AIP Zornitza Stark Phenotypes for gene: AIP were changed from to Pituitary adenoma predisposition MIM#102200
Mendeliome v0.9344 TTC26 Zornitza Stark Phenotypes for gene: TTC26 were changed from Ciliopathy Syndrome with Biliary, Renal, Neurological, and Skeletal Manifestations to Biliary, renal, neurologic, and skeletal syndrome, MIM# 619534; Ciliopathy Syndrome with Biliary, Renal, Neurological, and Skeletal Manifestations
Mendeliome v0.9343 TTC26 Zornitza Stark edited their review of gene: TTC26: Changed phenotypes: Biliary, renal, neurologic, and skeletal syndrome, MIM# 619534, Ciliopathy Syndrome with Biliary, Renal, Neurological, and Skeletal Manifestations
Mendeliome v0.9341 CERKL Zornitza Stark Marked gene: CERKL as ready
Mendeliome v0.9338 AIP Paul De Fazio changed review comment from: Germline variants in AIP cause predisposition to pituitary adenomas which may result in acromegaly.

A 2015 cohort study of 143 patients with pituitary gigantism who consented to genetic testing found 29% had variants in AIP. Age at first symptoms was 9-13 years, age at diagnosis 14-20 years.; to: Germline variants in AIP cause predisposition to pituitary adenomas which may result in acromegaly.

A 2015 cohort study of 143 patients with pituitary gigantism who consented to genetic testing found 29% had variants in AIP. Age at first symptoms was 9-13 years, age at diagnosis 14-20 years.

Many patients have no family history, suggesting low penetrance.
Mendeliome v0.9338 AIP Paul De Fazio reviewed gene: AIP: Rating: GREEN; Mode of pathogenicity: None; Publications: 16728643, 17360484, 26187128; Phenotypes: Pituitary adenoma predisposition MIM#102200; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v0.9338 SHANK1 Zornitza Stark Marked gene: SHANK1 as ready
Mendeliome v0.9334 GDF11 Zornitza Stark edited their review of gene: GDF11: Added comment: Ravenscroft et al. (2021) report additional 6 probands who presented with craniofacial (5/6), vertebral (5/6), neurological (6/6), visual (4/6), cardiac (3/6), auditory (3/6), and connective tissue abnormalities (3/6). They found de novo and inherited variants in GDF11. gdf11 mutant zebrafish showed craniofacial abnormalities and body segmentation defects that matched some patient phenotypes. Expression of the patients’ variants in the fly showed that one nonsense variant in GDF11 is a severe loss-of-function (LOF) allele whereas the missense variants are partial LOF variants.; Changed rating: GREEN; Changed publications: 31215115, 34113007
Mendeliome v0.9334 PLXNA1 Zornitza Stark Marked gene: PLXNA1 as ready
Mendeliome v0.9333 PLXNA1 Zornitza Stark gene: PLXNA1 was added
gene: PLXNA1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PLXNA1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: PLXNA1 were set to 34054129
Phenotypes for gene: PLXNA1 were set to Neurodevelopmental disorder with cerebral and eye anomalies
Review for gene: PLXNA1 was set to GREEN
Added comment: Dworschak et al. (2021) via WES reported 10 patients from 7 families with biallelic (n=7) or de novo (n=3) PLXNA1 variants. Shared phenotypic features include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Seizures were predominantly reported in patients with monoallelic variants. Zebrafish studies showed an embryonic role of plxna1a in the development of the central nervous system and the eye. Biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.
Sources: Literature
Mendeliome v0.9328 UNC13B Zornitza Stark Marked gene: UNC13B as ready
Mendeliome v0.9328 UNC13B Zornitza Stark gene: UNC13B was added
gene: UNC13B was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: UNC13B was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: UNC13B were set to 33876820
Phenotypes for gene: UNC13B were set to Epilepsy
Review for gene: UNC13B was set to RED
Added comment: No OMIM human disease association. Gene encodes a presynaptic protein Munc13-2 highly expressed in the brain (predominantly cerebral cortex).

Variant interpretation data in human epilepsy cohort somewhat conflicting and restricted to a single study. Conflicting data esp regarding MOI, and evidence for pathogenicity of several of the variants is limited.

Wang et al, Brain, 2021 - trio-based whole-exome sequencing identified UNC13B in 12 individuals affected by partial epilepsy and/or febrile seizures from 8 unrelated families. Identified:
x1 de novo nonsense variant, absent in gnomad, damaging in silicos
x1 de novo splice site, absent in gnomad, damaging in silicos
x1 splice site variant present in unaffected mother (low frequency in gnomad)
x2 compound het in one individual - more severe phenotype postulated (x1 variant present in contro cohortl, the other variant present in low frequency in gnomad)
x1 missense variant - in Han Chinese major depressive disorders study, not in gnomad
x1 missense variant - highly conserved residue, not in gnomad
x2 other missense variant - highly conserved residue, low frequency in gnomad
Latter 4 missense variants cosegregated with affected individuals in the families

In Drosophila, seizure rate and duration were increased by Unc13b knockdown compared to wild-type flies, but these effects were less pronounced than in sodium voltage-gated channel alpha subunit 1 (Scn1a) knockdown Drosophila

De novo UNC13B variants previously reported in bipolar disorder and autism spectrum disorder
Sources: Expert Review
Mendeliome v0.9327 VARS2 Zornitza Stark Marked gene: VARS2 as ready
Mendeliome v0.9327 VARS2 Zornitza Stark Gene: vars2 has been classified as Green List (High Evidence).
Mendeliome v0.9327 VARS2 Zornitza Stark Phenotypes for gene: VARS2 were changed from to Combined oxidative phosphorylation deficiency 20; OMIM #615917
Mendeliome v0.9326 VARS2 Zornitza Stark Publications for gene: VARS2 were set to
Mendeliome v0.9325 VARS2 Zornitza Stark Mode of inheritance for gene: VARS2 was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9324 VARS2 Zornitza Stark reviewed gene: VARS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 24827421, 25058219, 29137650, 29314548, 31064326, 31623496; Phenotypes: Combined oxidative phosphorylation deficiency 20, OMIM #615917; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9324 CHD4 Zornitza Stark Phenotypes for gene: CHD4 were changed from Sifrim-Hitz-Weiss syndrome, MIM 617159 to Sifrim-Hitz-Weiss syndrome, MIM 617159; Childhood idiopathic epilepsy and sinus arrhythmia
Mendeliome v0.9322 CHD4 Zornitza Stark reviewed gene: CHD4: Rating: GREEN; Mode of pathogenicity: None; Publications: 34109749; Phenotypes: Childhood idiopathic epilepsy and sinus arrhythmia; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9322 BCL11A Zornitza Stark Marked gene: BCL11A as ready
Mendeliome v0.9319 CFAP221 Zornitza Stark Marked gene: CFAP221 as ready
Mendeliome v0.9319 CFAP221 Zornitza Stark gene: CFAP221 was added
gene: CFAP221 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CFAP221 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CFAP221 were set to 31636325
Phenotypes for gene: CFAP221 were set to Primary ciliary dyskinesia
Review for gene: CFAP221 was set to RED
Added comment: WES in 1 family with 3 siblings with clinical symptoms of PCD identified compound heterozygous loss-of-function variants in CFAP221, which segregated with disease. No functional studies. Nasal epithelial cells from 1 of the subjects demonstrated slightly reduced beat frequency, however, waveform analysis revealed that the CFAP221 defective cilia beat in an aberrant circular pattern. A candidate gene in cases where PCD is suspected but cilia structure and beat frequency appear normal.
Sources: Literature
Mendeliome v0.9317 DAB1 Zornitza Stark Phenotypes for gene: DAB1 were changed from to Spinocerebellar ataxia 37 MIM#615945; Ataxia and intellectual disability
Mendeliome v0.9312 ERBB4 Zornitza Stark Marked gene: ERBB4 as ready
Mendeliome v0.9305 ZDHHC15 Zornitza Stark Phenotypes for gene: ZDHHC15 were changed from Mental retardation, X-linked 91, 300577 to Mental retardation, X-linked 91, 300577; cerebral palsy; intellectual disability; autism spectrum disorder; epilepsy
Mendeliome v0.9305 ABHD16A Seb Lunke Phenotypes for gene: ABHD16A were changed from Spastic paraplegia to Spastic paraplegia; Intellectual Disability; Callosome
Mendeliome v0.9303 ZDHHC15 Krithika Murali changed review comment from: Lewis et al Neurology Genetics 2021

Functional analysis of 4 ZDHHC15 variants - x2 Jin et al, others identified through GeneMatcher

Yeast cells expressing ZDHHC15 p.L13P (Jin et al, maternally inherited), p.K115R (maternally inherited) and p.S330p were indistinguishable from cells harboring the reference ZDHHC15 allele, however those expressing p.H158R (also reported in Jin et al, maternally inherited) disrupted normal protein function.; to: Lewis et al Neurology Genetics 2021

Functional analysis of 4 ZDHHC15 variants - x2 Jin et al Nat Genet 2020 PMID 32989326, others identified through GeneMatcher

Yeast cells expressing ZDHHC15 p.L13P (Jin et al, maternally inherited), p.K115R (maternally inherited) and p.S330p were indistinguishable from cells harboring the reference ZDHHC15 allele, however those expressing p.H158R (also reported in Jin et al, maternally inherited) disrupted normal protein function.
Mendeliome v0.9302 WIPI2 Zornitza Stark Marked gene: WIPI2 as ready
Mendeliome v0.9299 ATP11A Zornitza Stark Marked gene: ATP11A as ready
Mendeliome v0.9298 WLS Zornitza Stark Marked gene: WLS as ready
Mendeliome v0.9297 ABHD16A Lucy Spencer gene: ABHD16A was added
gene: ABHD16A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ABHD16A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ABHD16A were set to PMID: 34587489
Phenotypes for gene: ABHD16A were set to Spastic paraplegia
Review for gene: ABHD16A was set to GREEN
Added comment: 11 individuals from 6 families with a complicated form of hereditary spastic paraplegia who carry bi-allelic deleterious variants in ABHD16A. Affected individuals present with a similar phenotype consisting of global developmental delay/intellectual disability, progressive spasticity affecting the upper and lower limbs, and corpus callosum and white matter anomalies. Immunoblot analysis on extracts from fibroblasts from four affected individuals demonstrated little to no ABHD16A protein levels compared to controls.
In 5 of the families the affected members were homozygous, 3 of these families were consanguineous. 2 families have the same variant- both families are French-Canadian.
4 missense variants, 1 frameshift, 1 nonsense.
From PMID: 34587489
Sources: Literature
Mendeliome v0.9297 SNIP1 Teresa Zhao reviewed gene: SNIP1: Rating: RED; Mode of pathogenicity: None; Publications: PMID: 34570759; Phenotypes: Psychomotor retardation, epilepsy, and craniofacial dysmorphism, 614501; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9297 ATP11A Elena Savva gene: ATP11A was added
gene: ATP11A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATP11A was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: ATP11A were set to PMID: 34403372
Phenotypes for gene: ATP11A were set to Neurological disorder
Mode of pathogenicity for gene: ATP11A was set to Other
Review for gene: ATP11A was set to AMBER
Added comment: PMID: 34403372:
- Single de novo missense variant reported in a patient with developmental delay and neurological deterioration.
- Patient MRI showed severe cerebral atrophy, ventriculomegaly, hypomyelination leukodystrophy, thinned corpus callosum. Axonal neuropathy suggested.
- K/I heterozygous mice died perinatally.
- Functional studies on missense variant show plasma membrane lipid content impairment, reduced ATPase activity etc.

gnomAD: some NMD PTCs present, good quality variants found with 4-5 hets.
Sources: Literature
Mendeliome v0.9297 WLS Teresa Zhao changed review comment from: - We identified homozygous mutations in 10 affected persons from 5 unrelated families.
- Patients had multiorgan defects, including microcephal, facial dysmorphism, foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects.
- The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis.
Sources: Literature; to: - Homozygous mutations in 10 affected persons from 5 unrelated families.
- Patients had multiorgan defects, including microcephal, facial dysmorphism, foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects.
- The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis.
Sources: Literature
Mendeliome v0.9297 WLS Teresa Zhao gene: WLS was added
gene: WLS was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: WLS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: WLS were set to PMID: 34587386
Phenotypes for gene: WLS were set to Syndromic structural birth defects
Review for gene: WLS was set to GREEN
Added comment: - We identified homozygous mutations in 10 affected persons from 5 unrelated families.
- Patients had multiorgan defects, including microcephal, facial dysmorphism, foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects.
- The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis.
Sources: Literature
Mendeliome v0.9297 SHQ1 Zornitza Stark Marked gene: SHQ1 as ready
Mendeliome v0.9297 SARS Bryony Thompson Marked gene: SARS as ready
Mendeliome v0.9297 SARS Bryony Thompson Gene: sars has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9296 SHQ1 Zornitza Stark gene: SHQ1 was added
gene: SHQ1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SHQ1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SHQ1 were set to 34542157; 29178645
Phenotypes for gene: SHQ1 were set to Dystonia; Neurodegeneration
Review for gene: SHQ1 was set to AMBER
Added comment: Three unrelated families reported. Family 1: isolated dystonia only; Family 2: dystonia, and neurodegeneration; Family 3: neurodegeneration.

Rated Amber as phenotypes likely represent a continuum but currently unclear.
Sources: Literature
Mendeliome v0.9295 SARS Bryony Thompson Classified gene: SARS as Amber List (moderate evidence)
Mendeliome v0.9295 SARS Bryony Thompson Gene: sars has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9294 SARS Bryony Thompson gene: SARS was added
gene: SARS was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SARS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SARS were set to 28236339; 34570399
Phenotypes for gene: SARS were set to Intellectual disability
Review for gene: SARS was set to AMBER
Added comment: Summary - 2 unrelated families with overlapping ID phenotype, and supporting in vitro and patient cell assays.
PMID: 28236339 - an Iranian family (distantly related) segregating a homozygous missense (c.514G>A, p.Asp172Asn) with moderate ID, microcephaly, ataxia, speech impairment, and aggressive behaviour. Also, supporting in vitro functional assays demonstrating altered protein function.
PMID: 34570399 - a consanguineous Turkish family segregating a homozygous missense (c.638G>T, p.(Arg213Leu)) with developmental delay, central deafness, cardiomyopathy, and metabolic decompensation during fever leading to death. Also, reduced protein level and enzymatic activity in patient cells.
Sources: Literature
Mendeliome v0.9293 NDN Zornitza Stark Marked gene: NDN as ready
Mendeliome v0.9290 NFIB Zornitza Stark Marked gene: NFIB as ready
Mendeliome v0.9285 EIF3F Zornitza Stark edited their review of gene: EIF3F: Added comment: Hüffmeier et al (2021) reported 21 patients who were homozygous/compound heterozygous for Phe232Val variant in EIF3F. All affected individuals had developmental delay and speech delay. About half had behavioural problems, altered muscular tone, hearing loss, and short stature. The study suggests that microcephaly, reduced sensitivity to pain, cleft lip/palate, gastrointestinal symptoms and ophthalmological symptoms are part of the phenotypic spectrum.; Changed publications: 30409806, 33736665; Changed phenotypes: Mental retardation, autosomal recessive 67, MIM# 618295
Mendeliome v0.9285 PTPRC Zornitza Stark Marked gene: PTPRC as ready
Mendeliome v0.9282 CORO1A Zornitza Stark Marked gene: CORO1A as ready
Mendeliome v0.9279 POU6F2 Zornitza Stark Marked gene: POU6F2 as ready
Mendeliome v0.9279 POU6F2 Zornitza Stark Added comment: Comment when marking as ready: No evidence for association with Mendelian disease.
Mendeliome v0.9278 CDH15 Zornitza Stark Marked gene: CDH15 as ready
Mendeliome v0.9278 CDH15 Zornitza Stark Phenotypes for gene: CDH15 were changed from to Mental retardation, autosomal dominant 3, MIM#612580
Mendeliome v0.9274 CDH15 Zornitza Stark commented on gene: CDH15: PMID: 19012874 - 4 unrelated patients with missense variants and mild-severe ID. Only two genes checked. All variants are common in gnomAD (>20 hets each) and classified as VUS or likely benign in ClinVar (paper is from 2008, pre-dates gnomAD). Functional studies were performed showing a LOF effect, where cell adhesion was reduced.
However NMD PTCs are present in gnomAD (many >=6 hets each)

PMID: 12052883 - null mouse model were viable, showed no gross developmental defects. In particular, the skeletal musculature appeared essentially normal. In the cerebellum of M-cadherin-lacking mutants, typical contactus adherens junctions were present and similar in size and numbers to the equivalent junctions in wild-type animals. However, the adhesion plaques in the cerebellum of these mutants appeared to contain elevated levels of N-cadherin compared to wild-type animals.

PMID: 28422132 - reviewed microdeletions spanning multiple genes including CDH15, suggests it may contribute to a more severe neurological phenotype, with particular regard to brain malformations.

PMID: 26506440 - speculates low penetrance for PTCs in this gene. Acknowledges variants in ExAC, describes them as benign

Note no P/LP variants in ClinVar
Mendeliome v0.9274 CDH15 Zornitza Stark reviewed gene: CDH15: Rating: RED; Mode of pathogenicity: None; Publications: 19012874, 12052883, 28422132, 26506440; Phenotypes: Mental retardation, autosomal dominant 3, MIM#612580; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9273 ARL6IP6 Zornitza Stark Marked gene: ARL6IP6 as ready
Mendeliome v0.9273 ARL6IP6 Zornitza Stark Gene: arl6ip6 has been classified as Red List (Low Evidence).
Mendeliome v0.9273 ARL6IP6 Zornitza Stark gene: ARL6IP6 was added
gene: ARL6IP6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ARL6IP6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ARL6IP6 were set to 31142202
Phenotypes for gene: ARL6IP6 were set to Cutis marmorata telangiectatica congenita
Review for gene: ARL6IP6 was set to RED
Added comment: A single case reported from a consanguineous family with a homozygous nonsense variant (p.Trp64Ter).
Sources: Literature
Mendeliome v0.9270 CSTB Zornitza Stark Marked gene: CSTB as ready
Mendeliome v0.9267 CD3E Zornitza Stark Marked gene: CD3E as ready
Mendeliome v0.9264 CD3D Zornitza Stark Marked gene: CD3D as ready
Mendeliome v0.9261 ARHGAP26 Zornitza Stark Marked gene: ARHGAP26 as ready
Mendeliome v0.9261 ARHGAP26 Zornitza Stark Gene: arhgap26 has been classified as Red List (Low Evidence).
Mendeliome v0.9261 ARHGAP26 Zornitza Stark Classified gene: ARHGAP26 as Red List (low evidence)
Mendeliome v0.9261 ARHGAP26 Zornitza Stark Gene: arhgap26 has been classified as Red List (Low Evidence).
Mendeliome v0.9260 LEFTY2 Zornitza Stark Marked gene: LEFTY2 as ready
Mendeliome v0.9260 LEFTY2 Zornitza Stark Added comment: Comment when marking as ready: No reports since 1999.
Mendeliome v0.9256 ARHGAP26 Dean Phelan reviewed gene: ARHGAP26: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: ; Mode of inheritance: Unknown
Mendeliome v0.9256 MPL Zornitza Stark Phenotypes for gene: MPL were changed from Myelofibrosis with myeloid metaplasia, somatic, MIM#2544503; Thrombocythemia 2, MIM#601977, AD, SMu; Thrombocytopenia, congenital amegakaryocytic, MIM#604498, AR to Myelofibrosis with myeloid metaplasia, somatic, MIM#254450; Thrombocythemia 2, MIM#601977, AD, SMu; Thrombocytopenia, congenital amegakaryocytic, MIM#604498, AR
Mendeliome v0.9254 BCS1L Zornitza Stark Phenotypes for gene: BCS1L were changed from Bjornstad syndrome MIM#262000; GRACILE syndrome, MIM#603358; Mitochondrial complex III deficiency, nuclear type MIM#1124000 to Bjornstad syndrome MIM#262000; GRACILE syndrome, MIM#603358; Mitochondrial complex III deficiency, nuclear type MIM#112400
Mendeliome v0.9253 OPA1 Zornitza Stark Phenotypes for gene: OPA1 were changed from Mitochondrial DNA depletion syndrome 14 (encephalocardiomyopathic type)MIM# 6168963; Behr syndrome MIM#210000, AR; Optic atrophy 1, MIM#165500; Optic atrophy plus syndrome, MIM# 125250 to Mitochondrial DNA depletion syndrome 14 (encephalocardiomyopathic type)MIM# 616896; Behr syndrome MIM#210000, AR; Optic atrophy 1, MIM#165500; Optic atrophy plus syndrome, MIM# 125250
Mendeliome v0.9252 MAOB Zornitza Stark Marked gene: MAOB as ready
Mendeliome v0.9252 MAOB Zornitza Stark gene: MAOB was added
gene: MAOB was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: MAOB was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MAOB were set to 31700678
Phenotypes for gene: MAOB were set to Cerebral palsy
Review for gene: MAOB was set to RED
Added comment: Variants identified in 2 unrelated individuals with CP (with same variant also identified in unaffected monozygotic twin).
Sources: Expert Review
Mendeliome v0.9251 ATP6V0C Zornitza Stark Marked gene: ATP6V0C as ready
Mendeliome v0.9249 KDM7A Zornitza Stark Marked gene: KDM7A as ready
Mendeliome v0.9248 ROBO1 Zornitza Stark Marked gene: ROBO1 as ready
Mendeliome v0.9248 ROBO1 Zornitza Stark Phenotypes for gene: ROBO1 were changed from to Congenital heart disease; Pituitary anomalies
Mendeliome v0.9245 ROBO1 Zornitza Stark reviewed gene: ROBO1: Rating: GREEN; Mode of pathogenicity: None; Publications: 28592524, 30530901, 30692597, 33270637, 28402530; Phenotypes: Congenital heart disease, Pituitary anomalies; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.9245 ARFGEF1 Zornitza Stark Marked gene: ARFGEF1 as ready
Mendeliome v0.9245 ARFGEF1 Zornitza Stark Gene: arfgef1 has been classified as Green List (High Evidence).
Mendeliome v0.9245 ARFGEF1 Zornitza Stark Classified gene: ARFGEF1 as Green List (high evidence)
Mendeliome v0.9245 ARFGEF1 Zornitza Stark Gene: arfgef1 has been classified as Green List (High Evidence).
Mendeliome v0.9244 ARFGEF1 Zornitza Stark gene: ARFGEF1 was added
gene: ARFGEF1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: ARFGEF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ARFGEF1 were set to 34113008
Phenotypes for gene: ARFGEF1 were set to Intellectual disability; Epilepsy
Review for gene: ARFGEF1 was set to GREEN
Added comment: 13 individuals reported with variants in this gene and a neurodevelopmental disorder characterised by variable ID, seizures present in around half. Variants were inherited from mildly affected parents in 40% of families.
Sources: Expert Review
Mendeliome v0.9243 NPR3 Zornitza Stark Marked gene: NPR3 as ready
Mendeliome v0.9240 PRR12 Zornitza Stark Phenotypes for gene: PRR12 were changed from Intellectual disability; Iris abnormalities; Complex microphthalmia to Neuroocular syndrome, MIM#619539; Intellectual disability; Iris abnormalities; Complex microphthalmia
Mendeliome v0.9239 PRR12 Zornitza Stark edited their review of gene: PRR12: Changed phenotypes: Neuroocular syndrome, MIM#619539, Intellectual disability, Iris abnormalities, Complex microphthalmia
Mendeliome v0.9239 KCNC3 Zornitza Stark Marked gene: KCNC3 as ready
Mendeliome v0.9239 KCNC3 Zornitza Stark Phenotypes for gene: KCNC3 were changed from to Spinocerebellar ataxia 13, MIM# 605259
Mendeliome v0.9236 KCNC3 Zornitza Stark reviewed gene: KCNC3: Rating: GREEN; Mode of pathogenicity: None; Publications: 16501573, 25497598, 25981959, 25981959; Phenotypes: Spinocerebellar ataxia 13, MIM# 605259; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9236 MINPP1 Zornitza Stark Phenotypes for gene: MINPP1 were changed from Pontocerebellar hypoplasia to Pontocerebellar hypoplasia, type 16, MIM# 619527
Mendeliome v0.9235 MINPP1 Zornitza Stark edited their review of gene: MINPP1: Changed phenotypes: Pontocerebellar hypoplasia, type 16, MIM# 619527
Mendeliome v0.9235 ZC4H2 Zornitza Stark Marked gene: ZC4H2 as ready
Mendeliome v0.9232 ALG10 Zornitza Stark Marked gene: ALG10 as ready
Mendeliome v0.9232 ALG10 Zornitza Stark gene: ALG10 was added
gene: ALG10 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ALG10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ALG10 were set to 33798445
Phenotypes for gene: ALG10 were set to Progressive myoclonus epilepsy; CDG
Review for gene: ALG10 was set to RED
Added comment: Single individual with homozygous variant identified in a progressive myoclonus epilepsy cohort.
Sources: Literature
Mendeliome v0.9231 LRRK1 Zornitza Stark Marked gene: LRRK1 as ready
Mendeliome v0.9227 KIF4A Zornitza Stark edited their review of gene: KIF4A: Added comment: Further 11 families reported. Major structural brain abnormalities present in at least 3 (hydrocephalus), variable ID in several.; Changed rating: GREEN; Changed publications: 24812067, 34346154
Mendeliome v0.9227 HNRNPH1 Zornitza Stark Marked gene: HNRNPH1 as ready
Mendeliome v0.9226 IRGM Zornitza Stark Marked gene: IRGM as ready
Mendeliome v0.9223 UTP4 Zornitza Stark Marked gene: UTP4 as ready
Mendeliome v0.9219 FMN1 Bryony Thompson Marked gene: FMN1 as ready
Mendeliome v0.9218 FMN1 Bryony Thompson gene: FMN1 was added
gene: FMN1 was added to Mendeliome. Sources: Literature
SV/CNV tags were added to gene: FMN1.
Mode of inheritance for gene: FMN1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FMN1 were set to 20610440; 19383632; 15202026
Phenotypes for gene: FMN1 were set to oligosyndactyly; radioulnar synostosis; hearing loss; renal defects
Review for gene: FMN1 was set to AMBER
Added comment: A 263 Kb homozygous deletion of FMN1 has been identified in a single case with oligosyndactyly, radioulnar synostosis, hearing loss and renal defects. Also, a supporting null mouse model with oligosyndactyly. Also, a large duplication including GREM1 reported in association with Cenani–Lenz syndrome.
Sources: Literature
Mendeliome v0.9217 LBX1 Zornitza Stark Marked gene: LBX1 as ready
Mendeliome v0.9216 LBX1 Zornitza Stark gene: LBX1 was added
gene: LBX1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: LBX1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LBX1 were set to 30487221
Phenotypes for gene: LBX1 were set to Central hypoventilation syndrome, congenital, 3, MIM#619483
Review for gene: LBX1 was set to AMBER
Added comment: Two siblings reported with homozygous LoF variant in this gene, supportive mouse model.
Sources: Expert Review
Mendeliome v0.9211 RAF1 Zornitza Stark Marked gene: RAF1 as ready
Mendeliome v0.9211 RAF1 Zornitza Stark Phenotypes for gene: RAF1 were changed from to Noonan syndrome 5, MIM# 611553; Cardiomyopathy, dilated, 1NN, MIM# 615916
Mendeliome v0.9209 RAF1 Zornitza Stark Mode of pathogenicity for gene: RAF1 was changed from to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Mendeliome v0.9207 RAF1 Zornitza Stark reviewed gene: RAF1: Rating: GREEN; Mode of pathogenicity: Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments; Publications: 17603483, 17603482, 31145547, 31030682, 29271604, 24777450; Phenotypes: Noonan syndrome 5, MIM# 611553, Cardiomyopathy, dilated, 1NN, MIM# 615916; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9207 CDKN1C Zornitza Stark Marked gene: CDKN1C as ready
Mendeliome v0.9203 B9D1 Bryony Thompson changed review comment from: hNow N
PMID: 34338422 - compound het missense and frameshift variant in a proband with anal atresia with vestibular fistula, ventricular septal defect, and right renal agenesis (VACTERL cohort)
PMID: 21763481 - B9d1 -/- mouse displayed polydactyly, kidney cysts, ductal plate malformations, and abnormal patterning of the neural tube, concomitant with compromised ciliogenesis, ciliary protein localization, and Hedgehog (Hh) signal transduction.; to: 3 unrelated cases with a syndromic phenotype and a supporting null mouse model
PMID: 34338422 - compound het missense and frameshift variant in a proband with anal atresia with vestibular fistula, ventricular septal defect, and right renal agenesis (VACTERL cohort)
PMID: 24886560 - 2 Joubert syndrome cases
PMID: 21763481 - B9d1 -/- mouse displayed polydactyly, kidney cysts, ductal plate malformations, and abnormal patterning of the neural tube, concomitant with compromised ciliogenesis, ciliary protein localization, and Hedgehog (Hh) signal transduction.
Mendeliome v0.9203 CARMIL2 Zornitza Stark Marked gene: CARMIL2 as ready
Mendeliome v0.9203 CARMIL2 Zornitza Stark Gene: carmil2 has been classified as Green List (High Evidence).
Mendeliome v0.9203 CARMIL2 Zornitza Stark Phenotypes for gene: CARMIL2 were changed from to Immunodeficiency 58, MIM# 618131; Early onset paediatric inflammatory bowel disease
Mendeliome v0.9202 CARMIL2 Zornitza Stark Publications for gene: CARMIL2 were set to
Mendeliome v0.9201 CARMIL2 Zornitza Stark Mode of inheritance for gene: CARMIL2 was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9200 CARMIL2 Zornitza Stark reviewed gene: CARMIL2: Rating: GREEN; Mode of pathogenicity: None; Publications: 29479355, 28112205, 27896283, 33723309; Phenotypes: Immunodeficiency 58, MIM# 618131, Early onset paediatric inflammatory bowel disease; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9200 PNLDC1 Zornitza Stark Marked gene: PNLDC1 as ready
Mendeliome v0.9198 FOXP1 Zornitza Stark Marked gene: FOXP1 as ready
Mendeliome v0.9198 FOXP1 Zornitza Stark Phenotypes for gene: FOXP1 were changed from to Mental retardation with language impairment and with or without autistic features, MIM# 613670
Mendeliome v0.9197 ZMYM2 Zornitza Stark edited their review of gene: ZMYM2: Changed phenotypes: Neurodevelopmental-craniofacial syndrome with variable renal and cardiac abnormalities, MIM# 619522
Mendeliome v0.9196 HSCB Zornitza Stark Marked gene: HSCB as ready
Mendeliome v0.9195 HSCB Zornitza Stark gene: HSCB was added
gene: HSCB was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: HSCB was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HSCB were set to 32634119
Phenotypes for gene: HSCB were set to Anaemia, sideroblastic, 5, MIM# 619523
Review for gene: HSCB was set to AMBER
Added comment: Single individual reported with compound heterozygous variants in this gene. Good functional data including animal model.
Sources: Expert list
Mendeliome v0.9193 CADM3 Zornitza Stark Phenotypes for gene: CADM3 were changed from Charcot-Marie-Tooth disease to Charcot-Marie-Tooth disease, axonal, type 2FF, MIM# 619519
Mendeliome v0.9192 CADM3 Zornitza Stark reviewed gene: CADM3: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Charcot-Marie-Tooth disease, axonal, type 2FF, MIM# 619519; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9192 BCAP31 Zornitza Stark Marked gene: BCAP31 as ready
Mendeliome v0.9189 AMPD2 Zornitza Stark Marked gene: AMPD2 as ready
Mendeliome v0.9189 AMPD2 Zornitza Stark Phenotypes for gene: AMPD2 were changed from to Pontocerebellar hypoplasia, type 9, MIM#615809
Mendeliome v0.9186 ALS2 Zornitza Stark Marked gene: ALS2 as ready
Mendeliome v0.9185 HBG2 Zornitza Stark Marked gene: HBG2 as ready
Mendeliome v0.9182 HBG1 Zornitza Stark Marked gene: HBG1 as ready
Mendeliome v0.9181 HBG1 Zornitza Stark gene: HBG1 was added
gene: HBG1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: HBG1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: HBG1 were set to 26500940
Phenotypes for gene: HBG1 were set to Fetal haemoglobin quantitative trait locus 1, 141749
Review for gene: HBG1 was set to GREEN
Added comment: Classic hereditary persistence of fetal hemoglobin (HPFH) is characterized by a substantial elevation of fetal hemoglobin (HbF) in adult red blood cells. There are no other phenotypic or haematologic manifestations.
Sources: Expert Review
Mendeliome v0.9180 WNT9B Zornitza Stark Marked gene: WNT9B as ready
Mendeliome v0.9176 DDX23 Zornitza Stark Marked gene: DDX23 as ready
Mendeliome v0.9171 TAF2 Zornitza Stark edited their review of gene: TAF2: Added comment: New report of 4 individuals from 2 unrelated families, with severe intellectual disability, global developmental delay, postnatal microcephaly, feet deformities and thin corpus callosum. They had homozygous TAF2 missense variants detected by Exome Sequencing.; Changed rating: GREEN; Changed publications: 21937992, 22633631, 26350204, 24084144, 34474177
Mendeliome v0.9171 ERGIC1 Zornitza Stark Marked gene: ERGIC1 as ready
Mendeliome v0.9170 ERGIC1 Zornitza Stark gene: ERGIC1 was added
gene: ERGIC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ERGIC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ERGIC1 were set to 28317099; 34037256
Phenotypes for gene: ERGIC1 were set to Arthrogryposis multiplex congenita 2, neurogenic type; OMIM # 208100
Review for gene: ERGIC1 was set to AMBER
Added comment: Reinstein et al. (2018) used WES in a large consanguineous Israeli Arab kindred consisting of 16 patients affected with the neurogenic type of arthrogryposis multiplex congenita. They identified a homozygous missense (V98E) mutation in ERGIC1 gene, which segregated with the disorder in the kindred, and was not found in the ExAC database or in 212 ethnically matched controls. Functional studies of the variant and studies of patient cells were not performed. ERGIC1 encodes a cycling membrane protein which has a possible role in transport between endoplasmic reticulum and Golgi.

Marconi et al (2021) used genome sequencing in a consanguineous family with 2 affected siblings presenting congenital arthrogryposis and some facial dysmorphism. They identified a homozygous 22.6 Kb deletion encompassing the promoter and first exon of ERGIC1. mRNA quantification showed the complete absence of ERGIC1 expression in the two affected siblings and a decrease in heterozygous parents.
Sources: Literature
Mendeliome v0.9166 FCGR2B Zornitza Stark Marked gene: FCGR2B as ready
Mendeliome v0.9162 GPX1 Zornitza Stark Marked gene: GPX1 as ready
Mendeliome v0.9162 GPX1 Zornitza Stark gene: GPX1 was added
gene: GPX1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: GPX1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GPX1 were set to 1131421; 476008; 5766310; 2492138
Phenotypes for gene: GPX1 were set to Haemolytic anaemia due to glutathione peroxidase deficiency MIM#614164
Review for gene: GPX1 was set to RED
Added comment: No individuals reported with GPX1 variants identified as the cause of Haemolytic anaemia due to glutathione peroxidase deficiency. Multiple papers report a number of cases of Haemolytic anaemia due to glutathione peroxidase deficiency, however there is no defined link or variant to GPX1 (PMID: 5766310. PMID: 1131421, PMID: 2492138, PMID: 476008)

Overall, lowered glutathione peroxidase activity has been observed in a number of individuals with haemolytic anaemia however the evidence for a cause-and-effect relationship between the enzyme deficiency and the presenting anaemia is not evident.
Sources: Expert Review
Mendeliome v0.9160 CYP51A1 Bryony Thompson reviewed gene: CYP51A1: Rating: GREEN; Mode of pathogenicity: None; Publications: 22935719, 26622071, 27878435, 25148791; Phenotypes: Congenital cataract, infantile liver disease; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9160 CYB5A Zornitza Stark Marked gene: CYB5A as ready
Mendeliome v0.9157 COL14A1 Zornitza Stark Marked gene: COL14A1 as ready
Mendeliome v0.9157 COL14A1 Zornitza Stark gene: COL14A1 was added
gene: COL14A1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: COL14A1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: COL14A1 were set to 22972947
Phenotypes for gene: COL14A1 were set to Punctate palmoplantar keratoderma type 1B
Review for gene: COL14A1 was set to RED
Added comment: 4 affected individuals and 2 unaffected controls from one Chinese PPPK family where disease locus was mapped at 8q24.13-8q24.21 by previous linkage analysis. Exome sequencing analysis identified a heterozygous variant in COL14A1 gene (c.4505C>T (p.Pro1502Leu)). The variant was shared by 4 affected individuals, but not 2 controls of the family. Sanger sequencing confirmed this variant in another four cases from this family. Variant was absent in the normal controls of this family as well as 676 unrelated normal controls and 781 patients with other disease. The missense substitution occurs at a highly conserved amino acid residue across multiple species.
Sources: Expert Review
Mendeliome v0.9156 EGLN1 Zornitza Stark Marked gene: EGLN1 as ready
Mendeliome v0.9153 FGFR2 Zornitza Stark Marked gene: FGFR2 as ready
Mendeliome v0.9153 FGFR2 Zornitza Stark Phenotypes for gene: FGFR2 were changed from to Antley-Bixler syndrome without genital anomalies or disordered steroidogenesis,MIM# 207410; Apert syndrome, MIM# 101200; Beare-Stevenson cutis gyrata syndrome, MIM# 123790; Bent bone dysplasia syndrome, MIM# 614592; Craniofacial-skeletal-dermatologic dysplasia, MIM# 101600; Craniosynostosis, nonspecific; Crouzon syndrome , MIM#123500; Jackson-Weiss syndrome,MIM# 123150; LADD syndrome, MIM# 149730; Pfeiffer syndrome,MIM# 101600; Saethre-Chotzen syndrome 101400
Mendeliome v0.9150 SLC4A1 Zornitza Stark Marked gene: SLC4A1 as ready
Mendeliome v0.9150 SLC4A1 Zornitza Stark Phenotypes for gene: SLC4A1 were changed from to Cryohydrocytosis MIM# 185020; Distal renal tubular acidosis 4 with haemolytic anaemia MIM# 611590; Ovalocytosis, SA type MIM# 166900; Spherocytosis, type 4 MIM# 612653; Distal renal tubular acidosis 1 MIM# 179800
Mendeliome v0.9147 SLC4A1 Danielle Ariti reviewed gene: SLC4A1: Rating: GREEN; Mode of pathogenicity: None; Publications: 16227998, 15211439, 7949112, 8640229, 16227998, 8640229, 16227998, 33881640, 32632909; Phenotypes: Cryohydrocytosis MIM# 185020, Distal renal tubular acidosis 4 with haemolytic anaemia MIM# 611590, Ovalocytosis, SA type MIM# 166900, Spherocytosis, type 4 MIM# 612653, Distal renal tubular acidosis 1 MIM# 179800; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.9144 STEAP3 Zornitza Stark changed review comment from: Single family reported. Three affected sibs, variant inherited from unaffected father. Some supportive functional evidence.; to: Single family reported. Three affected sibs, variant inherited from unaffected father. Some supportive functional evidence.

Conflicting evidence (PMID 26675350): Large Chinese study (of normal and α-thalassemia subjects) investigated the prevalence of STEAP3 mutations in humans and their physiologic consequences. Discovered a relatively high prevalence of potentially harmful recessive alleles. However, whilst the identified STEAP3 mutations exhibited impaired ferrireductase activity in vitro, they had little or no effect on erythrocyte phenotypes
Mendeliome v0.9144 NT5C3A Zornitza Stark Marked gene: NT5C3A as ready
Mendeliome v0.9141 IMPG1 Zornitza Stark Phenotypes for gene: IMPG1 were changed from Macular dystrophy, vitelliform, 4, OMIM:616151; Retinitis pigmentosa, MONDO:0019200 to Macular dystrophy, vitelliform, 4, OMIM:616151; Retinitis pigmentosa, MONDO:0019200; Retinitis pigmentosa 91, MIM# 153870
Mendeliome v0.9140 ABCC11 Zornitza Stark Marked gene: ABCC11 as ready
Mendeliome v0.9140 ABCC11 Zornitza Stark Phenotypes for gene: ABCC11 were changed from to [Axillary odor, variation in] 117800; [Colostrum secretion, variation in] 117800; [Earwax, wet/dry] 117800
Mendeliome v0.9138 ABCC11 Zornitza Stark reviewed gene: ABCC11: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: [Axillary odor, variation in] 117800, [Colostrum secretion, variation in] 117800, [Earwax, wet/dry] 117800; Mode of inheritance: None
Mendeliome v0.9137 KCNN4 Zornitza Stark edited their review of gene: KCNN4: Changed publications: 26148990, 26198474, 26178367, 33519508, 31091145, 28619848; Changed phenotypes: Dehydrated hereditary stomatocytosis 2, MIM# 616689
Mendeliome v0.9137 MTRR Zornitza Stark Marked gene: MTRR as ready
Mendeliome v0.9134 MTR Zornitza Stark Marked gene: MTR as ready
Mendeliome v0.9131 LPIN2 Zornitza Stark Marked gene: LPIN2 as ready
Mendeliome v0.9128 FOXE3 Zornitza Stark Marked gene: FOXE3 as ready
Mendeliome v0.9128 FOXE3 Zornitza Stark Phenotypes for gene: FOXE3 were changed from to Anterior segment dysgenesis 2, multiple subtypes, MIM#610256; Cataract 34, multiple types, MIM#612968; Aortic aneurysm, familial thoracic 11, susceptibility to}, MIM#617349
Mendeliome v0.9125 FOXE3 Eleanor Williams reviewed gene: FOXE3: Rating: GREEN; Mode of pathogenicity: None; Publications: 26854927, 27218149, 16826526, 19708017, 20140963, 20664696, 20361012, 24019743, 27669367, 29878917, 32436650, 34046667, 11159941, 19708017, 20806047, 21150893, 11980846, 34046667; Phenotypes: Anterior segment dysgenesis 2, multiple subtypes, MIM#610256, Cataract 34, multiple types, MIM#612968, Aortic aneurysm, familial thoracic 11, susceptibility to}, MIM#617349; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.9121 RHAG Zornitza Stark Marked gene: RHAG as ready
Mendeliome v0.9121 RHAG Zornitza Stark Phenotypes for gene: RHAG were changed from to Anaemia, haemolytic, Rh-null, regulator type MIM# 268150; Overhydrated hereditary stomatocytosis MIM#185000
Mendeliome v0.9118 SPTA1 Zornitza Stark Marked gene: SPTA1 as ready
Mendeliome v0.9115 SPTB Zornitza Stark Marked gene: SPTB as ready
Mendeliome v0.9115 SPTB Zornitza Stark Phenotypes for gene: SPTB were changed from to Spherocytosis, type 2 MIM# 616649; Elliptocytosis-3 MIM# 617948; Anaemia, neonatal haemolytic, fatal or near-fatal MIM# 617948
Mendeliome v0.9112 TF Zornitza Stark Marked gene: TF as ready
Mendeliome v0.9112 TF Zornitza Stark Phenotypes for gene: TF were changed from to Atransferrinaemia MIM# 209300; iron overload; hypochromic anaemia; low serum transferrin; Hemosiderosis of the heart and/or liver; Congestive heart failure
Mendeliome v0.9109 RHAG Danielle Ariti reviewed gene: RHAG: Rating: GREEN; Mode of pathogenicity: None; Publications: 30990901, 28470789, 4962358, 18931342, 21849667, 23406318; Phenotypes: Anaemia, haemolytic, Rh-null, regulator type MIM# 268150, Overhydrated hereditary stomatocytosis MIM#185000; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.9109 SPTB Danielle Ariti reviewed gene: SPTB: Rating: GREEN; Mode of pathogenicity: None; Publications: 19538529, 8102379, 9075575, 7883966, 9005995, 32256302; Phenotypes: Spherocytosis, type 2 MIM# 616649, Elliptocytosis-3 MIM# 617948, Anaemia, neonatal haemolytic, fatal or near-fatal MIM# 617948; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.9109 TF Danielle Ariti reviewed gene: TF: Rating: GREEN; Mode of pathogenicity: None; Publications: 11110675, 3472216; Phenotypes: Atransferrinaemia MIM# 209300, iron overload, hypochromic anaemia, low serum transferrin, Hemosiderosis of the heart and/or liver, Congestive heart failure; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9109 GGPS1 Zornitza Stark Phenotypes for gene: GGPS1 were changed from Muscular dystrophy; Deafness; Ovarian insufficiency to Muscular dystrophy, congenital hearing loss, and ovarian insufficiency syndrome, MIM# 619518; Muscular dystrophy; Deafness; Ovarian insufficiency
Mendeliome v0.9108 GGPS1 Zornitza Stark edited their review of gene: GGPS1: Changed phenotypes: Muscular dystrophy, congenital hearing loss, and ovarian insufficiency syndrome, MIM# 619518, Muscular dystrophy, Deafness, Ovarian insufficiency
Mendeliome v0.9108 GSR Zornitza Stark Marked gene: GSR as ready
Mendeliome v0.9104 MAGEL2 Anna Le Fevre reviewed gene: MAGEL2: Rating: GREEN; Mode of pathogenicity: None; Publications: 33820833, 24076603, 31397880, 29599419, 30302899; Phenotypes: Schaaf-Yang syndrome, Chitayat-Hall Syndrome, Arthrogryposis; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, maternally imprinted (paternal allele expressed)
Mendeliome v0.9104 UMPS Zornitza Stark Marked gene: UMPS as ready
Mendeliome v0.9101 UMPS Zornitza Stark edited their review of gene: UMPS: Added comment: 20 unrelated patients have been reported with biallelic missense variants; one mouse model

Orotic aciduria is characterised by megaloblastic anaemia and orotic acid crystalluria, frequently associated with a degree of physical and intellectual disability. Other features include, congenital malformations (Atrial/ Ventricular septal defect) and immunodeficiencies (T-cell dysfunction, failure to thrive, recurrent infections).

Haematology features
- Megaloblastic anaemia
- Low to normal reticulocyte count
- Anisocytosis
- Poikilocytosis
- Hypochromia; Changed publications: 9042911, 33489760; Changed phenotypes: Orotic aciduria, MIM# 258900
Mendeliome v0.9101 TMPRSS6 Zornitza Stark Marked gene: TMPRSS6 as ready
Mendeliome v0.9098 TPI1 Zornitza Stark changed review comment from: More than 10 unrelated families reported; bi-allelic (missense, nonsense, frameshift) variants; Common p.Glu104Asp variant in Northern European population

Triosephosphate isomerase deficiency (TPID) is an autosomal recessive multisystem disorder characterised by early childhood onset congenital hemolytic anaemia, and progressive neuromuscular dysfunction. Many patients die from respiratory failure in childhood. The neurological features are variable, but usually includes lower motor neuron dysfunction with hypotonia, muscle weakness and atrophy, and hyporeflexia. Other features include intracellular accumulation of dihydroxyacetone phosphate (DHAP), particularly in red blood cells and increased susceptibility to infections.; to: More than 10 unrelated families reported; bi-allelic (missense, nonsense, frameshift) variants; Common p.Glu104Asp variant in Northern European population

Triosephosphate isomerase deficiency (TPID) is an autosomal recessive multisystem disorder characterised by early childhood onset congenital haemolytic anaemia, and progressive neuromuscular dysfunction. Many patients die from respiratory failure in childhood. The neurological features are variable, but usually includes lower motor neuron dysfunction with hypotonia, muscle weakness and atrophy, and hyporeflexia. Other features include intracellular accumulation of dihydroxyacetone phosphate (DHAP), particularly in red blood cells and increased susceptibility to infections.
Mendeliome v0.9098 TPI1 Zornitza Stark edited their review of gene: TPI1: Added comment: More than 10 unrelated families reported; bi-allelic (missense, nonsense, frameshift) variants; Common p.Glu104Asp variant in Northern European population

Triosephosphate isomerase deficiency (TPID) is an autosomal recessive multisystem disorder characterised by early childhood onset congenital hemolytic anaemia, and progressive neuromuscular dysfunction. Many patients die from respiratory failure in childhood. The neurological features are variable, but usually includes lower motor neuron dysfunction with hypotonia, muscle weakness and atrophy, and hyporeflexia. Other features include intracellular accumulation of dihydroxyacetone phosphate (DHAP), particularly in red blood cells and increased susceptibility to infections.; Changed publications: 9338582, 32873690, 8503454; Changed phenotypes: Haemolytic anaemia due to triosephosphate isomerase deficiency, MIM# 615512
Mendeliome v0.9098 YARS2 Zornitza Stark Marked gene: YARS2 as ready
Mendeliome v0.9098 YARS2 Zornitza Stark Gene: yars2 has been classified as Green List (High Evidence).
Mendeliome v0.9098 YARS2 Zornitza Stark Phenotypes for gene: YARS2 were changed from to Myopathy, lactic acidosis, and sideroblastic anaemia 2 MIM# 613561; sideroblastic anaemia; muscle atrophy; myopathy; lactic acidosis; Hypertrophic cardiomyopathy; Hepatomegaly; Decreased cytochrome C oxidase activity
Mendeliome v0.9097 YARS2 Zornitza Stark Publications for gene: YARS2 were set to
Mendeliome v0.9096 YARS2 Zornitza Stark Mode of inheritance for gene: YARS2 was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9095 YARS2 Zornitza Stark reviewed gene: YARS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 24430573, 24344687; Phenotypes: Myopathy, lactic acidosis, and sideroblastic anaemia 2 MIM# 613561, sideroblastic anaemia, muscle atrophy, myopathy, lactic acidosis, Hypertrophic cardiomyopathy, Hepatomegaly, Decreased cytochrome C oxidase activity; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9095 GCLC Zornitza Stark Marked gene: GCLC as ready
Mendeliome v0.9092 PDGFRL Zornitza Stark Marked gene: PDGFRL as ready
Mendeliome v0.9091 IFIH1 Zornitza Stark Marked gene: IFIH1 as ready
Mendeliome v0.9091 IFIH1 Zornitza Stark Phenotypes for gene: IFIH1 were changed from to Aicardi-Goutieres syndrome 7, MIM#615846; Early-onset Inflammatory Bowel Disease
Mendeliome v0.9088 IFIH1 Sarah Pantaleo changed review comment from: Rare, likely loss-of-functions IFIH1 variants identified in eight independent probands with Very Early Onset Inflammatory Bowel Disease (VEOIBD) from a combined cohort of 42 children. IFIH1 variants were significantly enriched in children with VEOIBD as compared to controls (p=0.007).
In one case of neonatal-onset IBD, a homozygous truncating variant was identified. seven carriers of LoF variants (three of whom have a second hypomorphic missense variant). Luciferase reporter assays employed to assess MDA5 activity (encoded by IFIH1). In three cases, the functional studies demonstrated that the second missense variant either did not affect protein function or was in cis with the LoF variant.; to: IFIH1 encodes MDA5, a key cystolic sensor for viral nucleic acids. Rare, likely loss-of-functions IFIH1 variants identified in eight independent probands with Very Early Onset Inflammatory Bowel Disease (VEOIBD) from a combined cohort of 42 children. IFIH1 variants were significantly enriched in children with VEOIBD as compared to controls (p=0.007).
In one case of neonatal-onset IBD, a homozygous truncating variant was identified. There were seven carriers of LoF variants identified (range of onset 6 months to 6 years of age). In three of these cases, a second hypomorphic missense variant was identified.
Luciferase reporter assays were employed to assess MDA5 activity. In some cases, the second missense variant was either proven to not affect protein function or was in cis with the LoF variant.
Complete and partial MDA5 deficiency is associated with VEOIBD with variable penetrance and expressivity, suggesting a role for impaired intestinal viral sensing in IBD pathogenesis.
Mendeliome v0.9088 IFIH1 Sarah Pantaleo changed review comment from: Rare, likely loss-of-functions IFIH1 variants identified in eight patients with Very Early Onset Inflammatory Bowel Disease (VEOIBD) with VEOIBD from a combined cohort of 42 children. One homozygous truncating variant in a neonate from a consanguineous family, seven carriers of LoF variants (three of whom also have a second hypomorphic missense variant). Luciferase reporter assays employed to assess MDA5 activity (encoded by IFIH1). In three cases, the functional studies demonstrated that the second missense variant either did not affect protein function or was in cis with the LoF variant.; to: Rare, likely loss-of-functions IFIH1 variants identified in eight independent probands with Very Early Onset Inflammatory Bowel Disease (VEOIBD) from a combined cohort of 42 children. IFIH1 variants were significantly enriched in children with VEOIBD as compared to controls (p=0.007).
In one case of neonatal-onset IBD, a homozygous truncating variant was identified. seven carriers of LoF variants (three of whom have a second hypomorphic missense variant). Luciferase reporter assays employed to assess MDA5 activity (encoded by IFIH1). In three cases, the functional studies demonstrated that the second missense variant either did not affect protein function or was in cis with the LoF variant.
Mendeliome v0.9088 PRICKLE2 Hazel Phillimore changed review comment from: Six subjects from four unrelated families with heterozygous variants (two de novo missense (c.122 C>T; p.(Pro41Leu) and c.680C>G; p.(Thr227Arg)), one de novo nonsense variant (c.214 C>T; p.(Arg72*) and one frameshift variant (c.1286_1287delGT; p.(Ser429Thrfs*56)) which segregated with the disease in three affected females.

Loss-of-function (homozygous) variants cause seizures in flies, and both heterozygous and homozygous mice showed behavioral abnormalities including altered social interaction, learning abnormalities, and behavioural inflexibility. PubMed: 21276947.; to: Six subjects from four unrelated families with neurodevelopmental delay, behavioural difficulties and epilepsy had heterozygous variants, either de novo or segregating with disease.
Two missense were de novo, c.122 C>T; p.(Pro41Leu) and c.680C>G; p.(Thr227Arg); one nonsense variant was de novo (c.214 C>T; p.(Arg72*); and one frameshift variant segregated with the disorder in three affected females (c.1286_1287delGT; p.(Ser429Thrfs*56)).

Loss-of-function (homozygous) variants have been shown to cause seizures in flies; and both heterozygous and homozygous mice have shown behavioral abnormalities including altered social interaction, learning abnormalities, and behavioral inflexibility (PubMed: 21276947).
Mendeliome v0.9088 FGF8 Zornitza Stark Marked gene: FGF8 as ready
Mendeliome v0.9085 UBE2U Zornitza Stark Marked gene: UBE2U as ready
Mendeliome v0.9085 PRICKLE2 Zornitza Stark Marked gene: PRICKLE2 as ready
Mendeliome v0.9082 UBE2U Ee Ming Wong changed review comment from: - one missense UBE2U variant identified in one family with four other affected individuals (includes proband)
- in silico analyses predicts the UBE2U variant to be damaging
- no functional
- another STUM missense variant identified in the same family predicted to be benign
- additional clinical assessment indicated that the family shared some systemic dysmorphisms and learning disabilities similar to RIDDLE syndrome
Sources: Literature; to: - one missense UBE2U variant identified in one family with five affected individuals (includes proband)
- in silico analyses predicts the UBE2U variant to be damaging
- no functional
- another STUM missense variant identified in the same family predicted to be benign
- additional clinical assessment indicated that the family shared some systemic dysmorphisms and learning disabilities similar to RIDDLE syndrome
Sources: Literature
Mendeliome v0.9081 LRP1 Seb Lunke Marked gene: LRP1 as ready
Mendeliome v0.9080 COPB2 Zornitza Stark Phenotypes for gene: COPB2 were changed from Microcephaly 19, primary, autosomal recessive, MIM# 617800 to Microcephaly 19, primary, autosomal recessive, MIM# 617800; Osteoporosis and developmental delay
Mendeliome v0.9076 CACNA1I Seb Lunke Marked gene: CACNA1I as ready
Mendeliome v0.9075 UBE2U Ee Ming Wong gene: UBE2U was added
gene: UBE2U was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UBE2U was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: UBE2U were set to PMID: 33776059
Phenotypes for gene: UBE2U were set to Retinoschisis; cataracts; learning disabilities; developmental delay
Penetrance for gene: UBE2U were set to Complete
Review for gene: UBE2U was set to RED
gene: UBE2U was marked as current diagnostic
Added comment: - one missense UBE2U variant identified in one family with four other affected individuals (includes proband)
- in silico analyses predicts the UBE2U variant to be damaging
- no functional
- another STUM missense variant identified in the same family predicted to be benign
- additional clinical assessment indicated that the family shared some systemic dysmorphisms and learning disabilities similar to RIDDLE syndrome
Sources: Literature
Mendeliome v0.9075 LRP1 Elena Savva reviewed gene: LRP1: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 26142438, 33776059; Phenotypes: ?Keratosis pilaris atrophicans MIM#604093; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9075 GRIK2 Zornitza Stark Marked gene: GRIK2 as ready
Mendeliome v0.9075 CFAP206 Seb Lunke Marked gene: CFAP206 as ready
Mendeliome v0.9075 GRIK2 Zornitza Stark Phenotypes for gene: GRIK2 were changed from to Mental retardation, autosomal recessive, 6 MIM# 611092; Nonsyndromic neurodevelopmental disorder, autosomal dominant
Mendeliome v0.9069 ZNF668 Zornitza Stark Marked gene: ZNF668 as ready
Mendeliome v0.9068 CACNA1I Kristin Rigbye gene: CACNA1I was added
gene: CACNA1I was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CACNA1I was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CACNA1I were set to 33704440
Phenotypes for gene: CACNA1I were set to Neurodevelopmental disorder
Mode of pathogenicity for gene: CACNA1I was set to Other
Review for gene: CACNA1I was set to GREEN
Added comment: 4 different missense variants identified and shown to result in a gain of function.

2 individuals with de novo variants (a 3rd also suspected de novo but their father was unavailable for testing) - these patients all had severe neurodevelopmental disorders, involving severe global developmental delay, absence of speech, gross motor delay, muscular hypotonia, early-onset seizures, cortical visual impairment, and feeding difficulties. Variable clinical features include various brain malformations, startle response or seizures, postnatal growth retardation, gastroesophageal reflux, and gastrostomy.

1 family had three affected individuals - variable cognitive impairment in all, involving borderline intellectual functioning or mild or moderate intellectual disability as main clinical feature, with late-onset seizures in the mother and speech retardation in one of the children. This variant had a milder functional effect than the variants in sporadic cases.
Sources: Literature
Mendeliome v0.9068 GRIK2 Danielle Ariti reviewed gene: GRIK2: Rating: GREEN; Mode of pathogenicity: None; Publications: 34375587, 17847003, 25039795; Phenotypes: Mental retardation, autosomal recessive, 6 MIM# 611092, nonsyndromic neurodevelopmental disorder (NDD; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.9068 ZNF668 Paul De Fazio changed review comment from: 5 individuals from 3 consanguineous families reported with different biallelic truncating (not NMD) variants in ZNF668. Phenotypes included microcephaly, growth deficiency, severe global developmental delay, brain malformation, and distinct facial dysmorphism.

Immunofluorescence indicated ZNF668 deficiency. An increased DNA damage phenotype was demonstrated in patient fibroblasts.
Sources: Literature; to: 2 consanguineous families reported with different biallelic truncating (not NMD) variants in ZNF668. Phenotypes included microcephaly, growth deficiency, severe global developmental delay, brain malformation, and distinct facial dysmorphism.

Immunofluorescence indicated ZNF668 deficiency. An increased DNA damage phenotype was demonstrated in patient fibroblasts.
Sources: Literature
Mendeliome v0.9068 GLIS1 Seb Lunke Marked gene: GLIS1 as ready
Mendeliome v0.9068 GLIS1 Seb Lunke Phenotypes for gene: GLIS1 were changed from Increased ocular pressure to Increased ocular pressure; Glaucoma
Mendeliome v0.9067 GLIS1 Seb Lunke changed review comment from: Functional studies in KO mice show increased intra-ocular pressure (IOT) caused by defects in the ocular drainage system. IOT is frequently associated with Glaucoma, however mice were not investigated for glaucoma, and no patients described.
Sources: Literature; to: Functional studies in KO mice show increased intra-ocular pressure (IOT) caused by defects in the ocular drainage system. IOT is frequently associated with Glaucoma, however mice were not investigated for glaucoma, and no patients described.

The authors did show dysregulation of GLIS1 in a human cell line study, and performed linkage analysis suggesting an association of the GLIS1 locus with Glaucoma in UK biobank samples.
Sources: Literature
Mendeliome v0.9067 ZNF668 Paul De Fazio changed review comment from: 5 individuals from 3 consanguineous families reported with different truncating (not NMD) variants in ZNF668. Phenotypes included microcephaly, growth deficiency, severe global developmental delay, brain malformation, and distinct facial dysmorphism.

Immunofluorescence indicated ZNF668 deficiency. An increased DNA damage phenotype was demonstrated in patient fibroblasts.
Sources: Literature; to: 5 individuals from 3 consanguineous families reported with different biallelic truncating (not NMD) variants in ZNF668. Phenotypes included microcephaly, growth deficiency, severe global developmental delay, brain malformation, and distinct facial dysmorphism.

Immunofluorescence indicated ZNF668 deficiency. An increased DNA damage phenotype was demonstrated in patient fibroblasts.
Sources: Literature
Mendeliome v0.9067 CFAP206 Ain Roesley gene: CFAP206 was added
gene: CFAP206 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CFAP206 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: CFAP206 were set to Multiple morphological abnormalities of the fagella
Penetrance for gene: CFAP206 were set to unknown
Review for gene: CFAP206 was set to AMBER
Added comment: 1x hom with a fs variant

Sperm from knockout mouse model mainly had a fagellum of normal length but most of them showed abnormal forms including bent and coiled fagella. There was also a significant increase of sperm cells with absent or short fagella compared to the WT mice.
Sources: Literature
Mendeliome v0.9067 ZNF668 Paul De Fazio gene: ZNF668 was added
gene: ZNF668 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZNF668 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZNF668 were set to 34313816; 26633546
Phenotypes for gene: ZNF668 were set to DNA damage repair defect; microcephaly; growth deficiency; severe global developmental delay; brain malformation; facial dysmorphism
Review for gene: ZNF668 was set to GREEN
gene: ZNF668 was marked as current diagnostic
Added comment: 5 individuals from 3 consanguineous families reported with different truncating (not NMD) variants in ZNF668. Phenotypes included microcephaly, growth deficiency, severe global developmental delay, brain malformation, and distinct facial dysmorphism.

Immunofluorescence indicated ZNF668 deficiency. An increased DNA damage phenotype was demonstrated in patient fibroblasts.
Sources: Literature
Mendeliome v0.9067 SLC32A1 Zornitza Stark Marked gene: SLC32A1 as ready
Mendeliome v0.9067 GLIS1 Seb Lunke gene: GLIS1 was added
gene: GLIS1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GLIS1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GLIS1 were set to 34385434
Phenotypes for gene: GLIS1 were set to Increased ocular pressure
Review for gene: GLIS1 was set to RED
Added comment: Functional studies in KO mice show increased intra-ocular pressure (IOT) caused by defects in the ocular drainage system. IOT is frequently associated with Glaucoma, however mice were not investigated for glaucoma, and no patients described.
Sources: Literature
Mendeliome v0.9065 SLC32A1 Zornitza Stark gene: SLC32A1 was added
gene: SLC32A1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC32A1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SLC32A1 were set to 34038384
Phenotypes for gene: SLC32A1 were set to Genetic epilepsy with febrile seizures plus
Review for gene: SLC32A1 was set to GREEN
Added comment: 8 unrelated families reported, including segregation evidence in two large pedigrees. Variants are predicted to alter γ-aminobutyric acid (GABA) transport into synaptic vesicles, leading to altered neuronal inhibition.
Sources: Literature
Mendeliome v0.9064 G6PD Zornitza Stark Marked gene: G6PD as ready
Mendeliome v0.9060 EPB42 Zornitza Stark Marked gene: EPB42 as ready
Mendeliome v0.9057 EPB41 Zornitza Stark Marked gene: EPB41 as ready
Mendeliome v0.9054 DHFR Zornitza Stark Marked gene: DHFR as ready
Mendeliome v0.9051 CYB5R3 Zornitza Stark Marked gene: CYB5R3 as ready
Mendeliome v0.9048 CD59 Zornitza Stark Marked gene: CD59 as ready
Mendeliome v0.9045 NEDD4L Zornitza Stark Marked gene: NEDD4L as ready
Mendeliome v0.9045 NEDD4L Zornitza Stark Phenotypes for gene: NEDD4L were changed from to Periventricular nodular heterotopia 7, MIM# 617201
Mendeliome v0.9042 NEDD4L Zornitza Stark reviewed gene: NEDD4L: Rating: GREEN; Mode of pathogenicity: None; Publications: 34087865, 27694961, 32117442; Phenotypes: Periventricular nodular heterotopia 7, MIM# 617201; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9042 ARF1 Zornitza Stark Publications for gene: ARF1 were set to 28868155
Mendeliome v0.9041 GINS2 Zornitza Stark Marked gene: GINS2 as ready
Mendeliome v0.9040 AMN Zornitza Stark Marked gene: AMN as ready
Mendeliome v0.9037 AK1 Zornitza Stark Marked gene: AK1 as ready
Mendeliome v0.9034 ALAS2 Zornitza Stark Marked gene: ALAS2 as ready
Mendeliome v0.9031 ABCG5 Zornitza Stark Marked gene: ABCG5 as ready
Mendeliome v0.9026 TOM1 Zornitza Stark Marked gene: TOM1 as ready
Mendeliome v0.9026 TOM1 Zornitza Stark gene: TOM1 was added
gene: TOM1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: TOM1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TOM1 were set to 31263572
Phenotypes for gene: TOM1 were set to Immunodeficiency 85 and autoimmunity, MIM# 619510
Review for gene: TOM1 was set to RED
Added comment: Parent and child reported with onset of atopic eczema and recurrent respiratory infections in the first decade of life; autoimmune enteropathy with vomiting, diarrhoea, and poor overall growth. More variable features included autoimmune oligoarthritis, interstitial pneumonitis, and EBV viremia. Laboratory studies showed hypogammaglobulinaemia and abnormal T-cell function, consistent with a combined immunodeficiency. Missense variant in TOM1, with limited functional data.
Sources: Expert list
Mendeliome v0.9025 ARF1 Arina Puzriakova reviewed gene: ARF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 28868155, 34353862; Phenotypes: Periventricular nodular heterotopia 8, OMIM:618185; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9025 GINS2 Arina Puzriakova gene: GINS2 was added
gene: GINS2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GINS2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GINS2 were set to 34353863
Phenotypes for gene: GINS2 were set to Meier-Gorlin syndrome with craniosynostosis
Review for gene: GINS2 was set to RED
Added comment: Sa et al., 2021 (PMID: 34353863) identified a patient presenting with prenatal and postnatal growth restriction, a craniofacial gestalt of MGORS and coronal craniosynostosis. A homozygous missense variant (c.341G>T, p.Arg114Leu) in GINS2 was identified that was heterozygous in both unaffected parents. Some supportive functional data included.

GINS2 is not currently not associated with any phenotype in OMIM or G2P and no additional cases have been identified to date.
Sources: Literature
Mendeliome v0.9025 DNAH10 Zornitza Stark Phenotypes for gene: DNAH10 were changed from primary male infertility with asthenoteratozoospermia to Spermatogenic failure 56, MIM# 619515
Mendeliome v0.9023 KIDINS220 Zornitza Stark Phenotypes for gene: KIDINS220 were changed from Spastic paraplegia, intellectual disability, nystagmus, and obesity, MIM# 617296; cerebral ventriculomegaly; limb contractures to Spastic paraplegia, intellectual disability, nystagmus, and obesity, MIM# 617296; Ventriculomegaly and arthrogryposis, MIM# 619501
Mendeliome v0.9022 KIDINS220 Zornitza Stark edited their review of gene: KIDINS220: Changed phenotypes: Spastic paraplegia, intellectual disability, nystagmus, and obesity, MIM# 617296, Ventriculomegaly and arthrogryposis, MIM# 619501
Mendeliome v0.9022 CHRM1 Bryony Thompson Marked gene: CHRM1 as ready
Mendeliome v0.9021 CHRM1 Bryony Thompson gene: CHRM1 was added
gene: CHRM1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CHRM1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CHRM1 were set to 34212451; 31981491; 12483218
Phenotypes for gene: CHRM1 were set to Neurodevelopmental delay; intellectual disability; autism
Review for gene: CHRM1 was set to AMBER
Added comment: PMID: 34212451 - 2 unrelated cases with de novo missense variants (p.Pro380Leu and p.Phe425Ser), one case with early-onset refractory epilepsy, severe disability, and progressive cerebral and cerebellar atrophy, and the second case with mild dysmorphism, global developmental delay, and moderate intellectual disability. In vitro biochemical analyses of p.Pro380Leu demonstrated a reduction in protein levels, impaired cellular trafficking, and defective activation of intracellular signaling pathways.
PMID: 31981491 - an autism spectrum disorder (no other information on phenotype, except ascertained to have severe neurodevelopmental delay) case with a de novo missense variant p.(Arg210Leu)
PMID: 12483218 - null mouse model assessing memory demonstrated selective cognitive dysfunction.
Sources: Literature
Mendeliome v0.9020 FGF20 Zornitza Stark Marked gene: FGF20 as ready
Mendeliome v0.9018 ITGA8 Zornitza Stark Marked gene: ITGA8 as ready
Mendeliome v0.9015 NPR2 Zornitza Stark Marked gene: NPR2 as ready
Mendeliome v0.9015 NPR2 Zornitza Stark Phenotypes for gene: NPR2 were changed from to Acromesomelic dysplasia, Maroteaux type MIM# 602875; Epiphyseal chondrodysplasia, Miura type, MIM# 615923; Short stature with nonspecific skeletal abnormalities, MIM# 616255
Mendeliome v0.9012 NPR2 Zornitza Stark changed review comment from: Over 15 unrelated families; Biallelic (missense, nonsense, frameshift, splice) NPR2 variants; loss of function; multiple mouse models.

Disorder is characterised by severe dwarfism with shortening of the middle and distal segments of the limbs (disproportionate) with skeletal growth falling off sharply after birth.; to: Bi-allelic variants: Over 15 unrelated families; Biallelic (missense, nonsense, frameshift, splice) NPR2 variants; loss of function; multiple mouse models.

Disorder is characterised by severe dwarfism with shortening of the middle and distal segments of the limbs (disproportionate) with skeletal growth falling off sharply after birth.

Mono-allelic variants have been linked to both tall stature and short stature disorders. Multiple families.
Mendeliome v0.9012 NPR2 Zornitza Stark edited their review of gene: NPR2: Changed publications: 31555216, 16384845, 15146390, 22870295, 24057292, 24259409, 16384845, 24471569; Changed phenotypes: Acromesomelic dysplasia, Maroteaux type MIM# 602875, Epiphyseal chondrodysplasia, Miura type, MIM# 615923, Short stature with nonspecific skeletal abnormalities, MIM# 616255; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.9012 NPR2 Zornitza Stark reviewed gene: NPR2: Rating: GREEN; Mode of pathogenicity: None; Publications: 31555216, 16384845, 15146390; Phenotypes: Acromesomelic dysplasia, Maroteaux type MIM# 602875, Short stature, disproportionate, Oval vertebral bodies in infancy, Progressive shortening of humerus, radius and ulna in first year, dwarfism, Prominent forehead; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9012 RPS6KA3 Zornitza Stark Marked gene: RPS6KA3 as ready
Mendeliome v0.9012 RPS6KA3 Zornitza Stark Phenotypes for gene: RPS6KA3 were changed from to Coffin-Lowry syndrome MIM# 303600; Intellectual disability; short stature; delayed bone age; hearing deficit; hypotonia; tapering fingers; abnormal facies (hypertelorism, anteverted nares, prominent frontal region)
Mendeliome v0.9009 RPS6KA3 Zornitza Stark reviewed gene: RPS6KA3: Rating: GREEN; Mode of pathogenicity: None; Publications: 6879200; Phenotypes: Coffin-Lowry syndrome MIM# 303600, Intellectual disability, short stature, delayed bone age, hearing deficit, hypotonia, tapering fingers, abnormal facies (hypertelorism, anteverted nares, prominent frontal region); Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.9009 SHOX2 Zornitza Stark Marked gene: SHOX2 as ready
Mendeliome v0.9007 KCTD7 Zornitza Stark Marked gene: KCTD7 as ready
Mendeliome v0.9007 KCTD7 Zornitza Stark Phenotypes for gene: KCTD7 were changed from to Epilepsy, progressive myoclonic 3, with or without intracellular inclusions (MIM#611726)
Mendeliome v0.9004 KCTD7 Kristin Rigbye reviewed gene: KCTD7: Rating: GREEN; Mode of pathogenicity: None; Publications: 22693283, 22748208; Phenotypes: Epilepsy, progressive myoclonic 3, with or without intracellular inclusions (MIM#611726), AR; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9003 ROR2 Zornitza Stark Marked gene: ROR2 as ready
Mendeliome v0.9000 PROP1 Zornitza Stark Marked gene: PROP1 as ready
Mendeliome v0.9000 PROP1 Zornitza Stark Phenotypes for gene: PROP1 were changed from to Pituitary hormone deficiency, combined, 2 MIM# 262600; Ateliotic dwarfism with hypogonadism; growth failure; short stature; failure to thrive; absent sexual development at puberty; GH, PRL, TSH, LH, and FSH deficiency; pituitary hypoplasia
Mendeliome v0.8997 PROP1 Zornitza Stark reviewed gene: PROP1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301521, 31090814; Phenotypes: Pituitary hormone deficiency, combined, 2 MIM# 262600, Ateliotic dwarfism with hypogonadism, growth failure, short stature, failure to thrive, absent sexual development at puberty, GH, PRL, TSH, LH, and FSH deficiency, pituitary hypoplasia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8997 WRN Zornitza Stark Marked gene: WRN as ready
Mendeliome v0.8994 POU1F1 Zornitza Stark Marked gene: POU1F1 as ready
Mendeliome v0.8994 POU1F1 Zornitza Stark Phenotypes for gene: POU1F1 were changed from to Pituitary hormone deficiency, combined, 1 MIM# 613038; pituitary hypoplasia; severe growth failure; combined GH, PRL and TSH deficiency; distinct facial features (prominent forehead, mid-facial hypoplasia, depressed nasal bridge, deep-set eyes and a short nose with anteverted nostrils)
Mendeliome v0.8991 POU1F1 Zornitza Stark reviewed gene: POU1F1: Rating: GREEN; Mode of pathogenicity: None; Publications: 1302000, 1472057, 9392392, 15928241, 7833912, 12773133; Phenotypes: Pituitary hormone deficiency, combined, 1 MIM# 613038, pituitary hypoplasia, severe growth failure, combined GH, PRL and TSH deficiency, distinct facial features (prominent forehead, mid-facial hypoplasia, depressed nasal bridge, deep-set eyes and a short nose with anteverted nostrils); Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8991 OPDM2 Bryony Thompson Marked STR: OPDM2 as ready
Mendeliome v0.8990 OPDM2 Bryony Thompson STR: OPDM2 was added
STR: OPDM2 was added to Mendeliome. Sources: Literature
Mode of inheritance for STR: OPDM2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: OPDM2 were set to 32413282; 33374016
Phenotypes for STR: OPDM2 were set to Oculopharyngodistal myopathy 2 MIM#618940
Review for STR: OPDM2 was set to GREEN
STR: OPDM2 was marked as clinically relevant
Added comment: NM_005716.4:c.-211GGC[X]
>15 Chinese families/probands with a heterozygous trinucleotide repeat expansion (CGG(n)) in 5'UTR exon 1 of the GIPC1 gene. The expansion was found by a combination of linkage analysis, whole-exome sequencing, long-range sequencing, and PCR analysis, and segregated with the disorder in the family. Repeat lengths in the patients ranged from 70 to 138. Normal repeat lengths ranged from 12 to 32.
Sources: Literature
Mendeliome v0.8989 FAME2 Bryony Thompson Marked STR: FAME2 as ready
Mendeliome v0.8987 FAME2 Bryony Thompson STR: FAME2 was added
STR: FAME2 was added to Mendeliome. Sources: Literature
Mode of inheritance for STR: FAME2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: FAME2 were set to 11701600; 24114805; 31664034
Phenotypes for STR: FAME2 were set to Epilepsy, familial adult myoclonic, 2 MIM#607876
Review for STR: FAME2 was set to GREEN
STR: FAME2 was marked as clinically relevant
Added comment: NM_020151.3(STARD7):c.291-1572ATTTT[X]ATTTC[X]
158 affected individuals from 22 unrelated families with familial adult myoclonic epilepsy with a heterozygous 5-bp repeat expansion (ATTTC)n in intron 1. Affected individuals had variable expansion of an endogenous (ATTTT)n repeat in addition to the insertion of an abnormal (ATTTC)n repeat, similar molecular finding in other forms of FAME. RNA sequencing from patient derived fibroblasts shows no accumulation of the AUUUU or AUUUC repeat sequences and no effect on STARD7 gene expression, suggesting ATTTC expansions may cause FAME irrespective of the genomic locus involved.
Sources: Literature
Mendeliome v0.8986 STARD7 Bryony Thompson Classified gene: STARD7 as No list
Mendeliome v0.8986 STARD7 Bryony Thompson Gene: stard7 has been removed from the panel.
Mendeliome v0.8984 PNPLA6 Zornitza Stark changed review comment from: Ataxia is part of the phenotype.
Sources: Expert list; to: Variants in this gene are associated with multiple phenotypes.

Oliver-McFarlane syndrome is a rare congenital disorder characterized by trichomegaly, severe chorioretinal atrophy and multiple pituitary hormone deficiencies, including growth hormone. At least 10 families reported.

Laurence-Moon syndrome has a clinical presentation similar to that of Oliver-McFarlane syndrome, including chorioretinopathy and pituitary dysfunction, but with childhood onset of ataxia, peripheral neuropathy, and spastic paraplegia and without trichomegaly. Single family reported.
Mendeliome v0.8984 PNPLA6 Zornitza Stark edited their review of gene: PNPLA6: Changed publications: 25480986, 33818269, 32758583, 30097146; Changed phenotypes: Oliver-McFarlane syndrome, MIM# 275400, Laurence-Moon syndrome, MIM# 245800
Mendeliome v0.8984 PI4KA Zornitza Stark Phenotypes for gene: PI4KA were changed from Polymicrogyria, perisylvian, with cerebellar hypoplasia and arthrogryposis, MIM# 616531 to Polymicrogyria, perisylvian, with cerebellar hypoplasia and arthrogryposis, MIM# 616531; Neurodevelopmental syndrome with hypomyelinating leukodystrophy
Mendeliome v0.8981 PI4KA Zornitza Stark changed review comment from: Single family reported, aware of at least one other yet to be published family identified internally.; to: PMG: Single family reported, aware of at least one other yet to be published family identified internally.
Mendeliome v0.8981 PI4KA Zornitza Stark edited their review of gene: PI4KA: Added comment: Neurodevelopmental syndrome with hypomyelinating leukodystrophy: 10 unrelated patients harbouring biallelic variants in PI4KA reported with a spectrum of severe global neurodevelopmental delay, hypomyelination, and developmental brain abnormalities, and pure spastic paraplegia. Some patients presented immunological deficits or genito-urinary abnormalities. Western blotting and immunofluorescence showed decreased PI4KA levels in the patients' fibroblasts. Immunofluorescence and targeted lipidomics indicated that PI4KA activity was diminished in fibroblasts and peripheral blood mononuclear cells.; Changed rating: GREEN; Changed publications: 25855803, 34415322; Changed phenotypes: Polymicrogyria, perisylvian, with cerebellar hypoplasia and arthrogryposis, MIM# 616531, Neurodevelopmental syndrome with hypomyelinating leukodystrophy
Mendeliome v0.8981 NIID Bryony Thompson Marked STR: NIID as ready
Mendeliome v0.8980 NIID Bryony Thompson STR: NIID was added
STR: NIID was added to Mendeliome. Sources: Literature
Mode of inheritance for STR: NIID was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: NIID were set to 31178126; 31332381; 31819945; 33887199; 33943039; 32250060; 31332380; 32852534; 32989102; 34333668
Phenotypes for STR: NIID were set to Neuronal intranuclear inclusion disease MIM#603472; Oculopharyngodistal myopathy 3 MIM#619473; Tremor, hereditary essential, 6 MIM#618866
Review for STR: NIID was set to GREEN
STR: NIID was marked as clinically relevant
Added comment: NM_001364012.2:c.-164GGC[X]
Expanded repeat in NOTCH2NLC sequence is (GGC)9(GGA)2(GGC)2.
Large number of families and sporadic cases reported with expansions, with a range of neurodegenerative phenotypes, including: dementia, Parkinsonism/tremor, peripheral neuropathy, leukoencephalopathy, myopathy, motor neurone disease.
Normal repeat range: 4-40, 1 control had 61 repeats and may have been a presymptomatic carrier.
Intermediate range: 41-60 identified in Parkinson's disease
Pathogenic repeat range: >=60-520
Mechanism of disease is translation of repeat expansion into a toxic polyglycine protein, identified in both mouse models and tissue samples from affected individuals.
Sources: Literature
Mendeliome v0.8978 SUCO Bryony Thompson Marked gene: SUCO as ready
Mendeliome v0.8977 SUCO Bryony Thompson gene: SUCO was added
gene: SUCO was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SUCO was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SUCO were set to 29620724; 20440000
Phenotypes for gene: SUCO were set to Osteogenesis imperfecta
Review for gene: SUCO was set to AMBER
Added comment: A single case with diffuse osteopenia, multiple fractures with limb deformities, and short long bones, with biallelic variants (a missense and a splice site variant). Also, a null mouse model with acute onset skeletal defects that include impaired bone formation and spontaneous fractures.
Sources: Literature
Mendeliome v0.8976 IGFALS Zornitza Stark Marked gene: IGFALS as ready
Mendeliome v0.8973 FAME1 Bryony Thompson Marked STR: FAME1 as ready
Mendeliome v0.8972 FAME1 Bryony Thompson STR: FAME1 was added
STR: FAME1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for STR: FAME1 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Publications for STR: FAME1 were set to 30194086; 29507423
Phenotypes for STR: FAME1 were set to Epilepsy, familial adult myoclonic, 1 MIM#601068
Review for STR: FAME1 was set to GREEN
STR: FAME1 was marked as clinically relevant
Added comment: NC_000008.10:g.119379055_119379157TGAAA[X]TAAAA[X]
A heterozygous or homozygous 5-bp expanded TTTCA(n) insertion associated with an upstream 5-bp TTTTA(n) repeat expansion in a noncoding region within intron 4 of the SAMD12 gene, was identified in over 50 Chinese and Japanese families. 4 homozygous cases from 3 families had a more severe phenotype. The TTTTA repeat was present in controls, while the TTTCA was absent and only present in cases (100-3680 repeats reported). RNA toxicity is expected to be the mechanism of disease.
Sources: Expert list
Mendeliome v0.8969 MYO1H Zornitza Stark Marked gene: MYO1H as ready
Mendeliome v0.8969 MYO1H Zornitza Stark gene: MYO1H was added
gene: MYO1H was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MYO1H was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MYO1H were set to 28779001
Phenotypes for gene: MYO1H were set to Central hypoventilation syndrome, congenital, 2, and autonomic dysfunction, MIM#619482
Review for gene: MYO1H was set to RED
Added comment: Single family reported with three affected children, homozygous LoF variant.
Sources: Literature
Mendeliome v0.8968 BLM Zornitza Stark Marked gene: BLM as ready
Mendeliome v0.8968 BLM Zornitza Stark Phenotypes for gene: BLM were changed from to Bloom Syndrome MIM# 210900; Short stature, dysmorphic facies; sun-sensitive; immunoglobulin deficiency (IgA, IgG, IgM); erythema; marrow failure; leukaemia; lymphoma; chromosomal instability; predisposition to malignancies
Mendeliome v0.8965 PRKDC Zornitza Stark Marked gene: PRKDC as ready
Mendeliome v0.8962 TBX1 Zornitza Stark Marked gene: TBX1 as ready
Mendeliome v0.8962 TBX1 Zornitza Stark Phenotypes for gene: TBX1 were changed from to DiGeorge syndrome MIM# 188400; Velocardiofacial syndrome MIM# 192430; Decreased T cells; Hypoparathyroidism; Conotruncal cardiac malformation; velopalatal insufficiency; abnormal facies (cleft palate, prominent tubular nose etc); intellectual disability; Immunodeficiency; thymic hypoplasia or aplasia with resultant T‐cell dysfunction; renal anomalies; autoimmunity
Mendeliome v0.8959 TBX1 Zornitza Stark reviewed gene: TBX1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301696, 31830774, 16684884; Phenotypes: DiGeorge syndrome MIM# 188400, Velocardiofacial syndrome MIM# 192430, Decreased T cells, Hypoparathyroidism, Conotruncal cardiac malformation, velopalatal insufficiency, abnormal facies (cleft palate, prominent tubular nose etc), intellectual disability, Immunodeficiency, thymic hypoplasia or aplasia with resultant T‐cell dysfunction, renal anomalies, autoimmunity; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8959 RTEL1 Zornitza Stark Marked gene: RTEL1 as ready
Mendeliome v0.8959 RTEL1 Zornitza Stark Phenotypes for gene: RTEL1 were changed from to Dyskeratosis congenita, autosomal dominant 4 MIM# 615190; Dyskeratosis congenita, autosomal recessive 5 MIM# 615190; Pulmonary fibrosis and/or bone marrow failure, telomere-related, 3 MIM# 616373
Mendeliome v0.8956 RTEL1 Zornitza Stark reviewed gene: RTEL1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301779, 23329068, 15210109, 23453664, 19461895, 25848748, 25607374; Phenotypes: Dyskeratosis congenita, autosomal dominant 4 MIM# 615190, Dyskeratosis congenita, autosomal recessive 5 MIM# 615190, Pulmonary fibrosis and/or bone marrow failure, telomere-related, 3 MIM# 616373; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8956 RMRP Zornitza Stark changed review comment from: Over 60 pathogenic RMRP variants have been reported resulting in CHH phenotypes; multiple mouse models

Homozygous and Compound heterozygous (insertions, duplications and missense) variants have been reported resulting in loss of function.
*Founder variant g.70A>G (Amish and Finnish populations)

CHH individuals present with variable features that may include: shortened limbs, short stature, metaphysical dysplasia, fine, sparse and/or light-coloured hair, hematologic abnormalities and a spectrum of combined immunodeficiency.; to: Over 60 pathogenic RMRP variants have been reported resulting in CHH phenotypes; multiple mouse models

Homozygous and Compound heterozygous (insertions, duplications and missense) variants have been reported resulting in loss of function.
*Founder variant g.70A>G (Amish and Finnish populations)

CHH individuals present with variable features that may include: shortened limbs, short stature, metaphysical dysplasia, fine, sparse and/or light-coloured hair, hematologic abnormalities and a spectrum of combined immunodeficiency.

Anauxetic dysplasia 1, MIM# 607095 is a more severe phenotype, whereas Metaphyseal dysplasia without hypotrichosis, MIM# 250460 is milder.
Mendeliome v0.8956 RMRP Zornitza Stark edited their review of gene: RMRP: Changed phenotypes: Cartilage hair hypoplasia (CHH) MIM#250250, Anauxetic dysplasia 1, MIM# 607095, Metaphyseal dysplasia without hypotrichosis, MIM# 250460
Mendeliome v0.8956 RMRP Zornitza Stark Marked gene: RMRP as ready
Mendeliome v0.8956 RMRP Zornitza Stark Phenotypes for gene: RMRP were changed from to Cartilage-hair hypoplasia MIM#250250
Mendeliome v0.8953 RMRP Zornitza Stark reviewed gene: RMRP: Rating: GREEN; Mode of pathogenicity: None; Publications: 16244706, 21396580, 22420014; Phenotypes: Cartilage hair hypoplasia (CHH) MIM#250250, shortened limbs, short stature, metaphysical dysplasia, fine, sparse and/or light-coloured hair, hematologic abnormalities, CID, impaired lymphocyte proliferation, low Ig levels, antibodies variably decreased, bone marrow failure, autoimmunity, susceptibility to lymphoma and other cancers, impaired spermatogenesis, neuronal dysplasia of the intestine; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8953 BLM Danielle Ariti reviewed gene: BLM: Rating: GREEN; Mode of pathogenicity: None; Publications: 17407155, 9285778, 7585968, 8079989, 12242442, 11101838; Phenotypes: Bloom Syndrome MIM# 210900, Short stature, dysmorphic facies, sun-sensitive, immunoglobulin deficiency (IgA, IgG, IgM), erythema, marrow failure, leukaemia, lymphoma, chromosomal instability, predisposition to malignancies; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8953 RFX5 Zornitza Stark Marked gene: RFX5 as ready
Mendeliome v0.8953 RFX5 Zornitza Stark Phenotypes for gene: RFX5 were changed from to Bare lymphocyte syndrome, type II, complementation group C MIM# 209920; Bare lymphocyte syndrome, type II, complementation group E MIM# 209920
Mendeliome v0.8950 RFX5 Zornitza Stark reviewed gene: RFX5: Rating: GREEN; Mode of pathogenicity: None; Publications: 9401005, 29527204, 30170160, 7990905, 8642248, 7699327; Phenotypes: Bare lymphocyte syndrome, type II, complementation group C MIM# 209920, Bare lymphocyte syndrome, type II, complementation group E MIM# 209920; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8949 TYK2 Zornitza Stark Marked gene: TYK2 as ready
Mendeliome v0.8946 RAG1 Zornitza Stark Marked gene: RAG1 as ready
Mendeliome v0.8946 RAG1 Zornitza Stark Phenotypes for gene: RAG1 were changed from to Alpha/beta T-cell lymphopenia with gamma/delta T-cell expansion, severe cytomegalovirus infection, and autoimmunity MIM# 609889; Combined cellular and humoral immune defects with granulomas MIM# 233650; Omenn syndrome MIM# 603554; Severe combined immunodeficiency, B cell-negative MIM# 601457
Mendeliome v0.8943 RAG2 Zornitza Stark Marked gene: RAG2 as ready
Mendeliome v0.8943 RAG2 Zornitza Stark Phenotypes for gene: RAG2 were changed from to Omenn syndrome MIM# 603554; Severe combined immunodeficiency, B cell-negative MIM# 601457; Combined cellular and humoral immune defects with granulomas MIM# 233650
Mendeliome v0.8939 RAG2 Danielle Ariti reviewed gene: RAG2: Rating: GREEN; Mode of pathogenicity: None; Publications: 9630231, 11313270, 31885011, 8810255, 15025726, 18463379; Phenotypes: Omenn syndrome MIM# 603554, Severe combined immunodeficiency, B cell-negative MIM# 601457, Combined cellular and humoral immune defects with granulomas MIM# 233650; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8939 RAC2 Zornitza Stark Marked gene: RAC2 as ready
Mendeliome v0.8937 RAG1 Danielle Ariti reviewed gene: RAG1: Rating: GREEN; Mode of pathogenicity: None; Publications: 16276422, 18463379, 20489056, 9630231, 11313270, 17476359, 8810255, 6823332; Phenotypes: Alpha/beta T-cell lymphopenia with gamma/delta T-cell expansion, severe cytomegalovirus infection, and autoimmunity MIM# 609889, Combined cellular and humoral immune defects with granulomas MIM# 233650, Omenn syndrome MIM# 603554, Severe combined immunodeficiency, B cell-negative MIM# 601457; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8935 MTHFD1 Danielle Ariti reviewed gene: MTHFD1: Rating: GREEN; Mode of pathogenicity: None; Publications: Combined immunodeficiency and megaloblastic anemia with or without hyperhomocysteinaemia MIM # 617780, Decreased Ig levels, poor antibody responses to conjugated polysaccharide antigens, low B/T/NK cells, Recurrent bacterial infection, megaloblastic anaemia, failure to thrive, neutropenia, seizures, intellectual disability, folate-responsive, Lymphopaenia; Phenotypes: 32414565, 19033438; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8935 GLI2 Zornitza Stark Marked gene: GLI2 as ready
Mendeliome v0.8932 GLI2 Zornitza Stark changed review comment from: Culler-Jones syndrome (CJS) is characterized by hypopituitarism, mainly growth hormone deficiency, and/or postaxial polydactyly. The phenotype is highly variable, and some individuals may have midline facial defects and developmental delay. The disorder shows incomplete penetrance and variable expressivity. Multiple families reported, short stature is a feature as a result of GH deficiency.

Variants in GLI2 are also associated with HPE, at least 5 families reported. Short stature is observed more rarely, as a result of midline defect.; to: Culler-Jones syndrome (CJS) is characterized by hypopituitarism, mainly growth hormone deficiency, and/or postaxial polydactyly. The phenotype is highly variable, and some individuals may have midline facial defects and developmental delay. The disorder shows incomplete penetrance and variable expressivity. Multiple families reported.

Variants in GLI2 are also associated with HPE, at least 5 families reported.
Mendeliome v0.8932 GHSR Zornitza Stark Marked gene: GHSR as ready
Mendeliome v0.8932 GHSR Zornitza Stark Phenotypes for gene: GHSR were changed from to Growth hormone deficiency, isolated partial, MIM# 615925
Mendeliome v0.8928 GHSR Zornitza Stark reviewed gene: GHSR: Rating: AMBER; Mode of pathogenicity: None; Publications: 25557026, 19789204, 16511605; Phenotypes: Growth hormone deficiency, isolated partial, MIM# 615925; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8927 PDE6D Zornitza Stark changed review comment from: Comment when marking as ready: Second family identified in the literature.; to: Comment when marking as ready: Second family identified in the literature. Good functional data.
Mendeliome v0.8927 GHRHR Zornitza Stark Marked gene: GHRHR as ready
Mendeliome v0.8924 GHR Zornitza Stark Marked gene: GHR as ready
Mendeliome v0.8924 GHR Zornitza Stark Phenotypes for gene: GHR were changed from to Growth hormone insensitivity, partial, MIM# 604271; Laron dwarfism, MIM# 262500
Mendeliome v0.8921 GHR Zornitza Stark reviewed gene: GHR: Rating: GREEN; Mode of pathogenicity: None; Publications: 1999489, 8488849, 7565946; Phenotypes: Growth hormone insensitivity, partial, MIM# 604271, Laron dwarfism, MIM# 262500; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8921 SCA12 Bryony Thompson Marked STR: SCA12 as ready
Mendeliome v0.8920 SCA12 Bryony Thompson STR: SCA12 was added
STR: SCA12 was added to Mendeliome. Sources: Expert list
Mode of inheritance for STR: SCA12 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: SCA12 were set to 27864267; 33811808
Phenotypes for STR: SCA12 were set to Spinocerebellar ataxia 12 MIM#604326
Review for STR: SCA12 was set to GREEN
STR: SCA12 was marked as clinically relevant
Added comment: NM_181675.3:c.27CAG[X]
Uncertain if CAG repeat encodes polyglutamine or instead effects expression of specific splice variants of the encoded phosphatase
Normal: ≤32 repeats
Uncertain: ~40-50 repeats have been reported, 43 repeats is the lowest reported in an established affected individual in a family with SCA12
Established pathogenic (used as diagnostic cut-off): ≥51 repeats
Sources: Expert list
Mendeliome v0.8919 RNU7-1 Zornitza Stark Phenotypes for gene: RNU7-1 were changed from Aicardi–Goutières syndrome-like to Aicardi-Goutieres syndrome 9, MIM# 619487
Mendeliome v0.8918 RNU7-1 Zornitza Stark reviewed gene: RNU7-1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Aicardi-Goutieres syndrome 9, MIM# 619487; Mode of inheritance: None
Mendeliome v0.8918 LSM11 Zornitza Stark Phenotypes for gene: LSM11 were changed from type I interferonopathy Aicardi–Goutières syndrome to Aicardi-Goutieres syndrome 8, MIM# 619486
Mendeliome v0.8917 LSM11 Zornitza Stark reviewed gene: LSM11: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Aicardi-Goutieres syndrome 8, MIM# 619486; Mode of inheritance: None
Mendeliome v0.8917 WDR11 Zornitza Stark Marked gene: WDR11 as ready
Mendeliome v0.8913 GH1 Zornitza Stark Marked gene: GH1 as ready
Mendeliome v0.8913 GH1 Zornitza Stark Phenotypes for gene: GH1 were changed from to Growth hormone deficiency, isolated, type IA, MIM# 262400; Growth hormone deficiency, isolated, type II, MIM# 173100; Kowarski syndrome, MIM# 262650
Mendeliome v0.8910 GH1 Zornitza Stark reviewed gene: GH1: Rating: GREEN; Mode of pathogenicity: None; Publications: 2840669, 1603635, 12655557, 15671105, 8552145, 9276733, 15713716; Phenotypes: Growth hormone deficiency, isolated, type IA, MIM# 262400, Growth hormone deficiency, isolated, type II, MIM# 173100, Kowarski syndrome, MIM# 262650; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8910 EPHX1 Zornitza Stark Marked gene: EPHX1 as ready
Mendeliome v0.8906 CREBBP Zornitza Stark Marked gene: CREBBP as ready
Mendeliome v0.8903 RNU4ATAC Zornitza Stark Phenotypes for gene: RNU4ATAC were changed from Microcephalic osteodysplastic primordial dwarfism, type I (MIM# 210710); Roifman syndrome (MIM# 616651); Lowry-Wood syndrome, MIM# 226960 to Microcephalic osteodysplastic primordial dwarfism, type I (MIM# 210710); Roifman syndrome (MIM# 616651); Lowry-Wood syndrome, MIM# 226960
Mendeliome v0.8902 RNU4ATAC Zornitza Stark Phenotypes for gene: RNU4ATAC were changed from Microcephalic osteodysplastic primordial dwarfism, type I (MIM# 210710); Roifman syndrome (MIM# 616651) to Microcephalic osteodysplastic primordial dwarfism, type I (MIM# 210710); Roifman syndrome (MIM# 616651); Lowry-Wood syndrome, MIM# 226960
Mendeliome v0.8900 RNU4ATAC Zornitza Stark edited their review of gene: RNU4ATAC: Added comment: Lowry-Wood syndrome (LWS) is characterized by multiple epiphyseal dysplasia and microcephaly. Patients exhibit intrauterine growth retardation and short stature, as well as developmental delay and intellectual disability. Retinal degeneration has been reported in some patients.

Four unrelated families reported.

Note features between the three RNU4ATAC-related conditions overlap and they may not represent distinct disorders.; Changed rating: GREEN; Changed publications: 29265708, 12605445; Changed phenotypes: Lowry-Wood syndrome, MIM# 226960; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8900 TRPS1 Zornitza Stark Marked gene: TRPS1 as ready
Mendeliome v0.8897 FGD1 Zornitza Stark Marked gene: FGD1 as ready
Mendeliome v0.8897 FGD1 Zornitza Stark Phenotypes for gene: FGD1 were changed from to Aarskog-Scott syndrome, MIM # 305400; Mental retardation, X-linked syndromic 16, MIM# 305400
Mendeliome v0.8894 FGD1 Zornitza Stark reviewed gene: FGD1: Rating: GREEN; Mode of pathogenicity: None; Publications: 7954831, 20082460; Phenotypes: Aarskog-Scott syndrome, MIM # 305400, Mental retardation, X-linked syndromic 16, MIM# 305400; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.8894 BRD4 Zornitza Stark Marked gene: BRD4 as ready
Mendeliome v0.8891 JPH2 Zornitza Stark Phenotypes for gene: JPH2 were changed from Cardiomyopathy, hypertrophic, MIM#613873; dilated cardiomyopathy to Cardiomyopathy, hypertrophic, MIM#613873; Cardiomyopathy, dilated, 2E, MIM# 619492
Mendeliome v0.8890 JPH2 Zornitza Stark edited their review of gene: JPH2: Changed phenotypes: Cardiomyopathy, hypertrophic, MIM#613873, Cardiomyopathy, dilated, 2E, MIM# 619492
Mendeliome v0.8890 ZNF699 Zornitza Stark Marked gene: ZNF699 as ready
Mendeliome v0.8889 ZNF699 Zornitza Stark gene: ZNF699 was added
gene: ZNF699 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZNF699 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZNF699 were set to 33875846
Phenotypes for gene: ZNF699 were set to DEGCAGS syndrome, MIM# 619488
Review for gene: ZNF699 was set to GREEN
Added comment: DEGCAGS syndrome is a neurodevelopmental disorder characterized by global developmental delay, coarse and dysmorphic facial features, and poor growth and feeding apparent from infancy. Affected individuals have variable systemic manifestations often with significant structural defects of the cardiovascular, genitourinary, gastrointestinal, and/or skeletal systems. Additional features may include sensorineural hearing loss, hypotonia, anaemia or pancytopaenia, and immunodeficiency with recurrent infections.

12 unrelated families reported, 5 different homozygous frameshift variants.
Sources: Literature
Mendeliome v0.8888 SMC1A Zornitza Stark Phenotypes for gene: SMC1A were changed from Cornelia de Lange syndrome 2, MIM# 300590 to Cornelia de Lange syndrome 2, MIM# 300590; Epileptic encephalopathy, early infantile, 85, with or without midline brain defects, MIM# 301044
Mendeliome v0.8886 SMC1A Zornitza Stark reviewed gene: SMC1A: Rating: GREEN; Mode of pathogenicity: None; Publications: 29023665, 31409060, 31334757, 28166369; Phenotypes: Cornelia de Lange syndrome 2, MIM# 300590, Epileptic encephalopathy, early infantile, 85, with or without midline brain defects, MIM# 301044; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.8886 DCLRE1B Zornitza Stark Marked gene: DCLRE1B as ready
Mendeliome v0.8886 DCLRE1B Zornitza Stark Phenotypes for gene: DCLRE1B were changed from to Dyskeratosis congenita and Hoyeraal-Hreidarsson (HH) syndrome
Mendeliome v0.8883 DCLRE1B Zornitza Stark reviewed gene: DCLRE1B: Rating: RED; Mode of pathogenicity: None; Publications: 20479256, 21647296; Phenotypes: Dyskeratosis congenita and Hoyeraal-Hreidarsson (HH) syndrome; Mode of inheritance: Unknown
Mendeliome v0.8883 TOR1AIP1 Zornitza Stark Phenotypes for gene: TOR1AIP1 were changed from Muscular dystrophy, autosomal recessive, with rigid spine and distal joint contractures MIM#617072; Progeroid appearance; Cataracts; Microcephaly; Deafness; Contractures to Muscular dystrophy, autosomal recessive, with rigid spine and distal joint contractures MIM#617072; Congenital myasthenic syndrome
Mendeliome v0.8881 PAPPA2 Zornitza Stark Marked gene: PAPPA2 as ready
Mendeliome v0.8880 PAPPA2 Zornitza Stark gene: PAPPA2 was added
gene: PAPPA2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PAPPA2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PAPPA2 were set to 26902202; 34272725; 32739295
Phenotypes for gene: PAPPA2 were set to Short stature, Dauber-Argente type, MIM#619489
Review for gene: PAPPA2 was set to GREEN
Added comment: Short stature of the Dauber-Argente type (SSDA) is characterized by progressive postnatal growth failure, moderate microcephaly, thin long bones, and mildly decreased bone density. Patients have elevated circulating levels of total IGF1 due to impaired proteolysis of IGFBP3 and IGFBP5, resulting in reduced free IGF1.

7 individuals from 3 unrelated families reported, mouse model.
Sources: Literature
Mendeliome v0.8879 ATR Zornitza Stark Marked gene: ATR as ready
Mendeliome v0.8876 SHOX Zornitza Stark Marked gene: SHOX as ready
Mendeliome v0.8874 ORC4 Zornitza Stark Marked gene: ORC4 as ready
Mendeliome v0.8871 ORC1 Zornitza Stark Marked gene: ORC1 as ready
Mendeliome v0.8868 ORC6 Zornitza Stark Marked gene: ORC6 as ready
Mendeliome v0.8865 IGF1 Zornitza Stark Marked gene: IGF1 as ready
Mendeliome v0.8865 IGF1 Zornitza Stark Phenotypes for gene: IGF1 were changed from to Growth retardation with deafness and mental retardation due to IGF1 deficiency, MIM # 608747
Mendeliome v0.8862 IGF1 Zornitza Stark reviewed gene: IGF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 8857020, 15769976, 14684690, 31539878, 28768959, 34125705, 22832530; Phenotypes: Growth retardation with deafness and mental retardation due to IGF1 deficiency, MIM # 608747; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8861 IGF2 Zornitza Stark changed review comment from: RSS phenotype.; to: Silver-Russell syndrome-3 (SRS3) is characterized by intrauterine growth retardation with relative macrocephaly, followed by feeding difficulties and postnatal growth restriction. Dysmorphic facial features include triangular face, prominent forehead, and low-set ears. Other variable features include limb defects, genitourinary and cardiovascular anomalies, hearing impairment, and developmental delay. Disruption of any gene in the HMGA2-PLAG1-IGF2 pathway results in a decrease in IGF2 expression and produces an SRS phenotype similar to that of patients carrying 11p15.5 epigenetic defects.

Begemann et al. (2015) performed exome sequencing in 4 affected people with severe growth restriction in one family, and identified a heterozygous nonsense mutation in the IGF2 gene that segregated fully with the disorder. Affected individuals inherited the mutation from their healthy fathers, and it originated from the healthy paternal grandmother. Clinical features occurred only in those who inherited the variant allele through paternal transmission, consistent with maternal imprinting of IGF2.

Many other cases reported since with de novo mutations in IGF2 present on the paternal allele.
Mendeliome v0.8861 OBSL1 Zornitza Stark Marked gene: OBSL1 as ready
Mendeliome v0.8858 PIK3R1 Zornitza Stark Marked gene: PIK3R1 as ready
Mendeliome v0.8853 PLAG1 Zornitza Stark edited their review of gene: PLAG1: Added comment: Additional families reported, upgrade to Green.

Silver-Russell syndrome-4 (SRS4) is characterised by intrauterine growth retardation followed by feeding difficulties and postnatal growth restriction. Dysmorphic facial features include triangular face and prominent forehead, and relative macrocephaly at birth may be observed. So far 4 families have been reported with some functional studies of the role of the gene in the growth pathway.

Abi Habib et al. (2018) reported 1 family (child, sister and mother) patient with Silver-Russell syndrome (with normal methylation on chromosomes 7, 11, and 14, and exclusion of maternal UPD and chromosomal rearrangements). Using WES they identified a heterozygous 1-bp deletion in the PLAG1 gene. The variant segregated with disease, and was not present in polymorphism databases or ExAC. They also reported another patient with a different heterozygous 1-bp deletion in the PLAG1 gene. This was not found in her unaffected twin brother, older brother, or parents. Experiments in Hep3b cells demonstrated that PLAG1 positively regulates expression of the IGF2 promoter P3, independently and via the HMGA2-PLAG1-IGF2 pathway. Disruption of any gene in the pathway results in a decrease in IGF2 expression and produces an SRS phenotype similar to that of patients carrying 11p15.5 epigenetic defects (SRS1; 180860), except for body asymmetry, which is not expected to occur since the molecular defects are present in all cells of the body, unlike the mosaic epigenetic changes at the 11p15.5 locus.

Inoue et al. (2020) reported 1 family with 2 affected people with Silver-Russell syndrome with a nonsense variant in the PLAG1 gene, which segregated with disease.

Vado et al. (2020) reported 1 family with multiple affected people with Silver-Russell syndrome with a frameshift variant in the PLAG1 gene, which segregated with disease.; Changed rating: GREEN; Changed publications: 28796236, 29913240, 33291420, 32546215
Mendeliome v0.8853 PACRG Zornitza Stark Marked gene: PACRG as ready
Mendeliome v0.8851 WIPF1 Zornitza Stark Marked gene: WIPF1 as ready
Mendeliome v0.8851 WIPF1 Zornitza Stark Phenotypes for gene: WIPF1 were changed from to Wiskott-Aldrich syndrome 2 MIM# 614493; Reduced T cells; defective lymphocyte responses to anti-CD3; high IgE; Thrombocytopenia with or without small platelets; recurrent bacterial and viral Infections; eczema; bloody diarrhoea; gastrointestinal bleeding; WAS protein absent
Mendeliome v0.8848 TCN2 Zornitza Stark changed review comment from: Well established gene-disease association.

26 pathogenic TCN2 variants have been reported in over 40 individuals; multiple mouse models

Homologous and Compound Heterozygous TCN2 variants (deletions or insertions, nonsense mutations, and point mutations) have been reported; deletions or insertions are the most common, causing frameshifts that result in protein truncation.

Individuals usually present within the first year of life with failure to thrive, diarrhoea, anaemia, pallor and agammaglobulinaemia.
Sources: Expert list; to: Well established gene-disease association.

26 pathogenic TCN2 variants have been reported in over 40 individuals; multiple mouse models

Homozygous and Compound Heterozygous TCN2 variants (deletions or insertions, nonsense mutations, and point mutations) have been reported; deletions or insertions are the most common, causing frameshifts that result in protein truncation.

Individuals usually present within the first year of life with failure to thrive, diarrhoea, anaemia, pallor and agammaglobulinaemia.
Sources: Expert list
Mendeliome v0.8848 TCN2 Zornitza Stark Marked gene: TCN2 as ready
Mendeliome v0.8847 TCN2 Zornitza Stark changed review comment from: Well established gene-disease association.
Sources: Expert list; to: Well established gene-disease association.

26 pathogenic TCN2 variants have been reported in over 40 individuals; multiple mouse models

Homologous and Compound Heterozygous TCN2 variants (deletions or insertions, nonsense mutations, and point mutations) have been reported; deletions or insertions are the most common, causing frameshifts that result in protein truncation.

Individuals usually present within the first year of life with failure to thrive, diarrhoea, anaemia, pallor and agammaglobulinaemia.
Sources: Expert list
Mendeliome v0.8844 TAP2 Zornitza Stark Marked gene: TAP2 as ready
Mendeliome v0.8844 TAP2 Zornitza Stark Phenotypes for gene: TAP2 were changed from to Bare lymphocyte syndrome, type I, due to TAP2 deficiency MIM# 604571; Low CD8; absent MHC I on lymphocytes; Vasculitis; pyoderma gangrenosum; recurrent bacterial/viral respiratory infections; bronchiectasis
Mendeliome v0.8841 TAP1 Zornitza Stark Marked gene: TAP1 as ready
Mendeliome v0.8841 TAP1 Zornitza Stark Phenotypes for gene: TAP1 were changed from to Bare lymphocyte syndrome, type I MIM#604571; Low CD8; absent MHC I on lymphocytes; vasculitis; pyoderma gangrenosum; skin lesions; recurrent respiratory tract infections; bronchiectasis
Mendeliome v0.8838 PGRMC1 Bryony Thompson Phenotypes for gene: PGRMC1 were changed from Premature ovarian failure to Premature ovarian failure; Isolated paediatric cataract
Mendeliome v0.8836 WIPF1 Danielle Ariti reviewed gene: WIPF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 22231303, 27742395, 11869681, 14757742; Phenotypes: Wiskott-Aldrich syndrome 2 MIM# 614493, Reduced T cells, defective lymphocyte responses to anti-CD3, high IgE, Thrombocytopenia with or without small platelets, recurrent bacterial and viral Infections, eczema, bloody diarrhoea, gastrointestinal bleeding, WAS protein absent; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8835 PGRMC1 Bryony Thompson reviewed gene: PGRMC1: Rating: AMBER; Mode of pathogenicity: None; Publications: 33867527, 23783460; Phenotypes: Isolated paediatric cataract; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.8835 TAP2 Danielle Ariti reviewed gene: TAP2: Rating: GREEN; Mode of pathogenicity: None; Publications: 7517574, 9232449, 10560675, 27861817; Phenotypes: Bare lymphocyte syndrome, type I, due to TAP2 deficiency MIM# 604571, Low CD8, absent MHC I on lymphocytes, Vasculitis, pyoderma gangrenosum, recurrent bacterial/viral respiratory infections, bronchiectasis; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8835 TAP1 Danielle Ariti reviewed gene: TAP1: Rating: GREEN; Mode of pathogenicity: None; Publications: 28161407, 10074494, 1473153; Phenotypes: Bare lymphocyte syndrome, type I MIM#604571, Low CD8, absent MHC I on lymphocytes, vasculitis, pyoderma gangrenosum, skin lesions, recurrent respiratory tract infections, bronchiectasis; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8835 ALS2 Teresa Zhao gene: ALS2 was added
gene: ALS2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ALS2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ALS2 were set to PMID: 30128655; 33409823
Phenotypes for gene: ALS2 were set to Infantile onset ascending spastic paralysis (MIM#607225); Juvenile amyotrophic lateral sclerosis 2 (MIM#205100); Juvenile primary lateral sclerosis (MIM#606353)
Review for gene: ALS2 was set to GREEN
Added comment: >50 variants reported in multiple individuals with Infantile onset ascending spastic paralysis, mostly originated from the Middle East and Mediterranean countries.
Sources: Literature
Mendeliome v0.8835 RNF220 Zornitza Stark Marked gene: RNF220 as ready
Mendeliome v0.8834 RNF220 Zornitza Stark gene: RNF220 was added
gene: RNF220 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RNF220 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RNF220 were set to 33964137; 10881263
Phenotypes for gene: RNF220 were set to Leukodystrophy; CNS hypomyelination; Ataxia; Intellectual disability; Sensorineural hearing impairment; Elevated hepatic transaminases; Hepatic fibrosis; Dilated cardiomyopathy; Spastic paraplegia; Dysarthria; Abnormality of the corpus callosum
Review for gene: RNF220 was set to GREEN
Added comment: Sferra et al (2021 - PMID: 33964137) provide extensive evidence that biallelic RNF220 mutations cause a disorder characterized by hypomyelinating leukodystrophy, ataxia (9/9 - onset 1-5y), borderline intellectual functioning (3/9) / intellectual disability (5/9 - in most cases mild), sensorineural deafness (9/9) with complete hearing loss in the first decade of life, hepatopathy (9/9) with associated periportal fibrosis, and dilated cardiomyopathy (9/9) which was fatal.

Other neurologic manifestations apart from ataxia incl. hyperreflexia (8/8), spastic paraplegia (9/9), dysarthria (9/9), peripheral neuropathy (4/9), seizures in one case (1/9). Upon brain MRI there was thin corpus callosum (9/9) or cerebellar atrophy in some (2/9).

The authors identified homozygosity for 2 recurrent missense RNF220 variants in affected members belonging to these 5 broad consanguineous pedigrees (7 families), namely NM_018150.4:c.1094G>A / p.Arg365Gly in 4 Roma families in the context of a shared haplotype (/founder effect) as well as c.1088G>A / p.Arg363Gly in a large pedigree from southern Italy initially reported by Leuzzi et al (2000 - PMID: 10881263).

Extensive segregation analyses were carried out including several affected and unaffected members.

RNF220 encodes ring finger protein 220, which functions as an E3 ubiquitin ligase. Previous studies have shown among others a role in modulation of Sonic hedgehog/GLI signaling and cerebellar development

Evidence for the role of RNF220 included relevant expression, localization within the cell, interaction partners (lamin B1, 20S proteasome), similarities with other laminopathies in terms of phenotype, etc :
*RNF220 has a relevant expression pattern in CNS (based on qRT-PCR analyses in human brain, cerebellum, cerebral cortex / mRNA levels in human fetal CNS with higher expression in cerebellum, spinal cord and cortex / previous GTEx data / protein levels in mouse CNS)
*The protein displays nuclear localization based on iPSC cells differentiated to motor neurons (also supported by data from the Human Protein Atlas). Transfection of COS-1 cells demonstrated localization primarily to the nucleus (as also previously demonstrated in HEK293T cells) in vesicle like structures with ASF2/SF2 colocalization suggesting enrichment in nuclear speckles. There was also partial co-distribution with the 20S proteasome. R363Q and R365Q additionally coalesced in the cytoplasm forming protein aggregates/inclusions.
*Immunofluorescence studies in patient fibroblasts also confirmed abnormal increase of the protein in the cytoplasm and increased fluorescence with the 20S proteasome.
*Proteomic identification of RNF220-interacting proteins in transfected HEK293T cells demonstrated enrichment for all members of the lamin protein family (incl . lamin B1, AC, B2).
*RNAi-mediated downregulation of RNF222 in Drosophila suggested altered subcellular localization and accumulation of the fly orthologue for human lamin B1.
*Immunoprecipitation of lamin B1 from the nuclear matrix of cerebellar cells suggested significant interaction of endogenous lamin B1 with RNF220, while transfection studies in HEK293T cells for wt/mt suggested reduced binding to endogenous lamin B1 for RNF220 mt compared to wt (more prominent for R365Q). RNF220 mutants also reduced ubiquitination of nuclear lamin B1 compared to wt.
*Patient fibroblasts immunostained with different nuclear envelope markers displayed abnormal nuclear shapes with multiple invaginations and lobulations, findings also observed in laminopathies.
Sources: Literature
Mendeliome v0.8833 NBAS Zornitza Stark Marked gene: NBAS as ready
Mendeliome v0.8830 ARF3 Zornitza Stark Marked gene: ARF3 as ready
Mendeliome v0.8830 ARF3 Zornitza Stark Gene: arf3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8830 ARF3 Zornitza Stark Classified gene: ARF3 as Amber List (moderate evidence)
Mendeliome v0.8830 ARF3 Zornitza Stark Gene: arf3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8829 ARF3 Zornitza Stark gene: ARF3 was added
gene: ARF3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ARF3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ARF3 were set to 34346499
Phenotypes for gene: ARF3 were set to Global developmental delay; Intellectual disability; Seizures; Morphological abnormality of the central nervous system
Review for gene: ARF3 was set to AMBER
Added comment: Sakamoto et al (2021 - PMID: 34346499) provide some evidence that monoallelic ARF3 pathogenic variants may be associated with a NDD with brain abnormality.

Using trio exome sequencing, the authors identified 2 individuals with NDD harboring de novo ARF3 variants, namely: NM_001659.2:c.200A>T / p.Asp67Val and c.296G>T / p.Arg99Leu.

Individual 1 (with Asp67Val / age : 4y10m), appeared to be more severelely affected with prenatal onset progressive microcephaly, severe global DD, epilepsy. Upon MRI there was cerebellar and brainstem atrophy. Individual 2 (Arg99Leu / 14y) had severe DD and ID (IQ of 23), epilepsy and upon MRI cerebellar hypoplasia. This subject did not exhibit microcephaly. Common facial features incl. broad nose, full cheeks, small philtrum, strabismus, thin upper lips and abnormal jaw. There was no evidence of systemic involvement in both.

ARF3 encodes ADP-ribosylation factor 3. Adenosine diphosphate ribosylation factors (ARFs) are key proteins for regulation of cargo sorting at the Golgi network, with ARF3 mainly working at the trans-Golgi network. ARFs belong to the small GTP-binding protein (G protein) superfamily. ARF3 switches between an active GTP-bound form and an inactive GDP-bound form, regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) respectively.

Members of the ARF superfamily regulate various aspects of membrane traffic, among others in neurons.

There are 5 homologs of ARF families, divided in 3 classes. ARF3 and ARF1 belong to class I. Monoallelic ARF1 mutations are associated with Periventricular nodular heterotopia 8 (MIM 618185).

In vivo, in vitro and in silico studies for the 2 variants suggest that both impair the Golgi transport system although each variant most likely exerts a different effect (gain-of-function for Arg99Leu vs loss-of-function/dominant-negative for Asp67Val).

This was also reflected in somewhat different phenotype of the subjects with the respective variants. Common features included severe DD, epilepsy and brain abnormalities although Asp67Val was associated with diffuse brain atrophy as well as congenital microcephaly and Arg99Leu with cerebellar hypoplasia.

Evidence to support the effect of each variant include:

Arg99Leu:
Had identical Golgi localization to that of wt
Had increased binding activity with GGA1, a protein recruited by the GTP-bound active form of ARF3 to the TGN membrane (supporting GoF)
In silico structural analysis suggested it may fail to stabilize the conformation of Asp26, resulting in impaired GTP hydrolysis (GoF).
In transgenic fruit flies, evaluation of the ARF3 variant toxicity using the rough eye phenotype this variant was associated with increased severity of the r-e phenotype similar to a previously studied GoF variant (Gln71Leu)

Asp67Val:
Did not show a Golgi-like pattern of localization (similar to Thr31Asn a previously studied dominant-negative variant)
Displayed decreased protein stability
In silico structural analysis suggested that Asp67Val may lead to compromised binding of GTP or GDP (suggestive of LoF)
In transgenic Drosophila eye-specific expression of Asp67Val (similar to Thr31Asn, a known dominant-negative variant) was lethal possibly due to high toxicity in very small amounts in tissues outside the eye.

There is no associated phenotype in OMIM, G2P or SysID.
Sources: Literature
Mendeliome v0.8828 CEP57 Zornitza Stark Marked gene: CEP57 as ready
Mendeliome v0.8828 CEP57 Zornitza Stark Phenotypes for gene: CEP57 were changed from to Mosaic variegated aneuploidy syndrome 2, #MIM 614114
Mendeliome v0.8825 CEP57 Zornitza Stark reviewed gene: CEP57: Rating: GREEN; Mode of pathogenicity: None; Publications: 24259107, 21552266, 32861809, 30147898; Phenotypes: Mosaic variegated aneuploidy syndrome 2, #MIM 614114; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8825 PLXNA2 Zornitza Stark Marked gene: PLXNA2 as ready
Mendeliome v0.8824 PLXNA2 Zornitza Stark gene: PLXNA2 was added
gene: PLXNA2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PLXNA2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PLXNA2 were set to 34327814
Phenotypes for gene: PLXNA2 were set to Intellectual disability; Abnormality of the face; Failure to thrive; Abnormal heart morphology
Review for gene: PLXNA2 was set to AMBER
Added comment: Altuame et al (2021 - PMID: 34327814) describe 3 individuals from 2 consanguineous Arab families with biallelic PLXNA2 variants.

The index patient from the 1st family presented with CHD (hypoplastic right ventricle, ASD), DD and moderate ID (IQ of 40), failure to thrive as well as some dysmorphic features (obtuse mandibular angle, mild overbite, synophrys with downslanting p-f, strabismus, etc). There were additional features (eg. postaxial polydactyly) which were found in other affected and unaffected family members.

Exome sequencing with autozygome analysis revealed homozygosity for a PLXNA2 stopgain variant (NM_025179:c.3603C>A / p.(Cys1201*)).

Sanger confirmation was carried out and segregation analyses confirmed carrier status of the unaffected parents and a sib as well as a brother homozygous for the same variant. Clinical evaluation of the latter, following this finding revealed borderline intellectual functioning, ADHD, failure to thrive. There was no mandibular anomaly or overbite and no clinical evidence of CHD (no echo performed).

The index patient from the 2nd consanguineous family was evaluated for ID (IQ of 63), with previous borderline motor development, ADHD and some dysmorphic features (obtuse mandibular angle and overbite). There was no clinical evidence of CHD (no echo performed).

Exome sequencing with autozygosity mapping revealed a homozygous missense PLXNA2 variant (c.3073G>A / p.(Asp1025Asn), present only once in gnomAD (htz), with rather non-concordant in silico predictions SIFT 0.22, PolyPhen 0.682 and CADD 23.5. The aa was however highly conserved.

Segregation analysis confirmed carrier state of the parents and 2 unaffected sibs, with a 3rd sib homozygous for the wt allele.

As the authors discuss:
*PLXNA2 belongs to the plexin family of genes, encoding transmbembrane proteins functioning as semaphorin receptors. It has predominant expression in neural tissue. The protein is thought to bind semaphorin-3A, -3C or -5 followed by plexin A2 dimerization, activation of its GTPase-activating protein domain, negative regulation of Rap1B GTPase and initiation of a signal transduction cascade mediating axonal repulsion/guidance, dendritic guidance, neuronal migration.
*Murine Plxna2 knockout models display structural brain defects. In addition they display congenital heart defects incl. persistent truncus arteriosus and interrupted aortic arch.
*Rare CNVs in adult humans with tetralogy of Fallot have suggested a potential role of PLXNA2 in cardiac development and CHD.
*Expression and the role of PLXNA2 in human chondrocytes as well as a GWAS in 240 japanese patients with mandibular prognathism where PLXNA2 was suggested as a susceptibility locus.

Overall, the authors recognize some common features (as for cognitive functioning, some dysmorphic features incl. obtuse mandibular angle and overbite in 2 unrelated subjects, failure to thrive 3/3) and provide plausible explanations for the variability / discordance of others eg:
- Cyanotic heart disease explaining discordance in cognitive outcome among sibs
- Incomplete penetrance for CHD (and/or ID or mandibular anomaly) as for few AR disorders and/or
- Additional pathogenic variants possibly explaining the CHD in the first subject.

There is no associated phenotype in OMIM or G2P. SysID includes PLXNA2 among the candidate ID genes.
Sources: Literature
Mendeliome v0.8823 SLC51A Zornitza Stark Marked gene: SLC51A as ready
Mendeliome v0.8823 SLC51A Zornitza Stark gene: SLC51A was added
gene: SLC51A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC51A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC51A were set to 31863603
Phenotypes for gene: SLC51A were set to Cholestasis, progressive familial intrahepatic, 6, MIM# 619484
Review for gene: SLC51A was set to RED
Added comment: Single individual reported with homozygous LoF variant, who presented with chronic malabsorptive diarrhoea, easy bruising, episodes of prolonged bleeding that required blood transfusions, and failure to thrive. Laboratory testing at age 2.5 years showed elevated liver transaminases and alkaline phosphatase. Liver biopsy demonstrated portal and periportal fibrosis and hepatocytes with foci of hepatocytic cholestasis. Analysis of bile acids in a blood spot were normal. Treatment with ursodiol and cholestyramine was started at 5 years of age. The coagulopathy resolved and his growth was adequate, but his liver transaminases, direct bilirubin, and GGT levels remained elevated.
Sources: Literature
Mendeliome v0.8821 MOCOS Zornitza Stark Marked gene: MOCOS as ready
Mendeliome v0.8818 HNMT Zornitza Stark Marked gene: HNMT as ready
Mendeliome v0.8818 HNMT Zornitza Stark Phenotypes for gene: HNMT were changed from to Mental retardation, autosomal recessive 51, MIM#616739
Mendeliome v0.8815 HNMT Zornitza Stark reviewed gene: HNMT: Rating: GREEN; Mode of pathogenicity: None; Publications: 26206890, 30744146, 33310825, 33739554; Phenotypes: Mental retardation, autosomal recessive 51, MIM#616739; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8815 BLNK Zornitza Stark Marked gene: BLNK as ready
Mendeliome v0.8812 AICDA Zornitza Stark Marked gene: AICDA as ready
Mendeliome v0.8809 SLC51B Zornitza Stark Phenotypes for gene: SLC51B were changed from Congenital diarrhoea; Cholestasis to Bile acid malabsorption, primary, 2, MIM# 619481; Congenital diarrhoea; Cholestasis
Mendeliome v0.8808 SLC51B Zornitza Stark edited their review of gene: SLC51B: Changed phenotypes: Bile acid malabsorption, primary, 2, MIM# 619481, Congenital diarrhoea, Cholestasis
Mendeliome v0.8808 VPS50 Zornitza Stark Marked gene: VPS50 as ready
Mendeliome v0.8807 VPS50 Zornitza Stark gene: VPS50 was added
gene: VPS50 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: VPS50 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: VPS50 were set to 34037727
Phenotypes for gene: VPS50 were set to Neonatal cholestatic liver disease; Failure to thrive; Profound global developmental delay; Postnatal microcephaly; Seizures; Abnormality of the corpus callosum
Review for gene: VPS50 was set to AMBER
Added comment: Schneeberger et al (2021 - PMID: 34037727) describe the phenotype of 2 unrelated individuals with biallelic VPS50 variants.

Common features included transient neonatal cholestasis, failure to thrive, severe DD with failure to achieve milestones (last examination at 2y and 2y2m respectively), postnatal microcephaly, seizures (onset at 6m and 25m) and irritability. There was corpus callosum hypoplasia on brain imaging.

Both individuals were homozygous for variants private to each family (no/not known consanguinity applying to each case). The first individual was homozygous for a splicing variant (NM_017667.4:c.1978-1G>T) and had a similarly unaffected sister deceased with no available DNA for testing. The other individual was homozygous for an in-frame deletion (c.1823_1825delCAA / p.(Thr608del)).

VPS50 encodes a critical component of the endosome-associated recycling protein (EARP) complex, which functions in recycling endocytic vesicles back to the plasma membrane [OMIM based on Schindler et al]. The complex contains VPS50, VPS51, VPS52, VPS53, the three latter also being components of GARP (Golgi-associated-retrograde protein) complex. GARP contains VPS54 instead of VPS50 and is required for trafficking of proteins to the trans-golgi network. Thus VPS50 (also named syndetin) and VPS54 function in the EARP and GARP complexes, to define directional movement of their endocytic vesicles [OMIM based on Schindler et al]. The VPS50 subunit is required for recycling of the transferrin receptor.

As discussed by Schneeberger et al (refs provided in text):
- VPS50 has a high expression in mouse and human brain as well as throughout mouse brain development.
- Mice deficient for Vps50 have not been reported. vps50 knockdown in zebrafish results in severe developmental defects of the body axis. Knockout mice for other proteins of the EARP/GARP complex (e.g. Vps52, 53 and 54) display embryonic lethality.

Studies performed by Schneeberger et al included:
- Transcript analysis for the 1st variant demonstrated skipping of ex21 (in patient derived fabriblasts) leading to an in frame deletion of 81 bp (r.1978_2058del) with predicted loss of 27 residues (p.Leu660_Leu686del).
- Similar VPS50 mRNA levels but significant reduction of protein levels (~5% and ~8% of controls) were observed in fibroblasts from patients 1 and 2. Additionally, significant reductions in the amounts of VPS52 and VPS53 protein levels were observed despite mRNA levels similar to controls. Overall, this suggested drastic reduction of functional EARP complex levels.
- Lysosomes appeared to have similar morphology, cellular distribution and likely unaffected function in patient fibroblasts.
- Transferrin receptor recycling was shown to be delayed in patient fibroblasts suggestive of compromise of endocytic-recycling function.

As the authors comment, the phenotype of both individuals with biallelic VPS50 variants overlaps with the corresponding phenotype reported in 15 subjects with biallelic VPS53 or VPS51 mutations notably, severe DD/ID, microcephaly and early onset epilepsy, CC anomalies. Overall, for this group, they propose the term "GARP and/or EARP deficiency disorders".

There is no VPS50-associated phenotype in OMIM or G2P. SysID includes VPS50 among the ID candidate genes.
Sources: Literature
Mendeliome v0.8803 AMTN Zornitza Stark Marked gene: AMTN as ready
Mendeliome v0.8802 WDR72 Zornitza Stark Marked gene: WDR72 as ready
Mendeliome v0.8799 SLC24A4 Zornitza Stark Marked gene: SLC24A4 as ready
Mendeliome v0.8796 ROGDI Zornitza Stark Marked gene: ROGDI as ready
Mendeliome v0.8793 RELT Zornitza Stark Marked gene: RELT as ready
Mendeliome v0.8792 RELT Zornitza Stark gene: RELT was added
gene: RELT was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: RELT was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RELT were set to 30506946
Phenotypes for gene: RELT were set to Amelogenesis imperfecta, type IIIC, MIM# 618386
Review for gene: RELT was set to GREEN
Added comment: Amelogenesis imperfecta type IIIC is characterized by hypocalcified enamel in both the primary and secondary dentition. The enamel is rough and yellow-brown; under normal use, the enamel disintegrates from occlusal surfaces of the molars, leaving a ring of intact enamel remaining on the sides. At least 3 families and a mouse model.
Sources: Expert Review
Mendeliome v0.8785 NIID Zornitza Stark Phenotypes for STR: NIID were changed from Neuronal intranuclear inclusion disease MIM#603472; Tremor, hereditary essential, 6 MIM#618866 to Neuronal intranuclear inclusion disease MIM#603472; Tremor, hereditary essential, 6 MIM#618866; Oculopharyngodistal myopathy 3, MIM# 619473
Mendeliome v0.8784 NIID Zornitza Stark reviewed STR: NIID: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Oculopharyngodistal myopathy 3, MIM# 619473; Mode of inheritance: None
Mendeliome v0.8784 KLK4 Zornitza Stark Marked gene: KLK4 as ready
Mendeliome v0.8781 ITGB6 Zornitza Stark Marked gene: ITGB6 as ready
Mendeliome v0.8779 STAT3 Zornitza Stark Marked gene: STAT3 as ready
Mendeliome v0.8776 STK4 Zornitza Stark Marked gene: STK4 as ready
Mendeliome v0.8776 STK4 Zornitza Stark Phenotypes for gene: STK4 were changed from to T-cell immunodeficiency, recurrent infections, autoimmunity, and cardiac malformations MIM# 614868; CD4/CD8 lymphopaenia; cardiac malformations; reduced naïve T cells; increased TEM and TEMRA cells; poor T cell Proliferation; Reduced memory B cells; Reduced IgM, increased IgG, IgA, IgE; impaired antibody responses; intermittent neutropaenia; bacterial/ viral/ fungal infections; autoimmune cytopaenias; mucocutaneous candidiasis; cutaneous warts
Mendeliome v0.8773 SP110 Zornitza Stark Marked gene: SP110 as ready
Mendeliome v0.8770 SMARCAL1 Zornitza Stark Marked gene: SMARCAL1 as ready
Mendeliome v0.8770 SMARCAL1 Zornitza Stark Gene: smarcal1 has been classified as Green List (High Evidence).
Mendeliome v0.8770 SMARCAL1 Zornitza Stark Phenotypes for gene: SMARCAL1 were changed from to Schimke immune-osseous dysplasia MIM# 242900; T cell deficiency; Short stature; spondyloepiphyseal dysplasia; renal dysfunction; lymphocytopaenia; nephropathy; bacterial/viral/fungal infections; may present as SCID; bone marrow failure
Mendeliome v0.8769 SMARCAL1 Zornitza Stark Publications for gene: SMARCAL1 were set to
Mendeliome v0.8768 SMARCAL1 Zornitza Stark Mode of inheritance for gene: SMARCAL1 was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8767 STK4 Danielle Ariti reviewed gene: STK4: Rating: GREEN; Mode of pathogenicity: None; Publications: 22294732, 26117625, 22174160, 22952854; Phenotypes: T-cell immunodeficiency, recurrent infections, autoimmunity, and cardiac malformations MIM# 614868, CD4/CD8 lymphopaenia, cardiac malformations, reduced naïve T cells, increased TEM and TEMRA cells, poor T cell Proliferation, Reduced memory B cells, Reduced IgM, increased IgG, IgA, IgE, impaired antibody responses, intermittent neutropaenia, bacterial/ viral/ fungal infections, autoimmune cytopaenias, mucocutaneous candidiasis, cutaneous warts; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8767 SPINK5 Danielle Ariti reviewed gene: SPINK5: Rating: ; Mode of pathogenicity: None; Publications: 33534181, 20657595; Phenotypes: Netherton syndrome MIM# 256500, Low switched and non-switched B cells, High IgE and IgA, Antibody variably decreased, Congenital ichthyosis, bamboo hair, atopic diathesis, increased bacterial infections, failure to thrive, food allergies; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8767 SMARCAL1 Danielle Ariti reviewed gene: SMARCAL1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301550, 17089404, 20036229; Phenotypes: Schimke immune-osseous dysplasia MIM# 242900, T cell deficiency, Short stature, spondyloepiphyseal dysplasia, renal dysfunction, lymphocytopaenia, nephropathy, bacterial/viral/fungal infections, may present as SCID, bone marrow failure; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8767 GPR68 Zornitza Stark Marked gene: GPR68 as ready
Mendeliome v0.8764 FAM83H Zornitza Stark Marked gene: FAM83H as ready
Mendeliome v0.8761 ENAM Zornitza Stark Marked gene: ENAM as ready
Mendeliome v0.8758 FAM20A Zornitza Stark Marked gene: FAM20A as ready
Mendeliome v0.8755 C4orf26 Zornitza Stark Marked gene: C4orf26 as ready
Mendeliome v0.8752 AMELX Zornitza Stark Marked gene: AMELX as ready
Mendeliome v0.8749 AMBN Zornitza Stark Marked gene: AMBN as ready
Mendeliome v0.8741 TCF7L2 Zornitza Stark changed review comment from: 2 reviews
Konstantinos Varvagiannis (Other)
I don't know

Dias et al (2021 - PMID: 34003604) describe the phenotype of 11 unrelated individuals harboring de novo missense/truncating TCF7L2 variants.

Features included DD in childhood (motor delay in 8/11, speech delay in 11/11), intellectual abilities ranging from average cognitive functioning to mild/moderate ID (the latter observed in 5/11), myopia (6/11) , dysmorphic features, variable orthopedic findings, and neuropsychiatric comorbidities incl. ASD (4/11) / ADHD (4/11).

One additional (12th) individual was excluded from this summary due to concurrent diagnosis of hypoxic-ischemic injury.

TCF7L2 on 10q25 encodes transcription factor 7-like 2, a high mobility group (HMG) box-containing transcription factor. As the authors discuss, the protein mediates canonical Wnt signaling. Secreted Wnt proteins lead to release of beta-catenin (CTNNB1) which after translocation to the nucleus acts with DNA-binding factors incl. TCF7L2 to turn on Wnt-responsive target genes. As a result TCF7L2 acts with beta-catenin as a switch for transcriptional regulation. Multiple alternative spliced TCF7L2 transcripts mediate it's function and specificity of transcriptional repertoire in a variety of tissues and contexts.

Dias et al provide references for its role in nervous system development incl. neurogenesis and thalamic development.

Variants in all cases occurred as de novo events with pLoF (stopgain, frameshift, splicing) ones predicted to lead to NMD. Missense variants occurred in all cases in or adjacent to the HMG box domain [aa 350-417]. 5 different missense variants affecting 3 residues were reported incl. c.1142A>C, c.1143C>G (leading to Asn381Thr/Lys respectively), c.1250G>T (Trp417Leu), c.1267T>C, c.1268A>G (leading to Tyr423His/Cys) [NM_001146274.1].

The gene has a pLI of 0.99-1 gnomAD/ExAC while there is a region of missense constraint encompassing the HMG box domain (the latter is an evolutionary conserved region mediating interactions with DNA).

No phenotypic differences were observed among individuals with pLoF and missense SNVs, and haploinsufficiency is presumed to be the underlying mechanism.

There are no variant or other studies performed, nor any animal models discussed.

In supplementary table 2, the authors provide several references to previous large scale sequencing studies with brief/incomplete descriptions of individuals de novo TCF7L2 variants and neurodevelopmental disorder (ID/ASD - Iossifov, De Rubeis, Lelieveld, McRae/DDD study and many other Refs).

Heterozygous TCF7L2 variants are thought to confer susceptibility to type diabetes mellitus (MIM 125853). Individuals reported by Dias et al did not have endocrine abnormalities including DM. A study by Roychowdhury et al (2021 - PMID: 34265237) suggests that regulatory variants in TCF7L2 are associated with thoracic aneurysm.

There is no other associated phenotype (notably NDD) in OMIM.
G2P includes TCF7L2 in its DD panel (Disease : TC7L2-related DD, Confidence:confirmed, Monoallelic, LoF).
SysID includes this gene within the autism candidate genes and current primary ID genes.; to: Dias et al (2021 - PMID: 34003604) describe the phenotype of 11 unrelated individuals harboring de novo missense/truncating TCF7L2 variants.

Features included DD in childhood (motor delay in 8/11, speech delay in 11/11), intellectual abilities ranging from average cognitive functioning to mild/moderate ID (the latter observed in 5/11), myopia (6/11) , dysmorphic features, variable orthopedic findings, and neuropsychiatric comorbidities incl. ASD (4/11) / ADHD (4/11).

One additional (12th) individual was excluded from this summary due to concurrent diagnosis of hypoxic-ischemic injury.

TCF7L2 on 10q25 encodes transcription factor 7-like 2, a high mobility group (HMG) box-containing transcription factor. As the authors discuss, the protein mediates canonical Wnt signaling. Secreted Wnt proteins lead to release of beta-catenin (CTNNB1) which after translocation to the nucleus acts with DNA-binding factors incl. TCF7L2 to turn on Wnt-responsive target genes. As a result TCF7L2 acts with beta-catenin as a switch for transcriptional regulation. Multiple alternative spliced TCF7L2 transcripts mediate it's function and specificity of transcriptional repertoire in a variety of tissues and contexts.

Dias et al provide references for its role in nervous system development incl. neurogenesis and thalamic development.

Variants in all cases occurred as de novo events with pLoF (stopgain, frameshift, splicing) ones predicted to lead to NMD. Missense variants occurred in all cases in or adjacent to the HMG box domain [aa 350-417]. 5 different missense variants affecting 3 residues were reported incl. c.1142A>C, c.1143C>G (leading to Asn381Thr/Lys respectively), c.1250G>T (Trp417Leu), c.1267T>C, c.1268A>G (leading to Tyr423His/Cys) [NM_001146274.1].

The gene has a pLI of 0.99-1 gnomAD/ExAC while there is a region of missense constraint encompassing the HMG box domain (the latter is an evolutionary conserved region mediating interactions with DNA).

No phenotypic differences were observed among individuals with pLoF and missense SNVs, and haploinsufficiency is presumed to be the underlying mechanism.

There are no variant or other studies performed, nor any animal models discussed.

In supplementary table 2, the authors provide several references to previous large scale sequencing studies with brief/incomplete descriptions of individuals de novo TCF7L2 variants and neurodevelopmental disorder (ID/ASD - Iossifov, De Rubeis, Lelieveld, McRae/DDD study and many other Refs).

Heterozygous TCF7L2 variants are thought to confer susceptibility to type diabetes mellitus (MIM 125853). Individuals reported by Dias et al did not have endocrine abnormalities including DM. A study by Roychowdhury et al (2021 - PMID: 34265237) suggests that regulatory variants in TCF7L2 are associated with thoracic aneurysm.

There is no other associated phenotype (notably NDD) in OMIM.
G2P includes TCF7L2 in its DD panel (Disease : TC7L2-related DD, Confidence:confirmed, Monoallelic, LoF).
SysID includes this gene within the autism candidate genes and current primary ID genes.
Mendeliome v0.8741 LTBP3 Zornitza Stark Marked gene: LTBP3 as ready
Mendeliome v0.8738 ARIH1 Zornitza Stark reviewed gene: ARIH1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: ; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8738 ARIH1 Zornitza Stark Mode of inheritance for gene: ARIH1 was changed from BIALLELIC, autosomal or pseudoautosomal to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8737 PIDD1 Zornitza Stark Marked gene: PIDD1 as ready
Mendeliome v0.8736 PIDD1 Zornitza Stark gene: PIDD1 was added
gene: PIDD1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: PIDD1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PIDD1 were set to 28397838; 29302074; 33414379; 34163010
Phenotypes for gene: PIDD1 were set to Global developmental delay; Intellectual disability; Seizures; Autism; Behavioral abnormality; Psychosis; Pachygyria; Lissencephaly; Abnormality of the corpus callosum
Review for gene: PIDD1 was set to GREEN
Added comment: There is enough evidence to include this gene in the current panel with green rating.

Biallelic PIDD1 pathogenic variants have been reported in 26 individuals (11 families) with DD (all), variable degrees of ID (mild to severe), behavioral (eg. aggression/self-mutilation in several, ADHD) and/or psychiatric abnormalities (ASD, psychosis in 5 belonging to 3 families), well-controlled epilepsy is some (9 subjects from 6 families) and MRI abnormalities notably abnormal gyration pattern (pachygyria with predominant anterior gradient) as well as corpus callosum anomalies (commonly thinning) in several. Dysmorphic features have been reported in almost all, although there has been no specific feature suggested.

The first reports on the phenotype associated with biallelic PIDD1 mutations were made by Harripaul et al (2018 - PMID: 28397838) and Hu et al (2019 - PMID: 29302074) [both studies investigating large cohorts of individuals with ID from consanguineous families].

Sheikh et al (2021 - PMID: 33414379) provided details on the phenotype of 15 individuals from 5 families including those from the previous 2 reports and studied provided evidence on the role of PIDD1 and the effect of variants.

Zaki et al (2021 - PMID: 34163010) reported 11 additional individuals from 6 consanguineous families, summarize the features of all subjects published in the literature and review the neuroradiological features of the disorder.

PIDD1 encodes p53-induced death domain protein 1. The protein is part of the PIDDosome, a multiprotein complex also composed of the bipartite linker protein CRADD (also known as RAIDD) and the proform of caspase-2 and induces apoptosis in response to DNA damage.

There are 5 potential PIDD1 mRNA transcript variants with NM_145886.4 corresponding to the longest. Similar to the protein encoded by CRADD, PIDD1 contains a death domain (DD - aa 774-893). Constitutive post-translational processing gives PIDD1-N, PIDD1-C the latter further processed into PIDD1-CC (by auto-cleavage). Serine residues at pos. 446 and 588 are involved in this autoprocessing generating PIDD1-C (aa 446-910) and PIDD1-CC (aa 774-893). The latter is needed for caspase-2 activation.

Most (if not all) individuals belonged to consanguineous families of different origins and harbored pLoF or missense variants.

Variants reported so far include : c.2587C>T; p.Gln863* / c.1909C>T ; p.Arg637* / c.2443C>T / p.Arg815Trp / c.2275-1G>A which upon trap assay was shown to lead to skipping of ex15 with direct splicing form exon14 to the terminal exon 16 (resulting to p.Arg759Glyfs*1 with exlcusion of the entire DD) / c.2584C>T; p.Arg862Trp / c.1340G>A; p.Trp447* / c.2116_2120del; p.Val706His*, c.1564_1565del; p.Gly602fs*26

Evidence so far provided includes:
- Biallelic CRADD variants cause a NDD disorder and a highly similar gyration pattern.
- Confirmation of splicing effect (eg. for c.2275-1G>A premature stop in position 760) or poor expression (NM_145886.3:c.2587C>T; p.Gln863*). Arg815Trp did not affect autoprocessing or protein stability.
- Abnormal localization pattern, loss of interaction with CRADD and failure to activate caspase-2 (MDM2 cleavage assay) [p.Gln863* and Arg815Trp]
- Available expression data from GTEx (PIDD1 having broad expression in multiple tissues, but higher in brain cerebellum) as well as BrainSpan and PsychEncode studies suggesting high coexpression of PIDD1, CRADD and CASP2 in many regions in the developing human brain.
- Variants in other genes encoding proteins interacting with PIDD1 (MADD, FADD, DNAJ, etc) are associated with NDD.

Pidd-1 ko mice (ex3-15 removal) lack however CNS-related phenotypes. These show decreased anxiety but no motor anomalies. This has also been the case with Cradd-/- mice displaying no significant CNS phenotypes without lamination defects.

There is currently no associated phenotype in OMIM. PIDD1 is listed in the DD panel of G2P (PIDD1-related NDD / biallelic / loss of function / probable) . SysID includes PIDD1 among the current primary ID genes.
Sources: Expert Review
Mendeliome v0.8735 COLGALT1 Bryony Thompson Marked gene: COLGALT1 as ready
Mendeliome v0.8734 COLGALT1 Bryony Thompson gene: COLGALT1 was added
gene: COLGALT1 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: COLGALT1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: COLGALT1 were set to 30412317; 33709034; 31759980
Phenotypes for gene: COLGALT1 were set to Brain small vessel disease 3 MIM#618360
Review for gene: COLGALT1 was set to GREEN
Added comment: 3 unrelated cases with biallelic variants, and supporting functional assays. The main features of the cases were porencephalic cysts, leukoencephalopathy, lacunar infarcts, cerebral microbleeds/haemorrhages and calcifications. A null mouse model was embryonic lethal, but had defects in the vascular networks of the embryos.
Sources: Other
Mendeliome v0.8733 JAKMIP1 Seb Lunke Marked gene: JAKMIP1 as ready
Mendeliome v0.8732 JAKMIP1 Seb Lunke gene: JAKMIP1 was added
gene: JAKMIP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: JAKMIP1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: JAKMIP1 were set to 29158550; 26627310; 27799067
Phenotypes for gene: JAKMIP1 were set to Intellectual disability; Seizures
Review for gene: JAKMIP1 was set to AMBER
Added comment: Identified in two independent patients in the literature with a mouse model.

Patient 1 (27799067) with developmental delay, speech delay, and cognitive impairment; self-injurious and aggressive behaviour, seizures, dysmorphic features. De-novo missense JAKMIP1 (p.D586H).

Patient 2 (29158550) with feeding difficulties, hypotonia, epilepsy, severe ID, no active speech, kyphoscoliosis, constipation, autism, short stature. Splice variant c.1432-2A>G, no segregation or RNA data available.

KO mouse model (27799067) displays social deficits, stereotyped activity, abnormal postnatal vocalizations, and other autistic-like behaviors.
Sources: Literature
Mendeliome v0.8731 ARIH1 Bryony Thompson Marked gene: ARIH1 as ready
Mendeliome v0.8731 ARIH1 Bryony Thompson Gene: arih1 has been classified as Green List (High Evidence).
Mendeliome v0.8731 ARIH1 Bryony Thompson Classified gene: ARIH1 as Green List (high evidence)
Mendeliome v0.8731 ARIH1 Bryony Thompson Gene: arih1 has been classified as Green List (High Evidence).
Mendeliome v0.8730 ARIH1 Bryony Thompson gene: ARIH1 was added
gene: ARIH1 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: ARIH1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ARIH1 were set to 29689197; 32102558
Phenotypes for gene: ARIH1 were set to Thoracic aortic aneurysm
Review for gene: ARIH1 was set to GREEN
Added comment: 3 unrelated families: A de novo case (R171*) with thoracic aortic aneurysm (TAA), and 2 siblings with TAA and a missense (E15Q). Another proband with cerebrovascular aneurysm (family history of TAA) and a missense variant (E44G). Supporting functional assays of the variants and a drosophila model.
Sources: Other
Mendeliome v0.8728 PRPF31 Zornitza Stark Marked gene: PRPF31 as ready
Mendeliome v0.8725 RNF168 Zornitza Stark Marked gene: RNF168 as ready
Mendeliome v0.8725 RNF168 Zornitza Stark Phenotypes for gene: RNF168 were changed from to RIDDLE syndrome MIM# 611943; Radiosensitivity; Immune Deficiency; Dysmorphic Features; Learning difficulties; Low IgG or IgA; Short stature; mild defect of motor control to ataxia; normal intelligence to learning difficulties; mild facial dysmorphism to microcephaly
Mendeliome v0.8722 RFXAP Zornitza Stark Marked gene: RFXAP as ready
Mendeliome v0.8722 RFXAP Zornitza Stark Phenotypes for gene: RFXAP were changed from to Bare lymphocyte syndrome, type II, complementation group D MIM# 209920; Low CD4+ T cells; reduced MHC II expression on lymphocytes; Normal-low Ig levels; Failure to thrive; respiratory/gastrointestinal infections; liver/biliary tract disease; diarrhoea; Severe autoimmune cytopaenia; agammaglobulinaemia
Mendeliome v0.8719 RFXANK Zornitza Stark Marked gene: RFXANK as ready
Mendeliome v0.8719 RFXANK Zornitza Stark Phenotypes for gene: RFXANK were changed from to MHC class II deficiency, complementation group B MIM# 209920; Bare Lymphocyte Syndrome, type II, complementation group B; Low CD4+ T cells; reduced MHC II expression on lymphocytes; Normal-low Ig levels; Failure to thrive; respiratory/gastrointestinal infections; liver/biliary tract disease; diarrhoea; Severe autoimmune cytopaenia; agammaglobulinaemia
Mendeliome v0.8716 RBCK1 Zornitza Stark Marked gene: RBCK1 as ready
Mendeliome v0.8716 RBCK1 Zornitza Stark Phenotypes for gene: RBCK1 were changed from to Polyglucosan body myopathy 1 with or without immunodeficiency MIM# 615895; muscular weakness; cardiomyopathy; recurrent bacterial/viral infections; autoinflammation; immunodeficiency; Poor antibody responses to polysaccharides; failure to thrive; fever; pneumonia
Mendeliome v0.8713 RFXANK Danielle Ariti reviewed gene: RFXANK: Rating: GREEN; Mode of pathogenicity: None; Publications: 12618906; Phenotypes: MHC class II deficiency, complementation group B MIM# 209920, Bare Lymphocyte Syndrome, type II, complementation group B, Low CD4+ T cells, reduced MHC II expression on lymphocytes, Normal-low Ig levels, Failure to thrive, respiratory/gastrointestinal infections, liver/biliary tract disease, diarrhoea, Severe autoimmune cytopaenia, agammaglobulinaemia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8713 RFXAP Danielle Ariti reviewed gene: RFXAP: Rating: GREEN; Mode of pathogenicity: None; Publications: 9118943, 32875002, 11258423; Phenotypes: Bare lymphocyte syndrome, type II, complementation group D MIM# 209920, Low CD4+ T cells, reduced MHC II expression on lymphocytes, Normal-low Ig levels, Failure to thrive, respiratory/gastrointestinal infections, liver/biliary tract disease, diarrhoea, Severe autoimmune cytopaenia, agammaglobulinaemia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8713 RNF168 Danielle Ariti reviewed gene: RNF168: Rating: GREEN; Mode of pathogenicity: None; Publications: 19203578, 21394101, 29255463, 21552324; Phenotypes: RIDDLE syndrome MIM# 611943, Radiosensitivity, Immune Deficiency, Dysmorphic Features, Learning difficulties, Low IgG or IgA, Short stature, mild defect of motor control to ataxia, normal intelligence to learning difficulties, mild facial dysmorphism to microcephaly; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8713 RBCK1 Danielle Ariti reviewed gene: RBCK1: Rating: GREEN; Mode of pathogenicity: None; Publications: 29260357, 29695863; Phenotypes: Polyglucosan body myopathy 1 with or without immunodeficiency MIM# 615895, muscular weakness, cardiomyopathy, recurrent bacterial/viral infections, autoinflammation, immunodeficiency, Poor antibody responses to polysaccharides, failure to thrive, fever, pneumonia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8713 ABCC2 Zornitza Stark Marked gene: ABCC2 as ready
Mendeliome v0.8709 UBR1 Zornitza Stark changed review comment from: >50 unrelated families reported, reviewed in PMID: 24599544.

Common clinical features include poor growth, mental retardation, and variable dysmorphic features, including aplasia or hypoplasia of the nasal alae, abnormal hair patterns or scalp defects, and oligodontia. Other features include hypothyroidism, sensorineural hearing loss, imperforate anus, and pancreatic exocrine insufficiency.; to: >50 unrelated families reported, reviewed in PMID: 24599544.

Common clinical features include poor growth, intellectual disability, and variable dysmorphic features, including aplasia or hypoplasia of the nasal alae, abnormal hair patterns or scalp defects, and oligodontia. Other features include hypothyroidism, sensorineural hearing loss, imperforate anus, and pancreatic exocrine insufficiency.
Mendeliome v0.8709 UBR1 Zornitza Stark Marked gene: UBR1 as ready
Mendeliome v0.8709 UBR1 Zornitza Stark Phenotypes for gene: UBR1 were changed from to Johanson-Blizzard syndrome (MIM#243800)
Mendeliome v0.8706 UBR1 Zornitza Stark reviewed gene: UBR1: Rating: GREEN; Mode of pathogenicity: None; Publications: 24599544; Phenotypes: Johanson-Blizzard syndrome (MIM#243800); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8706 ACTL6A Zornitza Stark Marked gene: ACTL6A as ready
Mendeliome v0.8703 ACTL6A Zornitza Stark changed review comment from: Two individuals from unrelated families reported with missense variants in this gene. Part of the BAF complex. Only one confirmed de novo.; to: Two individuals from unrelated families reported with missense variants in this gene, and one with a splice-site variant. Part of the BAF complex. Only one missense confirmed de novo, pathogenicity of the other variant uncertain.
PMID 31994175: fourth individual reported, recurrent de novo p.Arg377Trp
Mendeliome v0.8703 VAV1 Zornitza Stark Marked gene: VAV1 as ready
Mendeliome v0.8703 VAV1 Zornitza Stark gene: VAV1 was added
gene: VAV1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: VAV1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: VAV1 were set to 20638113; 23058036
Phenotypes for gene: VAV1 were set to Common variable immnodeficiency
Review for gene: VAV1 was set to RED
Added comment: Reduced VAV1 expression has been reported in multiple T-CVID cases, however only one large deletion (exon 2-27) has been reported in a single case in a publication from 2012. The CNV was detected using real-time qPCR, but was not confirmed by an orthogonal method.
Sources: Expert Review
Mendeliome v0.8702 TCF3 Zornitza Stark Marked gene: TCF3 as ready
Mendeliome v0.8699 PRKCD Zornitza Stark Marked gene: PRKCD as ready
Mendeliome v0.8696 CD19 Zornitza Stark Marked gene: CD19 as ready
Mendeliome v0.8696 CD19 Zornitza Stark Phenotypes for gene: CD19 were changed from to Immunodeficiency, common variable, 3, MIM# 613493
Mendeliome v0.8693 CD19 Zornitza Stark reviewed gene: CD19: Rating: GREEN; Mode of pathogenicity: None; Publications: 16672701, 17882224, 17882224, 21330302, 21159371; Phenotypes: Immunodeficiency, common variable, 3, MIM# 613493; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8693 SNRPB Zornitza Stark Marked gene: SNRPB as ready
Mendeliome v0.8693 SNRPB Zornitza Stark Phenotypes for gene: SNRPB were changed from to Cerebrocostomandibular syndrome, MIM# 117650
Mendeliome v0.8690 SNRPB Zornitza Stark reviewed gene: SNRPB: Rating: GREEN; Mode of pathogenicity: None; Publications: 25047197, 25504470, 26971886; Phenotypes: Cerebrocostomandibular syndrome, MIM# 117650; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8690 RBM10 Zornitza Stark Marked gene: RBM10 as ready
Mendeliome v0.8690 RBM10 Zornitza Stark Phenotypes for gene: RBM10 were changed from to TARP syndrome, MIM# 311900
Mendeliome v0.8687 RBM10 Zornitza Stark reviewed gene: RBM10: Rating: GREEN; Mode of pathogenicity: None; Publications: 20451169, 24259342, 30450804, 30189253, 33340101; Phenotypes: TARP syndrome, MIM# 311900; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.8687 IPO8 Zornitza Stark Phenotypes for gene: IPO8 were changed from Loeys-Dietz syndrome-like; cardiovascular, neurologic, skeletal and immunologic abnormalities to Vascular aneurysm, immune dysregulation, skeletal anomalies, and skin and joint laxity, MIM# 619472; Loeys-Dietz syndrome-like; cardiovascular, neurologic, skeletal and immunologic abnormalities
Mendeliome v0.8686 IPO8 Zornitza Stark edited their review of gene: IPO8: Changed phenotypes: Vascular aneurysm, immune dysregulation, skeletal anomalies, and skin and joint laxity, MIM# 619472, Loeys-Dietz syndrome-like, cardiovascular, neurologic, skeletal and immunologic abnormalities
Mendeliome v0.8686 OTX2 Zornitza Stark edited their review of gene: OTX2: Added comment: Three families reported with variants in OTX2 and otocyephaly-dysgnathia. Note variants were inherited in two of the families: in one family, from mother with microphthalmia (recognised OTX2 phenotype) and the other from an unaffected father. Lamb animal model reported.; Changed publications: 24167467, 25589041, 31969185; Changed phenotypes: Microphthalmia, syndromic 5, MIM# 610125, Pituitary hormone deficiency, combined, 6, MIM# 613986, Retinal dystrophy, early-onset, with or without pituitary dysfunction, MIM# 610125, Otocephaly-dysgnathia complex
Mendeliome v0.8686 POLR1D Zornitza Stark Marked gene: POLR1D as ready
Mendeliome v0.8683 TP73 Zornitza Stark Phenotypes for gene: TP73 were changed from Cortical malformation; Lissencephaly to Ciliary dyskinesia, primary, 47, and lissencephaly, MIM#619466; Cortical malformation; Lissencephaly
Mendeliome v0.8682 TP73 Zornitza Stark reviewed gene: TP73: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Ciliary dyskinesia, primary, 47, and lissencephaly, MIM#619466; Mode of inheritance: None
Mendeliome v0.8681 POLR1C Zornitza Stark Marked gene: POLR1C as ready
Mendeliome v0.8678 SF3B4 Zornitza Stark Marked gene: SF3B4 as ready
Mendeliome v0.8675 TMCO1 Zornitza Stark Marked gene: TMCO1 as ready
Mendeliome v0.8675 TMCO1 Zornitza Stark Phenotypes for gene: TMCO1 were changed from to Craniofacial dysmorphism, skeletal anomalies, and mental retardation syndrome, MIM# 213980
Mendeliome v0.8672 TMCO1 Zornitza Stark reviewed gene: TMCO1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20018682, 23320496, 17351359, 30556256, 31102500; Phenotypes: Craniofacial dysmorphism, skeletal anomalies, and mental retardation syndrome, MIM# 213980; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8671 RGS10 Zornitza Stark Marked gene: RGS10 as ready
Mendeliome v0.8671 RGS10 Zornitza Stark gene: RGS10 was added
gene: RGS10 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RGS10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RGS10 were set to 34315806; 34339853
Phenotypes for gene: RGS10 were set to Immunodeficiency; short stature
Review for gene: RGS10 was set to RED
Added comment: Three affected siblings with short stature and immunodeficiency and segregating biallelic variants in RGS10 (c.489_491del:p.E163del and c.G511T:p.A171S). The affected individuals had recurrent infections, hypergammaglobulinaemia, profoundly reduced lymphocyte chemotaxis, abnormal lymph node architecture, and short stature due to growth hormone deficiency. Limited functional data presented. Further experimental data linking RGS10 to immune function presented in PMID 34339853.
Sources: Literature
Mendeliome v0.8670 MAST3 Zornitza Stark Marked gene: MAST3 as ready
Mendeliome v0.8669 MAST3 Zornitza Stark gene: MAST3 was added
gene: MAST3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MAST3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MAST3 were set to 34185323
Phenotypes for gene: MAST3 were set to Developmental and epileptic encephalopathy
Review for gene: MAST3 was set to GREEN
Added comment: Eleven individuals reported with de novo missense variants in the STK domain, including two recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. Limited functional data.
Sources: Literature
Mendeliome v0.8668 SF3B2 Zornitza Stark Marked gene: SF3B2 as ready
Mendeliome v0.8667 SF3B2 Zornitza Stark gene: SF3B2 was added
gene: SF3B2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SF3B2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SF3B2 were set to 34344887
Phenotypes for gene: SF3B2 were set to Craniofacial microsomia
Review for gene: SF3B2 was set to GREEN
Added comment: Twenty individuals from seven families reported with de novo or transmitted haploinsufficient variants in SF3B2. Affected individuals had mandibular hypoplasia, microtia, facial and preauricular tags, epibulbar dermoids, lateral oral clefts in addition to skeletal and cardiac abnormalities.

Targeted morpholino knockdown of SF3B2 in Xenopus resulted in disruption of cranial neural crest precursor formation and subsequent craniofacial cartilage defects, supporting a link between spliceosome mutations and impaired neural crest development in congenital craniofacial disease.

The families were ascertained from a cohort and the authors suggest that haploinsufficient variants in SF3B2 are the most prevalent genetic cause of CFM, explaining ~3% of sporadic and ~25% of familial cases.
Sources: Literature
Mendeliome v0.8666 IMPG1 Zornitza Stark Marked gene: IMPG1 as ready
Mendeliome v0.8666 IMPG1 Zornitza Stark Phenotypes for gene: IMPG1 were changed from to Macular dystrophy, vitelliform, 4, OMIM:616151; Retinitis pigmentosa, MONDO:0019200
Mendeliome v0.8663 IMPG1 Arina Puzriakova reviewed gene: IMPG1: Rating: GREEN; Mode of pathogenicity: None; Publications: 23993198, 28644393, 30589393, 30688845, 32817297; Phenotypes: Macular dystrophy, vitelliform, 4, OMIM:616151, Retinitis pigmentosa, MONDO:0019200; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8663 IFT172 Zornitza Stark Phenotypes for gene: IFT172 were changed from Retinitis pigmentosa 71 616394; Short-rib thoracic dysplasia 10 with or without polydactyly - 615630; Bardet-Biedl syndrome to Retinitis pigmentosa 71 616394; Short-rib thoracic dysplasia 10 with or without polydactyly - 615630; Bardet-Biedl syndrome 20, MIM# 619471
Mendeliome v0.8661 CUL7 Zornitza Stark Marked gene: CUL7 as ready
Mendeliome v0.8657 ACAN Zornitza Stark edited their review of gene: ACAN: Added comment: Patients with SSOAD exhibit a broad phenotypic spectrum involving short stature associated with advanced bone maturation and early-onset osteoarthritis (OA), as well as mild dysmorphic features consisting of midface hypoplasia, brachydactyly, broad great toes, and lumbar lordosis. Other features include intervertebral disc disease and osteochondritis dissecans, which is characterized by separation of articular cartilage and subchondral bone from the articular surface. Phenotypes are highly variable even among patients within the same family, and there are no apparent genotype-phenotype correlations.

Well established gene-disease association, multiple families reported.

Note fewer families reported with bi-allelic variants in this gene and extreme short stature.; Changed publications: 24762113, 27870580, 19110214, 30124491, 28331218, 20137779; Changed phenotypes: Short stature and advanced bone age, with or without early-onset osteoarthritis and/or osteochondritis dissecans, OMIM# 165800, Spondyloepimetaphyseal dysplasia, aggrecan type 612813
Mendeliome v0.8657 NFKBIA Zornitza Stark Marked gene: NFKBIA as ready
Mendeliome v0.8657 NFKBIA Zornitza Stark Phenotypes for gene: NFKBIA were changed from to Ectodermal dysplasia and immunodeficiency 2 MIM# 612132; Ectodermal dysplasia; TCR/ BCR activation impaired; low memory and isotype switched B cells; decreased IgG and IgA; elevated IgM; poor specific antibody responses; diarrhoea; agammaglobulinaemia; ectodermal dysplasia; recurrent respiratory and gastrointestinal infections; colitis; variable defects of skin, hair and teeth
Mendeliome v0.8656 NFKBIA Zornitza Stark Mode of pathogenicity for gene: NFKBIA was changed from to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Mendeliome v0.8654 NFKB2 Zornitza Stark Marked gene: NFKB2 as ready
Mendeliome v0.8654 NFKB2 Zornitza Stark Phenotypes for gene: NFKB2 were changed from to Immunodeficiency, common variable, 10 MIM# 615577; Low serum IgG, IgA, IgM; low B cell numbers; low switched memory B cells; Recurrent sinopulmonary infections, Alopecia; endocrinopathies; ACTH deficiency
Mendeliome v0.8651 NFKB1 Zornitza Stark Marked gene: NFKB1 as ready
Mendeliome v0.8651 NFKB1 Zornitza Stark Phenotypes for gene: NFKB1 were changed from to Immunodeficiency, common variable, 12 MIM# 616576; Normal-low IgG, IgA, IgM; low-normal B cells; low switched memory B cells; hypogammaglobulinaemia; recurrent respiratory and gastrointestinal infections; Chronic obstructive pulmonary disease COPD; EBV proliferation; autoimmunity; alopecia
Mendeliome v0.8648 MCM4 Zornitza Stark Marked gene: MCM4 as ready
Mendeliome v0.8644 MAP3K14 Zornitza Stark Marked gene: MAP3K14 as ready
Mendeliome v0.8641 LRBA Zornitza Stark Marked gene: LRBA as ready
Mendeliome v0.8641 LRBA Zornitza Stark Phenotypes for gene: LRBA were changed from to Immunodeficiency, common variable, 8, with autoimmunity MIM# 614700; Normal-decreased CD4 numbers; T cell dysregulation; Low-normal B cells; Reduced IgG and IgA; Recurrent infections; chronic diarrhoea; inflammatory bowel disease; hypogammaglobulinaemia; pneumonitis; autoimmune disorders; thrombocytopaenia
Mendeliome v0.8638 LRBA Zornitza Stark reviewed gene: LRBA: Rating: GREEN; Mode of pathogenicity: None; Publications: 22608502, 22721650, 25468195, 26206937, 33155142; Phenotypes: Immunodeficiency, common variable, 8, with autoimmunity MIM# 614700, Normal-decreased CD4 numbers, T cell dysregulation, Low-normal B cells, Reduced IgG and IgA, Recurrent infections, chronic diarrhoea, inflammatory bowel disease, hypogammaglobulinaemia, pneumonitis, autoimmune disorders, thrombocytopaenia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8638 NFKBIA Danielle Ariti reviewed gene: NFKBIA: Rating: GREEN; Mode of pathogenicity: Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments; Publications: 28597146, 23864385, 23708964; Phenotypes: Ectodermal dysplasia and immunodeficiency 2 MIM# 612132, Ectodermal dysplasia, TCR/ BCR activation impaired, low memory and isotype switched B cells, decreased IgG and IgA, elevated IgM, poor specific antibody responses, diarrhoea, agammaglobulinaemia, ectodermal dysplasia, recurrent respiratory and gastrointestinal infections, colitis, variable defects of skin, hair and teeth; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8638 NFKB2 Danielle Ariti reviewed gene: NFKB2: Rating: GREEN; Mode of pathogenicity: None; Publications: 24140114, 24888602, 25524009, 31417880; Phenotypes: Immunodeficiency, common variable, 10 MIM# 615577, Low serum IgG, IgA, IgM, low B cell numbers, low switched memory B cells, Recurrent sinopulmonary infections, Alopecia, endocrinopathies, ACTH deficiency; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8638 NFKB1 Danielle Ariti reviewed gene: NFKB1: Rating: GREEN; Mode of pathogenicity: None; Publications: 26279205, 32278790, 27022143, 7834752; Phenotypes: Immunodeficiency, common variable, 12 MIM# 616576, Normal-low IgG, IgA, IgM, low-normal B cells, low switched memory B cells, hypogammaglobulinaemia, recurrent respiratory and gastrointestinal infections, Chronic obstructive pulmonary disease COPD, EBV proliferation, autoimmunity, alopecia; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8638 AQP2 Zornitza Stark Marked gene: AQP2 as ready
Mendeliome v0.8635 RNF2 Zornitza Stark Phenotypes for gene: RNF2 were changed from epilepsy; intellectual disability; intrauterine growth retardation to Lou-Schoch-Yamamoto syndrome , MIM#619460; epilepsy; intellectual disability; intrauterine growth retardation
Mendeliome v0.8633 GIMAP5 Zornitza Stark Marked gene: GIMAP5 as ready
Mendeliome v0.8632 GIMAP5 Zornitza Stark gene: GIMAP5 was added
gene: GIMAP5 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: GIMAP5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GIMAP5 were set to 33956074
Phenotypes for gene: GIMAP5 were set to Portal hypertension, noncirrhotic, 2, MIM# 619463
Review for gene: GIMAP5 was set to GREEN
Added comment: 8 individuals from 4 unrelated families reported with onset of disease in the first decade of life. Clinical features included jaundice, hyperbilirubinaemia, pancytopaenia, including neutropaenia, lymphopaenia, and thrombocytopaenia, hepatosplenomegaly, and oesophageal varices. Some individuals had recurrent infections or features suggestive of an immunodeficiency. Liver biopsy was notable for the absence of cirrhosis and the presence of nodular regeneration.
Sources: Expert list
Mendeliome v0.8630 ERBB3 Zornitza Stark Phenotypes for gene: ERBB3 were changed from Lethal congenital contractural syndrome 2, MIM# 607598; Hirschsprung disease; Arthrogryposis; Complex neurocristinopathy to Lethal congenital contractural syndrome 2, MIM# 607598; Visceral neuropathy, familial, 1, autosomal recessive, MIM# 243180; Hirschsprung disease; Arthrogryposis; Complex neurocristinopathy
Mendeliome v0.8629 IL7R Zornitza Stark Marked gene: IL7R as ready
Mendeliome v0.8629 IL7R Zornitza Stark Phenotypes for gene: IL7R were changed from to Severe combined immunodeficiency, T-cell negative, B-cell/natural killer cell-positive type MIM# 608971; fever; rash; failure to thrive; recurrent respiratory and gastric infections; diarrhoea; lymphadenopathy; pneumonitis; Pancytopaenia; low T-cell numbers; decreased immunoglobulins; normal-high B/NK-cell numbers.
Mendeliome v0.8626 MALT1 Zornitza Stark Marked gene: MALT1 as ready
Mendeliome v0.8623 IL2RG Zornitza Stark Marked gene: IL2RG as ready
Mendeliome v0.8623 IL2RG Zornitza Stark Phenotypes for gene: IL2RG were changed from to Combined immunodeficiency, X-linked, moderate MIM# 312863; Severe combined immunodeficiency, X-linked MIM# 300400; recurrent viral/fungal/bacterial infections; Low T/NK cells; Low Ig levels; lymphocytopaenia; hypogammaglobulinaemia; failure to thrive; diarrhoea; Pneumonia; Thymic hypoplasia
Mendeliome v0.8620 IL2RG Zornitza Stark reviewed gene: IL2RG: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301584, 8462096, 8401490, 7883965, 9399950; Phenotypes: Combined immunodeficiency, X-linked, moderate MIM# 312863, Severe combined immunodeficiency, X-linked MIM# 300400, recurrent viral/fungal/bacterial infections, Low T/NK cells, Low Ig levels, lymphocytopaenia, hypogammaglobulinaemia, failure to thrive, diarrhoea, Pneumonia, Thymic hypoplasia; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.8620 IKZF1 Zornitza Stark Marked gene: IKZF1 as ready
Mendeliome v0.8620 IKZF1 Zornitza Stark Phenotypes for gene: IKZF1 were changed from to Immunodeficiency, common variable, 13 MIM# 616873; recurrent bacterial respiratory infections; Thrombocytopaenia; immunodeficiency; Hypogammaglobulinaemia; decrease B-cells; decrease B-cell differentiation; decrease memory B/T cells; Low Ig; pneumocystis early CID onset
Mendeliome v0.8617 IKZF1 Zornitza Stark reviewed gene: IKZF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21548011, 26981933, 29889099, 31057532, 7923373, 11805317; Phenotypes: Immunodeficiency, common variable, 13 MIM# 616873, recurrent bacterial respiratory infections, Thrombocytopaenia, immunodeficiency, Hypogammaglobulinaemia, decrease B-cells, decrease B-cell differentiation, decrease memory B/T cells, Low Ig, pneumocystis early CID onset; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8617 ITK Zornitza Stark Marked gene: ITK as ready
Mendeliome v0.8614 MALT1 Danielle Ariti edited their review of gene: MALT1: Added comment: 5 individuals from 3 unrelated families with immunodeficiency phenotype have reported variants in MALT1; two MALT1-knockout mouse models displaying primary T- and B-cell lymphocyte deficiency.

Variants identified were homozygous missense variants resulting in the alteration of highly conserved residue domains.

All individuals reported onset in infancy of recurrent bacterial/ fungal/ viral infections leading to bronchiectasis and poor T-cell proliferation.; Changed rating: GREEN
Mendeliome v0.8614 IL7R Danielle Ariti reviewed gene: IL7R: Rating: GREEN; Mode of pathogenicity: None; Publications: 9843216, 19890784, 26123418, 11023514, 7964471; Phenotypes: Severe combined immunodeficiency, T-cell negative, B-cell/natural killer cell-positive type MIM# 608971, fever, rash, failure to thrive, recurrent respiratory and gastric infections, diarrhoea, lymphadenopathy, pneumonitis, Pancytopaenia, low T-cell numbers, decreased immunoglobulins, normal-high B/NK-cell numbers.; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8614 PLCB4 Zornitza Stark Marked gene: PLCB4 as ready
Mendeliome v0.8614 PLCB4 Zornitza Stark Phenotypes for gene: PLCB4 were changed from to Auriculocondylar syndrome 2, MIM# 614669
Mendeliome v0.8611 PLCB4 Zornitza Stark reviewed gene: PLCB4: Rating: GREEN; Mode of pathogenicity: None; Publications: 22560091, 23315542, 33131036, 32201334, 28328130, 27007857, 23913798; Phenotypes: Auriculocondylar syndrome 2, MIM# 614669; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8611 PBX1 Zornitza Stark Marked gene: PBX1 as ready
Mendeliome v0.8611 PBX1 Zornitza Stark Phenotypes for gene: PBX1 were changed from to Congenital anomalies of kidney and urinary tract syndrome with or without hearing loss, abnormal ears, or developmental delay, MIM# 617641
Mendeliome v0.8608 PBX1 Zornitza Stark reviewed gene: PBX1: Rating: GREEN; Mode of pathogenicity: None; Publications: 28566479, 29036646; Phenotypes: Congenital anomalies of kidney and urinary tract syndrome with or without hearing loss, abnormal ears, or developmental delay, MIM# 617641; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8608 VRK1 Zornitza Stark Phenotypes for gene: VRK1 were changed from Pontocerebellar hypoplasia type 1A, MIM# 607596; SMA to Pontocerebellar hypoplasia type 1A, MIM# 607596; Adult-onset spinal muscular atrophy without pontocerebellar hypoplasia
Mendeliome v0.8606 VRK1 Zornitza Stark changed review comment from: Complex phenotype with mixed peripheral and central neurological features. Two families reported where PCH was prominent and accompanied by ataxia. At least three families also reported where peripheral neuropathy dominated the clinical picture without PCH/ataxia.; to: Complex phenotype with mixed peripheral and central neurological features. Two families reported where PCH was prominent and accompanied by ataxia. At least three families also reported where peripheral neuropathy dominated the clinical picture without PCH/ataxia.

Further delineation of phenotype 2021:
PMID 34169149: expanding spectrum of neurologic disorders associated with VRK1. Two Hispanic individuals, one homozygous (R321C: VUS and LP/P in ClinVar) and one cHet (R321C+V236M, latter P and more recently VUS in ClinVar), with slowly progressive weakness and a clinical syndrome consistent with adult-onset spinal muscular atrophy WITHOUT pontocerebellar atrophy. No hom in gnomAD and both have been reported in cHet individuals with other features: R321C in association with adult-onset amyotrophic lateral sclerosis and V236M with rapidly progressive sensorimotor polyneuropathy and microcephaly. Authors suggest PMID 26583493 and 31837156 have similar reports. PMID 26583493 reports a 32yo Hispanic individual, cHet H119R+R321C, with early-onset amyotrophic lateral sclerosis, 5 years progressive weakness. PMID 31837156 reports two patients with adult-onset length-dependent motor neuropathy from unrelated consanguineous families of Moroccan Jewish descent, both hom for R387H.
Mendeliome v0.8606 VRK1 Zornitza Stark edited their review of gene: VRK1: Changed publications: 19646678, 21937992, 25609612, 24126608, 27281532, 34169149, 26583493; Changed phenotypes: Pontocerebellar hypoplasia type 1A, MIM# 607596, Adult-onset spinal muscular atrophy without pontocerebellar hypoplasia
Mendeliome v0.8606 CLCN3 Zornitza Stark Marked gene: CLCN3 as ready
Mendeliome v0.8604 TNPO2 Zornitza Stark Marked gene: TNPO2 as ready
Mendeliome v0.8602 DNAH10 Zornitza Stark Marked gene: DNAH10 as ready
Mendeliome v0.8601 CLCN3 Kristin Rigbye gene: CLCN3 was added
gene: CLCN3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CLCN3 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: CLCN3 were set to PMID: 34186028
Phenotypes for gene: CLCN3 were set to Neurodevelopmental disorder
Mode of pathogenicity for gene: CLCN3 was set to Other
Review for gene: CLCN3 was set to GREEN
Added comment: 11 individuals reported, 9 that carried 8 different rare heterozygous missense variants in CLCN3, and 2 siblings that were homozygous for an NMD-predicted frameshift variant likely abolishing ClC-3 function. All missense variants were confirmed to be de novo in eight individuals for whom parental data was available.

The 11 individuals in the cohort share clinical features of variable severity. All 11 have GDD or ID and dysmorphic features, and a majority has mood or behavioural disorders and structural brain abnormalities:
- Structural brain abnormalities on MRI (9/11) included partial or full agenesis of the corpus callosum (6/9), disorganized cerebellar folia (4/9), delayed myelination (3/9), decreased white matter volume (3/9), pons hypoplasia (3/9), and dysmorphic dentate nuclei (3/9). Six of those with brain abnormalities also presented with seizures.
- Nine have abnormal vision, including strabismus in four and inability to fix or follow in the two with homozygous loss-of-function variants.
- Hypotonia ranging from mild to severe was reported in 7 of the 11 individuals.
- Six have mood or behavioural disorders, particularly anxiety (3/6).
- Consistent dysmorphic facial features included microcephaly, prominent forehead, hypertelorism, down-slanting palpebral fissures, full cheeks, and micrognathia.

The severity of disease in the two siblings with homozygous disruption of ClC-3 is consistent with the drastic phenotype seen in Clcn3 KO mice. The disease was more severe in two siblings carrying homozygous loss-of-function variants with the presence of GDD, absent speech, seizures, and salt and pepper fundal pigmentation in both individuals, with one deceased at 14 months of age. The siblings also had significant neuroanatomical findings including diffusely decreased white matter volume, thin corpora callosa, small hippocampi, and disorganized cerebellar folia. Supporting biallelic inheritance for LoF variants, disruption of mouse Clcn3 results in drastic neurodegeneration with loss of the hippocampus a few months after birth and early retinal degeneration. Clcn3−/− mice display severe neurodegeneration, whereas heterozygous Clcn3+/− mice appear normal.

Patch-clamp studies were used to investigate four of the missense variants. These suggested a gain of function in two variants with increased current in HEK cells, however they also showed reduced rectification of voltage and a loss of transient current, plus decreased current amplitude, glycosylation and surface expression when expressed in oocytes, and were suspected to interfere with channel gating and a negative feedback mechanism. These effects were also shown to vary depending on pH levels. The current of the remaining two variants did not differ from WT. For heterozygous missense variants, the disruption induced may be at least partially conferred to mutant/WT homodimers and mutant/ClC-4 heterodimers.

Both loss and gain of function in this gene resulted in the same phenotype.
Sources: Literature
Mendeliome v0.8601 TNPO2 Elena Savva gene: TNPO2 was added
gene: TNPO2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TNPO2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: TNPO2 were set to PMID: 34314705
Phenotypes for gene: TNPO2 were set to Developmental delays, neurologic deficits and dysmorphic features
Mode of pathogenicity for gene: TNPO2 was set to Other
Review for gene: TNPO2 was set to GREEN
Added comment: PMID: 34314705 - all de novo missense variants with intellectual disability (9/9), speech impairment (15/15), motor impairment (15/15), ophthalmologic abnormalities (10/15), muscle tone abnormalities (11/15, primarily hypotonia), seizures (6/15, febrile to non-febrile), microcephaly (5/15) and MRI anomalies (7/13, 3/13 had cerebellar hypoplasia/dysplasia).

Null fly model was homozygous lethal, no obvious phenotypes in heterozygotes. Upregulated gene expression also resulted in lethality. Overexpression of some human variants in fly models resulted in "toxicity" and phenotypic defects, authors speculate two variants are GOF, 1 variant is LOF.

gnomAD: minimal PTCs present
Sources: Literature
Mendeliome v0.8601 DNAH10 Ain Roesley gene: DNAH10 was added
gene: DNAH10 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DNAH10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DNAH10 were set to 34237282
Phenotypes for gene: DNAH10 were set to primary male infertility with asthenoteratozoospermia
Penetrance for gene: DNAH10 were set to unknown
Review for gene: DNAH10 was set to GREEN
Added comment: 4x families with 5 affecteds (chets and homs - 4 missense and 2 fs). Knockout mouse models were infertile and showed significant reduction in count and motility compared to heterozygous mice
Sources: Literature
Mendeliome v0.8601 AP1G1 Zornitza Stark Marked gene: AP1G1 as ready
Mendeliome v0.8601 AP1G1 Zornitza Stark Added comment: Comment when marking as ready: Good evidence for association between mono-allelic variants and NDD, moderate evidence for bi-allelic variants causing disease.
Mendeliome v0.8600 AP1G1 Danielle Ariti gene: AP1G1 was added
gene: AP1G1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: AP1G1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: AP1G1 were set to 34102099
Phenotypes for gene: AP1G1 were set to Neurodevelopmental disorder (NDD); Intellectual Disability; Epilepsy
Mode of pathogenicity for gene: AP1G1 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: AP1G1 was set to GREEN
Added comment: Two bi-allelic homozygous missense variants were found in two distinct families with Italian and Pakistani origins; homozygous missense variants.

Eight de novo heterozygous variants were identified in nine isolated affected individuals from nine families; including five missense, two frameshift, and one intronic variant that disrupts the canonical splice acceptor site.

Knocking out AP1G1 Zebrafish model resulted in severe developmental abnormalities and increased lethality.

All individuals had neurodevelopmental disorder (NDD) including global developmental delay and ID, which varied in severity from mild to severe.
Sources: Literature
Mendeliome v0.8600 SEMA3D Zornitza Stark Marked gene: SEMA3D as ready
Mendeliome v0.8598 SPTBN1 Belinda Chong changed review comment from: PMID: 34211179
- Heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features.
- Show that these SPTBN1 variants lead to effects that affect βII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics.

PMID: 33847457
- Common features include global developmental delays, intellectual disability, and behavioral disturbances. Autistic features (4/6) and epilepsy (2/7) or abnormal electroencephalogram without overt seizures (1/7) were present in a subset.
- identified seven unrelated individuals with heterozygous SPTBN1 variants: two with de novo missense variants and five with predicted loss-of-function variants (found to be de novo in two, while one was inherited from a mother with a history of learning disabilities).
- Identification of loss-of-function variants suggests a haploinsufficiency mechanism, but additional functional studies are required to fully elucidate disease pathogenesis.
Sources: Literature; to: PMID: 34211179
- Heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures (9/29); behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features.
- Show that these SPTBN1 variants lead to effects that affect βII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics.

PMID: 33847457
- Common features include global developmental delays, intellectual disability, and behavioral disturbances. Autistic features (4/6) and epilepsy (2/7) or abnormal electroencephalogram without overt seizures (1/7) were present in a subset.
- identified seven unrelated individuals with heterozygous SPTBN1 variants: two with de novo missense variants and five with predicted loss-of-function variants (found to be de novo in two, while one was inherited from a mother with a history of learning disabilities).
- Identification of loss-of-function variants suggests a haploinsufficiency mechanism, but additional functional studies are required to fully elucidate disease pathogenesis.
Sources: Literature
Mendeliome v0.8598 SPTBN4 Zornitza Stark Marked gene: SPTBN4 as ready
Mendeliome v0.8594 HMGB1 Zornitza Stark Marked gene: HMGB1 as ready
Mendeliome v0.8593 SPTBN1 Zornitza Stark Marked gene: SPTBN1 as ready
Mendeliome v0.8592 EDEM3 Seb Lunke Marked gene: EDEM3 as ready
Mendeliome v0.8591 UBA2 Ain Roesley changed review comment from: 2x unrelated probands with isolated split hand malformation. fs variants - 1x de novo and 1x inherited from apparent unaffected mother (no radiographs of her hand available)

1x proband with unilateral split-hand malformation. Her daughter and grandson reported to have ectrofactyly but were unavailable for testing; to: 2x unrelated probands with isolated split hand malformation. fs variants - 1x de novo and 1x inherited from apparent unaffected mother (no radiographs of her hand available)

1x proband with unilateral split-hand malformation (missense). Her daughter and grandson reported to have ectrofactyly but were unavailable for testing
Mendeliome v0.8587 GCNA Zornitza Stark Marked gene: GCNA as ready
Mendeliome v0.8586 TP73 Ee Ming Wong changed review comment from: - Seven individuals from five unrelated families homozygous for TP73 variants (includes 1x large deletion, 1x splice variant, 1x frameshift and 2x nonsense variants)
- Epithelial cells from TP73 variant carriers showed reduced number of ciliated cells and shortened cilia resulting in abnormal ciliary clearance of the airways compared to healthy controls; to: - Seven individuals from five unrelated families homozygous for TP73 variants (includes 1x large deletion, 1x splice variant, 1x frameshift and 2x nonsense variants)
- In vitro ciliogenesis experiments demonstrated that epithelial cells from TP73 variant carriers had reduced number of ciliated cells and shortened cilia resulting in abnormal ciliary clearance of the airways compared to healthy controls
Mendeliome v0.8586 SPTBN1 Belinda Chong gene: SPTBN1 was added
gene: SPTBN1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SPTBN1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: SPTBN1 were set to PMID: 34211179; PMID: 33847457
Phenotypes for gene: SPTBN1 were set to Neurodevelopmental Syndrome
Review for gene: SPTBN1 was set to GREEN
Added comment: PMID: 34211179
- Heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features.
- Show that these SPTBN1 variants lead to effects that affect βII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics.

PMID: 33847457
- Common features include global developmental delays, intellectual disability, and behavioral disturbances. Autistic features (4/6) and epilepsy (2/7) or abnormal electroencephalogram without overt seizures (1/7) were present in a subset.
- identified seven unrelated individuals with heterozygous SPTBN1 variants: two with de novo missense variants and five with predicted loss-of-function variants (found to be de novo in two, while one was inherited from a mother with a history of learning disabilities).
- Identification of loss-of-function variants suggests a haploinsufficiency mechanism, but additional functional studies are required to fully elucidate disease pathogenesis.
Sources: Literature
Mendeliome v0.8586 EDEM3 Michelle Torres gene: EDEM3 was added
gene: EDEM3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EDEM3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EDEM3 were set to 34143952
Phenotypes for gene: EDEM3 were set to EDEM3-congenital disorder of glycosylation
Review for gene: EDEM3 was set to GREEN
Added comment: PMID: 34143952: 7 families (11 individuals) with 6x PTV and 2x missense variants with neurodevelopmental delay and variable facial dysmorphisms. The unaffected parents were all heterozygous carriers. Functional show LoF of EDEM3 enzymatic activity.
Sources: Literature
Mendeliome v0.8586 GCNA Ain Roesley gene: GCNA was added
gene: GCNA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GCNA was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: GCNA were set to 33963445
Phenotypes for gene: GCNA were set to primary spermatogenic failure
Penetrance for gene: GCNA were set to unknown
Review for gene: GCNA was set to GREEN
Added comment: 7x probands all missense except 1 fs. Variants had <0.0005 MAF in gnomad v2 male cohort and absent in 5784 Dutch control cohort
no functional studies were done except for histology of Ser659Trp, revealing a Sertoli-cell only
Sources: Literature
Mendeliome v0.8586 ANK2 Zornitza Stark Marked gene: ANK2 as ready
Mendeliome v0.8585 ANK2 Zornitza Stark gene: ANK2 was added
gene: ANK2 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: ANK2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ANK2 were set to 31983240; 22542183; 25363768; 27479843; 28554332; 30564305; 30755392; 31981491; 33004838; 33057194
Phenotypes for gene: ANK2 were set to Long QT syndrome 4, MIM# 600919; Complex neurodevelopmental disorder, MONDO:0100038
Review for gene: ANK2 was set to GREEN
Added comment: Link with cardiac abnormalities such as LongQT is DISPUTED. More than 10 unrelated individuals reported with neurodevelopmental phenotype, comprising autism/ID and de novo truncating variants, in addition to many other individuals as part of large NDD cohorts. This association has been assessed as DEFINITIVE by ClinGen.
Sources: Expert Review
Mendeliome v0.8584 PRDX3 Zornitza Stark Marked gene: PRDX3 as ready
Mendeliome v0.8583 PRDX3 Hazel Phillimore changed review comment from: Biallelic variants in 5 unrelated families with early onset (median 21 years , range 13-22 years) with ataxia with variable additional hyper- and hypokinetic movement disorders, and severe early-onset cerebellar atrophy (seen on MRI), and involvement of the brainstem, medullary olive and parietal cortex.
Evolution of the disease was gait ataxia leading to upper limb ataxia, then dysarthria and then dysphagia, all within a decade. For some of these patients, the phenotype included myoclonus, dystonia and / or tremor. Mild classical mitochondrial features were seen in one of the patients, namely ptosis and COX-negative fibres.
The variants were homozygous nonsense, homozygous frameshift, homozygous missense, and a compound heterozygote of a splice variant and missense, all leading to complete loss of the protein. Oxidative stress and mitochondrial dysfunction was indicated as the disease mechanism.
The families originated from Germany, France, India and two from eastern Turkey. The two families from Turkey were seemingly unrelated to each other but had the same homozygous missense.
Patient fibroblasts from each of the five probands showed lack of protein (via Western blot) and decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity.
PRXD3 encodes peroxiredoxin 3, a mitochondrial antioxidant protein, that catalyses the reduction of hydrogen peroxide. It localises in the mitochondria, where most hydrogen peroxide is generated.
Functional studies: PRDX3 knockdown (induced by silencing RNA against PRDX3) in cerebellar medulloblastoma cells showed significantly decreased cell viability, increased hydrogen peroxide levels and increased susceptibility to apoptosis triggered by reactive oxygen species.
In addition, induced knockdown drosophila (in vivo animal model) had aberrant locomotor phenotypes and reduced lifespans, while immunolabelling of the brain showed increased cell death after exposure to oxidative stress.
Sources: Literature; to: Biallelic variants in 5 unrelated families with early onset (median 21 years , range 13-22 years) with ataxia with variable additional hyper- and hypokinetic movement disorders, and severe early-onset cerebellar atrophy (seen on MRI), and involvement of the brainstem, medullary olive and parietal cortex.
Evolution of the disease was gait ataxia leading to upper limb ataxia, then dysarthria and then dysphagia, all within a decade. For some of these patients, the phenotype included myoclonus, dystonia and / or tremor. Mild classical mitochondrial features were seen in one of the patients, namely ptosis and COX-negative fibres.
The variants were homozygous nonsense, homozygous frameshift, homozygous missense, and a compound heterozygote with a splice variant and missense, all leading to complete loss of the protein. Oxidative stress and mitochondrial dysfunction was indicated as the disease mechanism.
The families originated from Germany, France, India and two from eastern Turkey. The two families from Turkey were seemingly unrelated to each other but had the same homozygous missense.
Patient fibroblasts from each of the five probands showed lack of protein (via Western blot) and decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity.
PRDX3 encodes peroxiredoxin 3, a mitochondrial antioxidant protein, that catalyses the reduction of hydrogen peroxide. It localises in the mitochondria, where most hydrogen peroxide is generated.
Functional studies: PRDX3 knockdown (induced by silencing RNA against PRDX3) in cerebellar medulloblastoma cells showed significantly decreased cell viability, increased hydrogen peroxide levels and increased susceptibility to apoptosis triggered by reactive oxygen species.
In addition, induced knockdown drosophila (in vivo animal model) had aberrant locomotor phenotypes and reduced lifespans, while immunolabelling of the brain showed increased cell death after exposure to oxidative stress.
Sources: Literature
Mendeliome v0.8583 PRDX3 Hazel Phillimore gene: PRDX3 was added
gene: PRDX3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRDX3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PRDX3 were set to PMID: 33889951
Phenotypes for gene: PRDX3 were set to cerebellar ataxia (early onset, mild to moderate, progressive)
Penetrance for gene: PRDX3 were set to unknown
Review for gene: PRDX3 was set to GREEN
Added comment: Biallelic variants in 5 unrelated families with early onset (median 21 years , range 13-22 years) with ataxia with variable additional hyper- and hypokinetic movement disorders, and severe early-onset cerebellar atrophy (seen on MRI), and involvement of the brainstem, medullary olive and parietal cortex.
Evolution of the disease was gait ataxia leading to upper limb ataxia, then dysarthria and then dysphagia, all within a decade. For some of these patients, the phenotype included myoclonus, dystonia and / or tremor. Mild classical mitochondrial features were seen in one of the patients, namely ptosis and COX-negative fibres.
The variants were homozygous nonsense, homozygous frameshift, homozygous missense, and a compound heterozygote of a splice variant and missense, all leading to complete loss of the protein. Oxidative stress and mitochondrial dysfunction was indicated as the disease mechanism.
The families originated from Germany, France, India and two from eastern Turkey. The two families from Turkey were seemingly unrelated to each other but had the same homozygous missense.
Patient fibroblasts from each of the five probands showed lack of protein (via Western blot) and decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity.
PRXD3 encodes peroxiredoxin 3, a mitochondrial antioxidant protein, that catalyses the reduction of hydrogen peroxide. It localises in the mitochondria, where most hydrogen peroxide is generated.
Functional studies: PRDX3 knockdown (induced by silencing RNA against PRDX3) in cerebellar medulloblastoma cells showed significantly decreased cell viability, increased hydrogen peroxide levels and increased susceptibility to apoptosis triggered by reactive oxygen species.
In addition, induced knockdown drosophila (in vivo animal model) had aberrant locomotor phenotypes and reduced lifespans, while immunolabelling of the brain showed increased cell death after exposure to oxidative stress.
Sources: Literature
Mendeliome v0.8583 GSC Zornitza Stark Marked gene: GSC as ready
Mendeliome v0.8583 GSC Zornitza Stark Phenotypes for gene: GSC were changed from to Short stature, auditory canal atresia, mandibular hypoplasia, skeletal abnormalities, MIM# 602471
Mendeliome v0.8580 GSC Zornitza Stark reviewed gene: GSC: Rating: GREEN; Mode of pathogenicity: None; Publications: 24290375; Phenotypes: Short stature, auditory canal atresia, mandibular hypoplasia, skeletal abnormalities, MIM# 602471; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8580 GNAI3 Zornitza Stark Marked gene: GNAI3 as ready
Mendeliome v0.8580 GNAI3 Zornitza Stark Phenotypes for gene: GNAI3 were changed from to Auriculocondylar syndrome 1, OMIM #602483
Mendeliome v0.8577 GNAI3 Zornitza Stark reviewed gene: GNAI3: Rating: GREEN; Mode of pathogenicity: None; Publications: 22560091; Phenotypes: Auriculocondylar syndrome 1, OMIM #602483; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8577 EIF4A3 Zornitza Stark Marked gene: EIF4A3 as ready
Mendeliome v0.8574 ERBB3 Zornitza Stark Phenotypes for gene: ERBB3 were changed from Lethal congenital contractural syndrome 2, MIM# 607598; Hirschsprung disease; Arthrogryposis; Neurodevelopmental disorder with gut dysmotility to Lethal congenital contractural syndrome 2, MIM# 607598; Hirschsprung disease; Arthrogryposis; Complex neurocristinopathy
Mendeliome v0.8573 ERBB3 Zornitza Stark changed review comment from: PMID 33497358: 6 individuals from 4 unrelated families reported with severe gut dysmotility and neurodevelopmental disorder. Note variants in this gene have also recently been linked to Hirschsprung's disease.; to: PMID 33497358: 6 individuals from 4 unrelated families reported with severe gut dysmotility and other features of neurocristinopathy including short-segment HSCR, progressive axonal peripheral neuropathy, dysautonomia, hypopigmentation, deafness. Note variants in this gene have also recently been linked to Hirschsprung's disease.
Mendeliome v0.8573 ERBB3 Zornitza Stark Phenotypes for gene: ERBB3 were changed from Lethal congenital contractural syndrome 2, MIM# 607598; Hirschsprung disease; Arthrogryposis to Lethal congenital contractural syndrome 2, MIM# 607598; Hirschsprung disease; Arthrogryposis; Neurodevelopmental disorder with gut dysmotility
Mendeliome v0.8571 ERBB3 Zornitza Stark edited their review of gene: ERBB3: Added comment: PMID 33497358: 6 individuals from 4 unrelated families reported with severe gut dysmotility and neurodevelopmental disorder. Note variants in this gene have also recently been linked to Hirschsprung's disease.; Changed rating: GREEN; Changed publications: 17701904, 31752936, 33497358; Changed phenotypes: Lethal congenital contractural syndrome 2, MIM# 607598, Neurodevelopmental disorder with gut dysmotility
Mendeliome v0.8571 PDCL3 Zornitza Stark Marked gene: PDCL3 as ready
Mendeliome v0.8570 PDCL3 Zornitza Stark gene: PDCL3 was added
gene: PDCL3 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: PDCL3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PDCL3 were set to 32621347
Phenotypes for gene: PDCL3 were set to Megacystis-microcolon
Review for gene: PDCL3 was set to AMBER
Added comment: Single publication (PMID 32621347): one family with two affected fetuses - one with megacystis and microcolon, and the other with megacystisis and bilateral diaphragmatic hernia (prune-belly phenotype). Compound het LOF variants in PDCL3 (one frameshift and one missense). Complete absence of PDLC3 expression demonstrated in one of the affected fetuses. No homozygous LOF PDCL3 variants in gnomAD. PCDL3 negatively modulates actin folding and is strongly expressed in smooth muscle of bladder and colon.
Sources: Expert Review
Mendeliome v0.8569 SGO1 Zornitza Stark Marked gene: SGO1 as ready
Mendeliome v0.8565 TYMP Zornitza Stark Marked gene: TYMP as ready
Mendeliome v0.8565 TYMP Zornitza Stark Phenotypes for gene: TYMP were changed from to Mitochondrial DNA depletion syndrome 1 (MNGIE type), MIM# 603041; MNGIE: ptosis, ophthalmoplegia & ophthalmoparesis, hearing loss, neuropathy
Mendeliome v0.8562 TYMP Zornitza Stark reviewed gene: TYMP: Rating: GREEN; Mode of pathogenicity: None; Publications: 9924029, 14757860; Phenotypes: Mitochondrial DNA depletion syndrome 1 (MNGIE type), MIM# 603041, MNGIE: ptosis, ophthalmoplegia & ophthalmoparesis, hearing loss, neuropathy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8562 ZNF687 Zornitza Stark Marked gene: ZNF687 as ready
Mendeliome v0.8559 GRHPR Zornitza Stark Marked gene: GRHPR as ready
Mendeliome v0.8559 GRHPR Zornitza Stark Phenotypes for gene: GRHPR were changed from to Hyperoxaluria, primary, type II, MIM# 260000; MONDO:0009824
Mendeliome v0.8556 GRHPR Zornitza Stark reviewed gene: GRHPR: Rating: GREEN; Mode of pathogenicity: None; Publications: 10484776, 11030416, 24116921; Phenotypes: Hyperoxaluria, primary, type II, MIM# 260000, MONDO:0009824; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8556 AGXT Zornitza Stark Marked gene: AGXT as ready
Mendeliome v0.8556 AGXT Zornitza Stark Phenotypes for gene: AGXT were changed from to Hyperoxaluria, primary, type 1, MIM# 259900; MONDO:0009823
Mendeliome v0.8553 AGXT Zornitza Stark reviewed gene: AGXT: Rating: GREEN; Mode of pathogenicity: None; Publications: 2039493, 19479957; Phenotypes: Hyperoxaluria, primary, type 1, MIM# 259900, MONDO:0009823; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8553 HOGA1 Zornitza Stark Marked gene: HOGA1 as ready
Mendeliome v0.8553 HOGA1 Zornitza Stark Phenotypes for gene: HOGA1 were changed from to Hyperoxaluria, primary, type III MIM#613616
Mendeliome v0.8550 HOGA1 Paul De Fazio reviewed gene: HOGA1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20797690, 21896830, 22391140; Phenotypes: Hyperoxaluria, primary, type III MIM#613616; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.8550 VPS45 Zornitza Stark Marked gene: VPS45 as ready
Mendeliome v0.8547 LAMTOR2 Zornitza Stark Marked gene: LAMTOR2 as ready
Mendeliome v0.8543 IKZF3 Zornitza Stark Marked gene: IKZF3 as ready
Mendeliome v0.8542 IKZF3 Zornitza Stark gene: IKZF3 was added
gene: IKZF3 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: IKZF3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: IKZF3 were set to 34155405
Phenotypes for gene: IKZF3 were set to Immunodeficiency 84, MIM# 619437
Review for gene: IKZF3 was set to AMBER
Added comment: Single family reported where heterozygous missense variant in this gene segregated with immunodeficiency in a mother and two children. Findings included low levels of B cells and impaired early B-cell development, variable T-cell abnormalities, hypogammaglobulinaemia, increased susceptibility to infection with Epstein-Barr virus (EBV). One individual developed lymphoma in adulthood. Mouse model recapitulated phenotype.
Sources: Expert Review
Mendeliome v0.8541 HSD17B4 Zornitza Stark Marked gene: HSD17B4 as ready
Mendeliome v0.8541 HSD17B4 Zornitza Stark Phenotypes for gene: HSD17B4 were changed from to D-bifunctional protein deficiency, AR (MIM#261515); Perrault syndrome 1, AR (MIM#233400)
Mendeliome v0.8538 HSD17B4 Zornitza Stark reviewed gene: HSD17B4: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: D-bifunctional protein deficiency, AR (MIM#261515), Perrault syndrome 1, AR (MIM#233400); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8538 HSD17B4 Michelle Torres reviewed gene: HSD17B4: Rating: GREEN; Mode of pathogenicity: None; Publications: 27790638; Phenotypes: D-bifunctional protein deficiency, AR (MIM#261515), Perrault syndrome 1, AR (MIM#233400); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8538 LCK Zornitza Stark Marked gene: LCK as ready
Mendeliome v0.8538 LCK Zornitza Stark Phenotypes for gene: LCK were changed from to Immunodeficiency 22 MIM# 615758; Recurrent infections; Immune dysregulation; autoimmunity; Low CD4+; low CD8+; restricted T cell repertoire; poor TCR signaling; Normal IgG/IgA; high IgM; failure to thrive; diarrhoea; lymphopaenia; hypogammaglobulinaemia; anaemia; thrombocytopaenia; CD4+ T-cell lymphopaenia
Mendeliome v0.8533 LCK Zornitza Stark reviewed gene: LCK: Rating: AMBER; Mode of pathogenicity: None; Publications: 22985903, 1579166, 11021796; Phenotypes: Immunodeficiency 22 MIM# 615758, Recurrent infections, Immune dysregulation, autoimmunity, Low CD4+, low CD8+, restricted T cell repertoire, poor TCR signaling, Normal IgG/IgA, high IgM, failure to thrive, diarrhoea, lymphopenia, hypogammaglobulinemia, anaemia, thrombocytopaenia, CD4+ T-cell lymphopenia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8533 DOCK8 Zornitza Stark Marked gene: DOCK8 as ready
Mendeliome v0.8530 DOCK2 Zornitza Stark Marked gene: DOCK2 as ready
Mendeliome v0.8530 DOCK2 Zornitza Stark Phenotypes for gene: DOCK2 were changed from to Immunodeficiency 40 MIM# 616433; T/B-cell lymphopaenia; early-onset invasive herpes/viral/bacterial Infections; function defects in T/B/NK cells; immunodeficiency; defective IFN-mediated immunity; elevated IgM; normal IgG/IgA levels
Mendeliome v0.8527 DOCK2 Zornitza Stark reviewed gene: DOCK2: Rating: GREEN; Mode of pathogenicity: None; Publications: 26083206, 29204803, 33928462, 30826364, 30838481, 11518968; Phenotypes: Immunodeficiency 40 MIM# 616433, T/B-cell lymphopaenia, early-onset invasive herpes/viral/bacterial Infections, function defects in T/B/NK cells, immunodeficiency, defective IFN-mediated immunity, elevated IgM, normal IgG/IgA levels; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8527 DNMT3B Zornitza Stark Marked gene: DNMT3B as ready
Mendeliome v0.8527 DNMT3B Zornitza Stark Phenotypes for gene: DNMT3B were changed from to Immunodeficiency-centromeric instability-facial anomalies syndrome 1 MIM# 242860; facial dysmorphic features; flat nasal bridge; developmental delay; macroglossia; bacterial/opportunistic infections (recurrent); malabsorption; cytopaenia; malignancies; multiradial configurations of chromosomes 1, 9, 16; Hypogammaglobulinaemia; agammaglobulinaemia; variable antibody deficiency; decreased immunoglobulin production; low T/B/NK cells
Mendeliome v0.8524 DNMT3B Zornitza Stark reviewed gene: DNMT3B: Rating: GREEN; Mode of pathogenicity: None; Publications: 20587527, 10555141, 17359920, 9718351, 10647011, 11102980, 12239717; Phenotypes: Immunodeficiency-centromeric instability-facial anomalies syndrome 1 MIM# 242860, facial dysmorphic features, flat nasal bridge, developmental delay, macroglossia, bacterial/opportunistic infections (recurrent), malabsorption, cytopaenia, malignancies, multiradial configurations of chromosomes 1, 9, 16, Hypogammaglobulinaemia, agammaglobulinaemia, variable antibody deficiency, decreased immunoglobulin production, low T/B/NK cells; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8524 TMPO Bryony Thompson Marked gene: TMPO as ready
Mendeliome v0.8523 TMPO Bryony Thompson reviewed gene: TMPO: Rating: RED; Mode of pathogenicity: None; Publications: 16247757; Phenotypes: Hypertrophic cardiomyopathy, dilated cardiomyopathy; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8523 SYNCRIP Zornitza Stark Marked gene: SYNCRIP as ready
Mendeliome v0.8522 SYNCRIP Zornitza Stark gene: SYNCRIP was added
gene: SYNCRIP was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SYNCRIP was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SYNCRIP were set to 34157790; 30504930; 27479843; 23020937
Phenotypes for gene: SYNCRIP were set to Global developmental delay; Intellectual disability; Autism; Myoclonic atonic seizures; Abnormality of nervous system morphology
Review for gene: SYNCRIP was set to GREEN
Added comment: Semino et al (2021 - PMID: 34157790) provide clinical details on 3 unrelated individuals with de novo SYNCRIP variants and provide a review of 5 additional subjects previously identified within large cohorts in the literature and databases.

Features included DD, ID (7/7 for whom this information was available), ASD or autistic features (4/7). MRI abnormalities were observed in 3 (widening of CSF spaces, periventricular nodular heterotopia, prominent lat. ventricles). Epilepsy (myoclonic-astatic epilepsy / Doose syndrome) was reported for 2(/8) individuals.

The 3 patients here reported were identified following trio/singleton exome with Sanger confirmation of the variants and their de novo occurrence.

Variants are in almost all cases de novo (7/7 for whom this was known) and in 5/8 cases were pLoF, in 2/8 missense SNVs while a case from DECIPHER had a 77.92 kb whole gene deletion not involving other genes with unknown inheritance.

Overall the variants reported to date include [NM_006372.5]:
1 - c.858_859del p.(Gly287Leufs*5)
2 - c.854dupA p.(Asn285Lysfs*8)
3 - c.734T>C p.(Leu245Pro)
4 - chr6:85605276-85683190 deletion (GRCh38)
5 - c.629T>C p.(Phe210Ser)
6 - c.1573_1574delinsTT p.(Gln525Leu)
7 - c.1247_1250del p.(Arg416Lysfs*145)
8 - c.1518_1519insC p.(Ala507Argfs*14)

[P1-3: this report, P4: DECIPHER 254774, P5-6: Guo et al 2019 - PMID: 30504930, P7: Lelieveld et al 2016 - PMID: 27479843, P8: Rauch et al 2012 - PMID: 23020937 / all other Refs not here reviewed, clinical details summarized by Semino et al in table 1]

SYNCRIP (also known as HNRNPQ) encodes synaptotagmin‐binding cytoplasmic RNA‐interacting protein. As the authors note, this RNA-binding protein is involved in multiple pathways associated with neuronal/muscular developmental disorders. Several references are provided for its involvement in regulation of RNA metabolism, among others sequence recognition, pre-mRNA splicing, translation, transport and degradation.

Mutations in other RNA-interacting proteins and hnRNP members (e.g. HNRNPU, HNRNPD) are associated with NDD.

The missense variant (p.Leu245Pro) is within RRM2 one of the 3 RNA recognition motif (RRM) domains of the protein. These 3 domains, corresponding to the central part of the protein (aa 150-400), are relatively intolerant to variation (based on in silico predictions and/or variation in gnomAD). Leu245 localizes within an RNA binding pocket and in silico modeling suggests alteration of the tertiary structure and RNA-binding capacity of RRM2.

There are no additional studies performed.

Overall haploinsufficiency appears to be the underlying disease mechanism based on the truncating variants and the gene deletion. [pLI in gnomAD : 1, %HI : 2.48%]

Animal models are not discussed.

There is no associated phenotype in OMIM. This gene is included in the DD panel of G2P (monoallelic LoF variants / SYNCRIP-related developmental disorder). SysID also lists SYNCRIP within the current primary ID genes.
Sources: Literature
Mendeliome v0.8521 MSN Zornitza Stark Marked gene: MSN as ready
Mendeliome v0.8518 JAGN1 Zornitza Stark Marked gene: JAGN1 as ready
Mendeliome v0.8515 ITGB2 Zornitza Stark Marked gene: ITGB2 as ready
Mendeliome v0.8512 CAMK4 Zornitza Stark Marked gene: CAMK4 as ready
Mendeliome v0.8511 CAMK4 Zornitza Stark gene: CAMK4 was added
gene: CAMK4 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: CAMK4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CAMK4 were set to 30262571; 33098801; 33211350
Phenotypes for gene: CAMK4 were set to Intellectual disability; Autism; Behavioral abnormality; Abnormality of movement; Dystonia; Ataxia; Chorea; Myoclonus
Review for gene: CAMK4 was set to GREEN
Added comment: 3 publications by Zech et al (2018, 2020 - PMIDs : 30262571, 33098801, 33211350) provide clinical details on 3 individuals, each harboring a private de novo CAMK4 variant.

Overlapping features included DD, ID, behavoral issues, autism and abnormal hyperkinetic movements. Dystonia and chorea in all 3 appeared 3-20 years after initial symptoms.

CAMK4 encodes Calcium/Calmodulin-dependent protein kinase IV, an important mediator of calcium-mediated activity and dynamics, particularly in the brain. It is involved in neuronal transmission, synaptic plasticity, and neuronal gene expression required for brain development and neuronal homeostasis (summary by OMIM based on Zech et al, 2018).

The 473 aa enzyme has a protein kinase domain (aa 46-300) and a C-terminal autoregulatory domain (aa 305-341) the latter comprising an autoinhibitory domain (AID / aa 305-321) and a calmodulin-binding domain (CBD / aa 322-341) [NP_001735.1 / NM_001744.4 - also used below].

Variants in all 3 subjects were identified following trio-WES and were in all cases protein-truncating, mapping to exon 10 or exon 10-intron 10 junction, expected to escape NMD and cause selective abrogation of the autoinhibitory domain (aa 305-321) leading overall to gain-of-function.

Variation databases include pLoF CAMK4 variants albeit in all cases usptream or downstream of this region (pLI of this gene in gnomAD: 0.51). Variants leading to selective abrogation of the autoregulatory domain have not been reported.

Extensive evidence for the GoF effect of the variant has been provided in the first publication. Several previous studies have demonstrated that abrogation of the AID domain leads to consitutive activation (details below).

Mouse models - though corresponding to homozygous loss of function - support a role for CAMKIV in cognitive and motor symptoms. Null mice display tremulous and ataxic movements, deficiencies in balance and sensorimotor performance associated with reduced number of Purkinje neurons (Ribar et al 2000, PMID: 11069976 - not reviewed). Wei et al (2002, PMID: 12006982 - not reviewed) provided evidence for alteration in hippocampal physiology and memory function.

Heterozygous mutations in other genes for calcium/calmodulin-dependent protein kinases (CAMKs) e.g. CAMK2A/CAMK2B (encoding subunits of CAMKII) have been reported in individuals with ID.

---

The proband in the first publication (PMID: 30262571) was a male with DD, ID, behavioral difficulties (ASD, autoaggression, stereotypies) and hyperkinetic movement disorder (myoclonus, chorea, ataxia) with severe generalized dystonia (onset at the age of 13y). Brain MRI demonstrated cerebellar atrophy.

Extensive work-up incl. karyotyping, CMA, DYT-TOR1A, THAP1, GCH1, SCA1/2/3/6/7/8/12/17, Friedreich's ataxia and FMR1 analysis was negative.F

Trio WES identified a dn splice site variant (c.981+1G>A) in the last exon-intron junction. RT-PCR followed by gel electrophoresis and Sanger in fibroblasts from an affected and control subject revealed that the proband had - as predicted by the type/location of the variant - in equal amount 2 cDNA products, a normal as well as a truncated one.

Sequencing of the shortest revealed utilization of a cryptic donor splice site upstream of the mutated donor leading to a 77bp out-of-frame deletion and introduction of a premature stop codon in the last codon (p.Lys303Serfs*28). Western blot in fibroblast cell lines revealed 2 bands corresponding to the normal protein product as well as to the p.Lys303Serfs*28 although expression of the latter was lower than that of the full length protein.

Several previous studies have shown that mutant CAMKIV species that lack the autoinhibitory domain are consitutively active (several Refs provided). Among others Chatila et al (1996, PMID: 8702940) studied an in vitro-engineered truncation mutant (Δ1-317 - truncation at position 317 of the protein) with functionally validated gain-of-function effect.

To prove enhanced activity of the splicing variant, Zech et al assessed phosphorylation of CREB (cyclic AMP-responsive element binding protein), a downstream substrate of CAMKIV. Immunobloting revealed significant increase of CREB phosphorylation in patient fibroblasts compared to controls. Overactivation of CAMKIV signaling was reversed when cells were treated with STO-609 an inhibitor of CAMKK, the ustream activator of CAMKIV.

Overall the authors demonstrated that loss of CAMKIV autoregulatory domain due to this splice variant had a gain-of-function effect.

----

Following trio-WES, Zech et al (2020 - PMID: 33098801) identified another relevant subject within cohort of 764 individuals with dystonia. This 12-y.o. male, harboring a different variant affecting the same donor site (c.981+1G>T), presented DD, ID, dystonia (onset at 3y) and additional movement disorders (myoclonus, ataxia) as well as similar behavior (ASD, autoaggression, stereotypies). [Details in suppl. p20].

----

Finally Zech et al (2020 - PMID: 33211350) reported on a 24-y.o. woman with adolescence onset choreodystonia. Other features included DD, moderate ID, absence seizures in infancy, OCD with anxiety and later diagnosis of ASD. Trio WES revealed a dn stopgain variant (c.940C>T; p.Gln314*).
Sources: Expert Review
Mendeliome v0.8510 FERMT3 Zornitza Stark Marked gene: FERMT3 as ready
Mendeliome v0.8506 CYBB Zornitza Stark Marked gene: CYBB as ready
Mendeliome v0.8503 CSF3R Zornitza Stark Marked gene: CSF3R as ready
Mendeliome v0.8497 DPYSL5 Zornitza Stark Phenotypes for gene: DPYSL5 were changed from Neurodevelopmental disorder with corpus callosum agenesis and cerebellar abnormalities to Ritscher-Schinzel syndrome 4, MIM# 619435; Neurodevelopmental disorder with corpus callosum agenesis and cerebellar abnormalities
Mendeliome v0.8496 RRP7A Zornitza Stark Phenotypes for gene: RRP7A were changed from Microcephaly to Microcephaly 28, primary, autosomal recessive MIM#619453
Mendeliome v0.8495 RRP7A Zornitza Stark edited their review of gene: RRP7A: Changed phenotypes: Microcephaly 28, primary, autosomal recessive MIM#619453
Mendeliome v0.8495 CEBPE Zornitza Stark Marked gene: CEBPE as ready
Mendeliome v0.8492 NCF1 Zornitza Stark Marked gene: NCF1 as ready
Mendeliome v0.8487 COL25A1 Zornitza Stark edited their review of gene: COL25A1: Added comment: PMID: 2643702 - Patient: 273182 reported in DECIPHER, chet COL25A1 missense variants (listed as Likely Pathogenic). Phenotype includes Duane anomaly of the eye.

PMID: 31875546 - Mouse models, including Col25a1 KO and muscle-specific KO mice showed a significant reduction in the number of motor neurons in the cranial nerve nuclei, including the oculomotor, trochlear, trigeminal, and facial motor nuclei. Abnormalities in motor innervation of muscles of the head, such as the extraocular and masseter muscles, were also observed

PMID: 31875546 - Functional studies in human cell lines showed that the reported COL25A1 variants (G382R and G497X) impaired the interaction of COL25A1 with receptor protein tyrosine phosphatases, thereby reducing the ability to attract motor axons.; Changed rating: GREEN; Changed publications: 25500261, 26486031, 31875546, 26437029
Mendeliome v0.8485 STX3 Zornitza Stark changed review comment from: At least 5 unrelated families reported.; to: At least 5 unrelated families reported.

STX3 isoform B (STX3B) predominates in the retina, so mutations in the STX3 gene that affect both isoform A (STX3A) and STX3B cause both retinal and gastrointestinal disease (RDMVID), whereas mutations in STX3 affecting only the STX3A transcript cause only diarrhoea.
Mendeliome v0.8484 C1QA Zornitza Stark Marked gene: C1QA as ready
Mendeliome v0.8481 CIITA Zornitza Stark Marked gene: CIITA as ready
Mendeliome v0.8481 CIITA Zornitza Stark Phenotypes for gene: CIITA were changed from to Bare Lymphocyte Syndrome, type II, complementation group A MIM# 209920; varied ID; bronchiolitis; pneumonia; severe autoimmune cytopaenia; CD4 T-cell lymphopaenia; hypogammaglobulinemia; absence of antigen-induced immune response; chronic diarrhoea; recurrent respiratory infections; recurrent gastroenteritis; failure to thrive; liver/biliary tract disease
Mendeliome v0.8478 CIITA Zornitza Stark reviewed gene: CIITA: Rating: GREEN; Mode of pathogenicity: None; Publications: 8402893, 9099848, 11862382, 28676232, 24789686, 20197681, 11466404, 15821736, 12910265; Phenotypes: Bare Lymphocyte Syndrome, type II, complementation group A MIM# 209920, varied ID, bronchiolitis, pneumonia, severe autoimmune cytopaenia, CD4 T-cell lymphopaenia, hypogammaglobulinemia, absence of antigen-induced immune response, chronic diarrhoea, recurrent respiratory infections, recurrent gastroenteritis, failure to thrive, liver/biliary tract disease; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8478 CD40LG Zornitza Stark Marked gene: CD40LG as ready
Mendeliome v0.8478 CD40LG Zornitza Stark Phenotypes for gene: CD40LG were changed from to Immunodeficiency, X-linked, with hyper-IgM MIM# 308230; Severe opportunistic infections (recurrent), idiopathic neutropaenia; dysgammaglobulinaemia hepatitis; cholangitis; cholangiocarcinoma; autoimmune blood cytopenias; haemolytic anaemia; thrombocytopaenia; diarrhoea; peripheral neuroectodermal tumours
Mendeliome v0.8475 CD3G Zornitza Stark Marked gene: CD3G as ready
Mendeliome v0.8475 CD3G Zornitza Stark Phenotypes for gene: CD3G were changed from to Immunodeficiency 17, CD3 gamma deficient MIM# 615607; immune deficiency; autoimmunity; failure to thrive; recurrent gastrointestinal infections; recurrent respiratory infections; autoimmune haemolytic anaemia; bronchiolitis obliterans; low CD3 complex; partial T lymphocytopenia; intractable diarrhoea.
Mendeliome v0.8472 WDR26 Zornitza Stark Marked gene: WDR26 as ready
Mendeliome v0.8470 WDR26 Zornitza Stark Phenotypes for gene: WDR26 were changed from to Skraban-Deardorff syndrome, MIM#617616
Mendeliome v0.8468 CD40LG Danielle Ariti reviewed gene: CD40LG: Rating: GREEN; Mode of pathogenicity: None; Publications: 7679801, 7679206, 8094231, 9933119, 15358621, 15997875, 7678782, 7915248, 15367912, 7518839, 16311023, 9933119, 12402041, 7882172, 33475257; Phenotypes: mmunodeficiency, X-linked, with hyper-IgM MIM# 308230, Severe opportunistic infections (recurrent), idiopathic neutropaenia, dysgammaglobulinaemia hepatitis, cholangitis, cholangiocarcinoma, autoimmune blood cytopenias, haemolytic anaemia, thrombocytopaenia, diarrhoea, peripheral neuroectodermal tumours; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.8468 CD3G Danielle Ariti reviewed gene: CD3G: Rating: GREEN; Mode of pathogenicity: None; Publications: 2872416, 1635567, 17277165, 23590417, 24910257, 18482219, 31921117, 11160319; Phenotypes: Immunodeficiency 17, CD3 gamma deficient MIM# 615607, immune deficiency, autoimmunity, failure to thrive, recurrent gastrointestinal infections, recurrent respiratory infections, autoimmune haemolytic anaemia, bronchiolitis obliterans, low CD3 complex, partial T lymphocytopenia, intractable diarrhoea.; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8468 WDR26 Paul De Fazio reviewed gene: WDR26: Rating: GREEN; Mode of pathogenicity: None; Publications: 28686853, 33506510, 33675273; Phenotypes: Skraban-Deardorff syndrome; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v0.8467 ABCD4 Zornitza Stark Marked gene: ABCD4 as ready
Mendeliome v0.8464 ABCD1 Zornitza Stark Marked gene: ABCD1 as ready
Mendeliome v0.8460 RAD21 Zornitza Stark reviewed gene: RAD21: Rating: GREEN; Mode of pathogenicity: None; Publications: 14638363, 32193685, 25575569; Phenotypes: Mungan syndrome, MIM# 611376: Barrett esophagus, megaduodenum, cardiac abnormalities; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8460 CCBE1 Zornitza Stark Marked gene: CCBE1 as ready
Mendeliome v0.8457 CD27 Zornitza Stark Marked gene: CD27 as ready
Mendeliome v0.8454 ZNF148 Zornitza Stark Marked gene: ZNF148 as ready
Mendeliome v0.8453 RAC3 Zornitza Stark Marked gene: RAC3 as ready
Mendeliome v0.8452 PCLO Zornitza Stark Phenotypes for gene: PCLO were changed from to Pontocerebellar hypoplasia, type 3, MIM#608027
Mendeliome v0.8449 ZNF148 Natalie Tan gene: ZNF148 was added
gene: ZNF148 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZNF148 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ZNF148 were set to PMID: 27964749
Phenotypes for gene: ZNF148 were set to Global developmental delay, absent or hypoplastic corpus callosum, and dysmorphic facies; MIM#617260
Review for gene: ZNF148 was set to GREEN
Added comment: Four unrelated individuals with de novo heterozygous nonsense or frameshift mutations (all resulting in premature termination codons in the last exon of ZNF148, predicted to escape nonsense-mediated mRNA decay and result in expression of a truncated protein). Phenotype characterised by underdevelopment of the corpus callosum, mild to moderate developmental delay and ID, variable microcephaly or mild macrocephaly, short stature, feeding problems, facial dysmorphisms, and cardiac and renal malformations. No functional studies to date.
Sources: Literature
Mendeliome v0.8449 RAC3 Natalie Tan gene: RAC3 was added
gene: RAC3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RAC3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RAC3 were set to PMID: 30293988; 29276006
Phenotypes for gene: RAC3 were set to Neurodevelopmental disorder with structural brain anomalies and dysmorphic facies, MIM#618577
Review for gene: RAC3 was set to GREEN
Added comment: Multiple unrelated individuals with heterozygous missense variants and a concordant phenotype (severe intellectual disability with brain malformations). No functional studies to date.
Sources: Literature
Mendeliome v0.8449 CHRNA4 Zornitza Stark Marked gene: CHRNA4 as ready
Mendeliome v0.8445 SYP Elena Savva reviewed gene: SYP: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 23966691, 19377476; Phenotypes: Mental retardation, X-linked 96 MIM#300802; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.8445 ZIC3 Zornitza Stark Marked gene: ZIC3 as ready
Mendeliome v0.8445 ZIC3 Zornitza Stark Phenotypes for gene: ZIC3 were changed from to Congenital heart defects, nonsyndromic, 1, X-linked (MIM#306955); Heterotaxy, visceral, 1, X-linked (MIM#306955); VACTERL association, X-linked, MIM# 314390
Mendeliome v0.8442 ZIC3 Zornitza Stark edited their review of gene: ZIC3: Changed phenotypes: Congenital heart defects, nonsyndromic, 1, X-linked (MIM#306955), Heterotaxy, visceral, 1, X-linked (MIM#306955), VACTERL association, X-linked, MIM# 314390
Mendeliome v0.8442 VPS13B Zornitza Stark Marked gene: VPS13B as ready
Mendeliome v0.8440 TULP1 Zornitza Stark Marked gene: TULP1 as ready
Mendeliome v0.8437 TOPORS Zornitza Stark Marked gene: TOPORS as ready
Mendeliome v0.8434 SUFU Zornitza Stark Marked gene: SUFU as ready
Mendeliome v0.8431 SUFU Zornitza Stark changed review comment from: Two unrelated families described with what are postulated to be hypomorphic bi-allelic variants in this gene and Joubert syndrome. Note gene also causes dominant Basal Cell Nevus Syndrome.; to: Two unrelated families described with what are postulated to be hypomorphic bi-allelic variants in this gene and Joubert syndrome.
Mendeliome v0.8431 SUFU Zornitza Stark edited their review of gene: SUFU: Added comment: Mono-allelic variants are also associated with Basal cell nevus syndrome/predisposition to medulloblastoma.; Changed rating: GREEN; Changed publications: 28965847, 19533801, 31485359; Changed phenotypes: Joubert syndrome 32, MIM#617757, Basal cell nevus syndrome, MIM# 109400; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8431 SCNN1G Zornitza Stark Marked gene: SCNN1G as ready
Mendeliome v0.8428 SCNN1G Zornitza Stark edited their review of gene: SCNN1G: Added comment: Variants resulting in constitutive activation of epithelial sodium channel activity have been demonstrated in the beta and gamma subunits as the cause of the autosomal dominant form of hypertension, Liddle syndrome, which is characterized by volume expansion, hypokalemia, and alkalosis.

Variants causing loss of epithelial sodium channel activity cause the converse phenotype of volume depletion, hyperkalaemia and acidosis characteristic of patients with pseudohypoaldosteronism type I.

Well established gene-disease associations.; Changed rating: GREEN; Changed phenotypes: Liddle syndrome 2, MIM# 618114, Pseudohypoaldosteronism, type I, MIM# 264350; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8428 SCLT1 Zornitza Stark Marked gene: SCLT1 as ready
Mendeliome v0.8428 SCLT1 Zornitza Stark Phenotypes for gene: SCLT1 were changed from to Orofaciodigital syndrome type IX; Senior-Loken syndrome; Bardet-Biedl syndrome
Mendeliome v0.8425 RPGR Zornitza Stark Marked gene: RPGR as ready
Mendeliome v0.8422 PRKCSH Zornitza Stark Marked gene: PRKCSH as ready
Mendeliome v0.8418 POC1B Zornitza Stark Marked gene: POC1B as ready
Mendeliome v0.8415 PMM2 Zornitza Stark Marked gene: PMM2 as ready
Mendeliome v0.8412 PKHD1 Zornitza Stark Marked gene: PKHD1 as ready
Mendeliome v0.8410 MUC1 Zornitza Stark Marked gene: MUC1 as ready
Mendeliome v0.8410 MUC1 Zornitza Stark Phenotypes for gene: MUC1 were changed from to Medullary cystic kidney disease 1 (MIM#174000)
Mendeliome v0.8407 MUC1 Zornitza Stark edited their review of gene: MUC1: Added comment: Well established gene-disease association, but note main variant type not readily tractable by NGS.; Changed rating: GREEN; Changed mode of pathogenicity: Other; Changed publications: Medullary cystic kidney disease 1 (MIM#174000); Changed phenotypes: Medullary cystic kidney disease 1 (MIM#174000); Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8407 KIF7 Zornitza Stark Marked gene: KIF7 as ready
Mendeliome v0.8404 KIAA0753 Zornitza Stark Marked gene: KIAA0753 as ready
Mendeliome v0.8401 KIAA0586 Zornitza Stark Marked gene: KIAA0586 as ready
Mendeliome v0.8398 IFT52 Zornitza Stark Marked gene: IFT52 as ready
Mendeliome v0.8395 IFT27 Zornitza Stark Marked gene: IFT27 as ready
Mendeliome v0.8395 IFT27 Zornitza Stark Phenotypes for gene: IFT27 were changed from to Bardet-Biedl syndrome 19, MIM#615996
Mendeliome v0.8392 POLG2 Zornitza Stark Marked gene: POLG2 as ready
Mendeliome v0.8389 PCDHGC4 Zornitza Stark Marked gene: PCDHGC4 as ready
Mendeliome v0.8388 PCDHGC4 Zornitza Stark gene: PCDHGC4 was added
gene: PCDHGC4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PCDHGC4 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PCDHGC4 were set to 34244665
Phenotypes for gene: PCDHGC4 were set to Intellectual disability; Seizures
Review for gene: PCDHGC4 was set to GREEN
Added comment: Eight variants reported in 19 members of nine unreleted families with a neurodevelopmental syndrome. Severe or moderate intellectual disabilty in eight families and seizures in four families. Four of the variants were LoF, in silico analysis of the remaining missense (n=3) and splice variants were predicted to be pathogenic.
Sources: Literature
Mendeliome v0.8387 ATP6V0A4 Zornitza Stark Marked gene: ATP6V0A4 as ready
Mendeliome v0.8387 ATP6V0A4 Zornitza Stark Phenotypes for gene: ATP6V0A4 were changed from to Renal tubular acidosis, distal, autosomal recessive, MIM#602722
Mendeliome v0.8384 ATP6V0A4 Zornitza Stark reviewed gene: ATP6V0A4: Rating: GREEN; Mode of pathogenicity: None; Publications: 12414817, 10973252; Phenotypes: Renal tubular acidosis, distal, autosomal recessive, MIM#602722; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8384 ICK Zornitza Stark Marked gene: ICK as ready
Mendeliome v0.8381 HNF1B Zornitza Stark Marked gene: HNF1B as ready
Mendeliome v0.8379 GDF1 Zornitza Stark Marked gene: GDF1 as ready
Mendeliome v0.8379 GDF1 Zornitza Stark Phenotypes for gene: GDF1 were changed from to Congenital heart defects, multiple types, 6 613854; Right atrial isomerism (Ivemark) 208530
Mendeliome v0.8376 GDF1 Zornitza Stark edited their review of gene: GDF1: Added comment: PMID: 32144877 - founder PTC in Arab population causing congenital heart detects AND right isomerism in 3 (unrelated?) families. Reviews other publications and reports additional chet (two PTC) or homozygous (missense) families with situs inversus and/or heart defects. No apparent genotype-phenotype correlation btw dominant and recessive disease.; Changed rating: GREEN; Changed publications: 32144877; Changed phenotypes: Congenital heart defects, multiple types, 6 613854, Right atrial isomerism (Ivemark) 208530; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8376 EVC2 Zornitza Stark Marked gene: EVC2 as ready
Mendeliome v0.8373 EVC Zornitza Stark Marked gene: EVC as ready
Mendeliome v0.8370 DCDC2 Zornitza Stark Marked gene: DCDC2 as ready
Mendeliome v0.8367 DCDC2 Zornitza Stark changed review comment from: Only a single case with nephronophthisis, most reports are for cholangitis, though zebrafish model has renal cysts.; to: At least 5 families reported with cholangitis, and two with nephronophthisis, though zebrafish model has renal cysts.
Mendeliome v0.8367 CRELD1 Zornitza Stark Marked gene: CRELD1 as ready
Mendeliome v0.8367 CRELD1 Zornitza Stark Phenotypes for gene: CRELD1 were changed from to Atrioventricular septal defect, partial, with heterotaxy syndrome, MIM# 606217
Mendeliome v0.8364 CRELD1 Zornitza Stark reviewed gene: CRELD1: Rating: GREEN; Mode of pathogenicity: None; Publications: 22740159; Phenotypes: Atrioventricular septal defect, partial, with heterotaxy syndrome, MIM# 606217; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8364 CRB2 Zornitza Stark Marked gene: CRB2 as ready
Mendeliome v0.8361 CEP55 Zornitza Stark Marked gene: CEP55 as ready
Mendeliome v0.8361 CEP55 Zornitza Stark Phenotypes for gene: CEP55 were changed from to Multinucleated neurons, anhydramnios, renal dysplasia, cerebellar hypoplasia, and hydranencephaly, MIM# 236500
Mendeliome v0.8358 CEP55 Zornitza Stark reviewed gene: CEP55: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Multinucleated neurons, anhydramnios, renal dysplasia, cerebellar hypoplasia, and hydranencephaly, MIM# 236500; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8358 CENPF Zornitza Stark Marked gene: CENPF as ready
Mendeliome v0.8355 C8orf37 Zornitza Stark Marked gene: C8orf37 as ready
Mendeliome v0.8355 C8orf37 Zornitza Stark Phenotypes for gene: C8orf37 were changed from to Bardet-Biedl syndrome 21, MIM#617406; Retinitis pigmentosa 64, MIM#614500
Mendeliome v0.8352 C2CD3 Zornitza Stark Marked gene: C2CD3 as ready
Mendeliome v0.8348 CHRM3 Zornitza Stark Marked gene: CHRM3 as ready
Mendeliome v0.8345 ARHGAP42 Zornitza Stark Marked gene: ARHGAP42 as ready
Mendeliome v0.8345 ARHGAP42 Zornitza Stark Gene: arhgap42 has been classified as Red List (Low Evidence).
Mendeliome v0.8345 ARHGAP42 Zornitza Stark gene: ARHGAP42 was added
gene: ARHGAP42 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ARHGAP42 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ARHGAP42 were set to 34232960
Phenotypes for gene: ARHGAP42 were set to Interstitial lung disease; systemic hypertension; immunological abnormalities
Review for gene: ARHGAP42 was set to RED
Added comment: Single individual reported with homozygous LoF variant, chILD disorder, systemic hypertension, and immunological findings.
Sources: Literature
Mendeliome v0.8344 KIAA0556 Zornitza Stark Marked gene: KIAA0556 as ready
Mendeliome v0.8339 LINGO4 Zornitza Stark Marked gene: LINGO4 as ready
Mendeliome v0.8338 ARFGEF3 Zornitza Stark Marked gene: ARFGEF3 as ready
Mendeliome v0.8338 ARFGEF3 Zornitza Stark Gene: arfgef3 has been classified as Green List (High Evidence).
Mendeliome v0.8338 ARFGEF3 Zornitza Stark Classified gene: ARFGEF3 as Green List (high evidence)
Mendeliome v0.8338 ARFGEF3 Zornitza Stark Gene: arfgef3 has been classified as Green List (High Evidence).
Mendeliome v0.8337 IMPDH2 Zornitza Stark Marked gene: IMPDH2 as ready
Mendeliome v0.8335 LINGO4 Laura Raiti gene: LINGO4 was added
gene: LINGO4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LINGO4 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LINGO4 were set to PMID: 33098801
Phenotypes for gene: LINGO4 were set to Developmental Delay, Intellectual disability, speech disorder
Review for gene: LINGO4 was set to GREEN
Added comment: 3 unrelated individuals
1 x individual compound heterozygous for 2x missense variants:
c.679C>A; c.1262G>A p.Leu227Met; p.Arg421Gln comp het. Phenotype: infancy-onset
generalized dystonia; DD/hypo, ID, speech disorder (isolated plus non-MD symptoms) NDD

1 x individual homozygous for missense variant: c.679C>A p.Leu227Met Phenotype: DD/hypo, ID, speech disorder

1 x individual homozygous for missense variant: c.1673G>A p.Ser558Asn Phenotype: DD/hypo, ID, speech disorder
Sources: Literature
Mendeliome v0.8335 ARFGEF3 Laura Raiti gene: ARFGEF3 was added
gene: ARFGEF3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ARFGEF3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ARFGEF3 were set to PMID: 33098801
Phenotypes for gene: ARFGEF3 were set to Dystonia
Review for gene: ARFGEF3 was set to GREEN
Added comment: 3 x unrelated individuals
1 x de novo missense variant: c.6212T>C p.Met2071Thr, phenotype: infancy-onset generalized dystonia (isolated)
1x stop-gain variant c.1773T>G p.Tyr591* (inherited from mosaic mother), phenotype: infancy-onset generalized dystonia (isolated)
1 x de novo missense variant (Gene Matcher) c.250A>C p.Met84Leu childhood-onset generalized dystonia (isolated)
Sources: Literature
Mendeliome v0.8335 IMPDH2 Laura Raiti gene: IMPDH2 was added
gene: IMPDH2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: IMPDH2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: IMPDH2 were set to PMID: 33098801
Phenotypes for gene: IMPDH2 were set to Dystonia
Review for gene: IMPDH2 was set to GREEN
Added comment: 6 unrelated individuals
1x individual in a dystonia cohort index case with infancy-onset dystonia and other neurological manifestations with a de-novo missense variant, c.338G>A (p.Gly113Glu) in IMPDH2, predicted to disrupt an invariant residue within the cystathionine-β-synthase (CBS) domain pair of the encoded protein.
IMPDH2 encodes IMPDH2, a key enzyme in the purine biosynthetic pathway, expressed throughout the brain and not linked previously to any human Mendelian condition.
1x individual with a de-novo substitution, c.337G>A (p.Gly113Arg), was found in in-house whole-exome sequencing data from 500 individuals with neurodevelopmental disorders. Through GeneMatcher, de novo variants identified:
3 x missense: c.729G>C (p.Gln243His), c.619G>C (p.Gly207Arg), and c.619G>A (p.Gly207Arg)
1 x deletion: c.478_480delTCC (p.Ser160del)
The six variants were predicted to be deleterious and none of them seen in control databases. All affected conserved amino acids and resided in and around the cystathionine-β-synthase domain pair.
The described variants are situated in and around the CBS domain pair, a regulatory element in which clustering of pathogenic missense variants has already been shown for the homologue of IMPDH2, IMPDH1.

The variant carriers shared similar neurodevelopmental phenotypes. Apart from the dystonia cohort index case, one participant had evidence of dystonic posturing. Modelling of the variants on 3D protein structures revealed spatial clustering near specific functional sites, predicted to result in deregulation of IMPDH2 activity. Additionally, thermal-shift assays showed that the c.619G>A (p.Gly207Arg) variant, identified as within the CBS domain pair, and c.729G>C (p.Gln243His), which is in close vicinity, affected the stability or folding behaviour of IMPDH2.
Sources: Literature
Mendeliome v0.8334 DYNC2H1 Zornitza Stark changed review comment from: More than 50 unrelated families reported.; to: More than 50 unrelated families reported with predominantly skeletal dysplasia.

Association with RP: - Five affected probands with homozygous and compound heterozygous missense and PTC variants - Associated with the NM_001080463.1 transcript (predominant isoform in retina from retinal organoid studies). PMID 32753734
Mendeliome v0.8334 STK36 Zornitza Stark Phenotypes for gene: STK36 were changed from Primary ciliary dyskinesia to Ciliary dyskinesia, primary, 46, MIM# 619436
Mendeliome v0.8333 STK36 Zornitza Stark edited their review of gene: STK36: Changed phenotypes: Ciliary dyskinesia, primary, 46, MIM# 619436
Mendeliome v0.8333 KIF20A Zornitza Stark Marked gene: KIF20A as ready
Mendeliome v0.8333 KIF20A Zornitza Stark gene: KIF20A was added
gene: KIF20A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KIF20A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: KIF20A were set to 29357359
Phenotypes for gene: KIF20A were set to Cardiomyopathy, familial restrictive, 6, MIM# 619433
Review for gene: KIF20A was set to GREEN
Added comment: Single family reported, two affected sibs, perinatal lethal cardiomyopathy, compound het variants in this gene.
Sources: Literature
Mendeliome v0.8331 B2M Zornitza Stark Marked gene: B2M as ready
Mendeliome v0.8331 B2M Zornitza Stark Phenotypes for gene: B2M were changed from to Immunodeficiency 43 MIM# 241600; Sinopulmonary infections; Purple-red skin lesions; Decreased serum IgG; Decreased B cells; Absent β2m associated proteins MHC-I, CD1a, CD1b, and CD1c; MONDO:0009434; Amyloidosis, familial visceral, MIM# 105200
Mendeliome v0.8328 B2M Zornitza Stark reviewed gene: B2M: Rating: GREEN; Mode of pathogenicity: None; Publications: 4186801, 16549777, 25702838, 11118151, 6165007, 22693999; Phenotypes: Immunodeficiency 43 MIM# 241600, Sinopulmonary infections, Purple-red skin lesions, Decreased serum IgG, Decreased B cells, Absent β2m associated proteins MHC-I, CD1a, CD1b, and CD1c, MONDO:0009434, Amyloidosis, familial visceral, MIM# 105200; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8328 AK2 Zornitza Stark Phenotypes for gene: AK2 were changed from Reticular dysgenesis, MIM# 267500 to Reticular dysgenesis, MIM# 267500; MONDO:0009973
Mendeliome v0.8326 AK2 Zornitza Stark changed review comment from: Well established gene-disease association.; to: Well established gene-disease association.

PMID: 19043417 (2009). 6 affected individuals from 5 unrelated families (3 of the families showed evidence of consanguinity). Homozygous (5 individuals) and compound heterozygous (1 individual) variants in the AK2 gene. Variants included missense, deletion and inframe indel, resulting in protein LoF. Available parents were sequenced and found heterozygous for the variants, supporting bi-allelic inheritance.

PMID: 19043416 (2009). 7 affected individuals from 6 unrelated families (2 separate consanguineous & 4 non-consanguineous families). Homozygous and compound heterozygous variants detected (missense, deletion, inframe indel), resulting in protein LoF. Reticular dysgenesis phenotype including Leukopenia, lymphopenia and agranulocytosis in all affected individuals and sensorineural deafness in 7 individuals.
Mendeliome v0.8326 AK2 Zornitza Stark edited their review of gene: AK2: Changed phenotypes: Reticular dysgenesis, MIM# 267500, MONDO:0009973
Mendeliome v0.8326 TMEM126A Zornitza Stark Marked gene: TMEM126A as ready
Mendeliome v0.8323 MYC Zornitza Stark Marked gene: MYC as ready
Mendeliome v0.8318 ATG7 Zornitza Stark changed review comment from: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The ore severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature; to: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The more severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature
Mendeliome v0.8318 ATG7 Zornitza Stark changed review comment from: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The ore severely affected individuals had spastic paraplegia and inability to walk.
Sources: Literature; to: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The ore severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature
Mendeliome v0.8318 ATG7 Zornitza Stark Marked gene: ATG7 as ready
Mendeliome v0.8317 ATG7 Zornitza Stark gene: ATG7 was added
gene: ATG7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATG7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ATG7 were set to 34161705
Phenotypes for gene: ATG7 were set to Spinocerebellar ataxia, SCAR31, MIM#619422
Review for gene: ATG7 was set to GREEN
Added comment: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The ore severely affected individuals had spastic paraplegia and inability to walk.
Sources: Literature
Mendeliome v0.8316 ADA Zornitza Stark Marked gene: ADA as ready
Mendeliome v0.8313 C2orf69 Zornitza Stark Marked gene: C2orf69 as ready
Mendeliome v0.8312 C2orf69 Zornitza Stark gene: C2orf69 was added
gene: C2orf69 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: C2orf69 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: C2orf69 were set to 34038740; 33945503
Phenotypes for gene: C2orf69 were set to Combined oxidative phosphorylation deficiency-53 (COXPD53), MIM#619423
Review for gene: C2orf69 was set to GREEN
Added comment: PMID 34038740: 20 affected children from 8 unrelated families reported, presenting with fatal syndrome consisting of severe autoinflammation and progredient leukoencephalopathy with recurrent seizures; 12 of these subjects, whose DNA was available, segregated homozygous loss-of-function C2orf69 variants. Endogenous C2ORF69 was found to be (1) loosely bound to mitochondria, (2) affects mitochondrial membrane potential and oxidative respiration in cultured neurons, and (3) controls the levels of the glycogen branching enzyme 1 (GBE1) consistent with a glycogen-storage-associated mitochondriopathy. Zebrafish model.

PMID 33945503: 8 individuals from 5 families reported with muscle hypotonia, developmental delay, progressive microcephaly, and brain MRI abnormalities. Age at onset ranged from birth to 6 months of age. Six patients had vision impairment, liver abnormalities, inflammation/inflammatory arthritis, and 5 patients had seizures.
Sources: Literature
Mendeliome v0.8310 NYNRIN Zornitza Stark Marked gene: NYNRIN as ready
Mendeliome v0.8306 NYNRIN Laura Raiti gene: NYNRIN was added
gene: NYNRIN was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NYNRIN was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NYNRIN were set to PMID: 30885698
Review for gene: NYNRIN was set to AMBER
Added comment: 3 individuals with Wilms Tumour reported (2 children from 1 family, the 3rd child from a second family).
Biallelic truncating mutations in NYNRIN in three children with Wilms Tumour from two families, each parent was heterozygous for one of the mutations.
One of the affected children had an inguinal hernia and another had epilepsy, hypothyroidism, and intellectual disability.
Sources: Literature
Mendeliome v0.8306 YARS Zornitza Stark Phenotypes for gene: YARS were changed from Charcot-Marie-Tooth disease, dominant intermediate C 608323; Bi-allelic variants: ID, deafness, nystagmus to Charcot-Marie-Tooth disease, dominant intermediate C, MIM# 608323; MONDO:0012012; Infantile-onset multisystem neurologic, endocrine, and pancreatic disease 2, MIM# 619418
Mendeliome v0.8305 YARS Zornitza Stark edited their review of gene: YARS: Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8305 YARS Zornitza Stark edited their review of gene: YARS: Changed phenotypes: Charcot-Marie-Tooth disease, dominant intermediate C, MIM# 608323, MONDO:0012012, Infantile-onset multisystem neurologic, endocrine, and pancreatic disease 2, MIM# 619418
Mendeliome v0.8304 ZC3H14 Zornitza Stark edited their review of gene: ZC3H14: Added comment: PMID: 33710394
1 Finnish family with a hom splice variant, severe ID. Classed a VUS. No functional evidence; Changed publications: 21734151, 28666327, 33710394
Mendeliome v0.8304 ZC3H14 Zornitza Stark edited their review of gene: ZC3H14: Added comment: Two families and a mouse model.; Changed phenotypes: Mental retardation, autosomal recessive 56, OMIM# 617125
Mendeliome v0.8302 ATP1A2 Zornitza Stark Marked gene: ATP1A2 as ready
Mendeliome v0.8302 RNF2 Zornitza Stark Marked gene: RNF2 as ready
Mendeliome v0.8301 RING1 Zornitza Stark Marked gene: RING1 as ready
Mendeliome v0.8300 IRX5 Zornitza Stark Marked gene: IRX5 as ready
Mendeliome v0.8296 IRX6 Zornitza Stark Marked gene: IRX6 as ready
Mendeliome v0.8295 RAB3GAP1 Zornitza Stark Phenotypes for gene: RAB3GAP1 were changed from Warburg micro syndrome 1, MIM# 600118 to Warburg micro syndrome 1, MIM# 600118; Martsolf syndrome 2, MIM# 619420
Mendeliome v0.8293 RAB3GAP1 Zornitza Stark changed review comment from: Rare autosomal recessive syndrome characterized by microcephaly, microphthalmia, microcornea, congenital cataracts, optic atrophy, cortical dysplasia, in particular corpus callosum hypoplasia, severe mental retardation, spastic diplegia, and hypogonadism. Multiple families reported.; to: Warburg micro: Rare autosomal recessive syndrome characterized by microcephaly, microphthalmia, microcornea, congenital cataracts, optic atrophy, cortical dysplasia, in particular corpus callosum hypoplasia, severe ID, spastic diplegia, and hypogonadism. Multiple families reported.

Martsolf syndrome is characterised by cataracts, mild to severe ID, dysmorphic features. Two families reported.
Mendeliome v0.8293 RAB3GAP1 Zornitza Stark edited their review of gene: RAB3GAP1: Changed publications: 15696165, 20512159, 23420520, 23420520, 30730599; Changed phenotypes: Warburg micro syndrome 1, MIM# 600118, Martsolf syndrome 2, MIM# 619420
Mendeliome v0.8293 CXCR2 Zornitza Stark Marked gene: CXCR2 as ready
Mendeliome v0.8293 CXCR2 Zornitza Stark gene: CXCR2 was added
gene: CXCR2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: CXCR2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CXCR2 were set to 24777453
Phenotypes for gene: CXCR2 were set to WHIM syndrome 2, 619407
Review for gene: CXCR2 was set to RED
Added comment: 2 sisters with neutropaenia, myelokathexis, and recurrent bacterial infections and homozygous frameshift variant in this gene.
Sources: Expert list
Mendeliome v0.8292 RING1 Eleanor Williams gene: RING1 was added
gene: RING1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RING1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: RING1 were set to 29386386
Phenotypes for gene: RING1 were set to microcephaly; intellectual disability
Review for gene: RING1 was set to RED
Added comment: Not associated with any phenotype in OMIM.

PMID: 29386386 - Pierce et al 2018 - report a 13 yo female with a de novo RING1 p.R95Q variant and syndromic neurodevelopmental disabilities. Early motor and language development were normal but were delayed after the first year of life. Cognitive testing showed a verbal IQ of 55 and a visual performance IQ of 63. Head circumference at birth was -4.9 SD, and -4.2 SD at age 13 which falls into the severe microcephaly category. C. elegans with either the missense mutation or complete knockout of spat-3 (the suggested RING1 ortholog) were defective in monoubiquitylation of histone H2A and had defects in neuronal migration and axon guidance.
Sources: Literature
Mendeliome v0.8292 RNF2 Eleanor Williams gene: RNF2 was added
gene: RNF2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RNF2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: RNF2 were set to 33864376
Phenotypes for gene: RNF2 were set to epilepsy; intellectual disability; intrauterine growth retardation
Review for gene: RNF2 was set to AMBER
Added comment: Not associated with any phenotype in OMIM.

PMID:33864376 (Luo et al 2021) report 2 cases of children with de novo missense variants (p.R70H and p.S82R) in RNF2 and a phenotype of intrauterine growth retardation, severe intellectual disabilities, behavioral problems, seizures, feeding difficulties and dysmorphic features. Seizures started in infancy. Both variants are absent from gnomad. Functional studies in Drosophila showed that the disease-linked variants (p.R70H and p.S82R) behave as LoF alleles.
Sources: Literature
Mendeliome v0.8292 IRX5 Eleanor Williams changed review comment from: Associated with Hamamy syndrome #611174 (AR) in OMIM. Hamamy syndrome is characterised by craniofacial dysmorphism, hearing loss, skeletal anomalies, microcytic hypochromic anemia and congenital heart defects. Severe myopia has also been reported. Homozygous missense variants in IRX5 were reported in 2 families with this condition.

Cone dystrophy
-------------------
PMID: 33891002 - Khol et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments.

Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected.

They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae.; to: Associated with Hamamy syndrome #611174 (AR) in OMIM. Hamamy syndrome is characterised by craniofacial dysmorphism, hearing loss, skeletal anomalies, microcytic hypochromic anemia and congenital heart defects. Severe myopia has also been reported. Homozygous missense variants in IRX5 were reported in 2 families with this condition (PMID: 22581230;17230486)

Duplication of gene
-------------------
PMID: 33891002 - Kohl et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments.

Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected.

They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae.

Loss of function/gene
---------
PMID: 28041643 - Carss et al 2017 - screened a cohort of 722 individuals with inherited retinal disease using WES/WGS. 1 case reported with a biallelic deletion in IRX5 reported which leads to a frameshift ENST00000394636.4; c.1362_1366delTAAAG, p.Lys455ProfsTer19 in a patient with retinitis pigmentosa.

PMID: 32045705 - Apuzzo et al 2020 - report 2 cases of loss of a region in 16q12.1q21 which encompasses IRX5 and IRX6 and many other genes, which together with 3 other previous reports of deletions in this region help define a syndrome with features that include dysmorphic features, short stature, microcephaly, global developmental delay/intellectual disability, autism spectrum disorder (ASD) and ocular abnormalities (nystagmus and strabismus).
Mendeliome v0.8292 IRX6 Eleanor Williams changed review comment from: Not associated with any disorder in OMIM or Gene2Phenotype.

PMID: 33891002 - Khol et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments.

Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected.

They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae.
Sources: Literature; to: Not associated with any disorder in OMIM or Gene2Phenotype.

PMID: 33891002 - Kohl et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments.

Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected.

They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae.
Sources: Literature
Mendeliome v0.8292 SLCO2A1 Zornitza Stark Marked gene: SLCO2A1 as ready
Mendeliome v0.8290 HID1 Zornitza Stark Marked gene: HID1 as ready
Mendeliome v0.8289 HID1 Zornitza Stark gene: HID1 was added
gene: HID1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HID1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HID1 were set to 33999436
Phenotypes for gene: HID1 were set to Syndromic infantile encephalopathy; Hypopituitarism
Review for gene: HID1 was set to GREEN
Added comment: 7 individuals from 6 unrelated families reported. Clinical features included: hypopituitarism in combination with brain atrophy, thin corpus callosum, severe developmental delay, visual impairment, and epilepsy
Sources: Literature
Mendeliome v0.8288 KIF1B Zornitza Stark Marked gene: KIF1B as ready
Mendeliome v0.8288 KIF1B Zornitza Stark Phenotypes for gene: KIF1B were changed from to Charcot-Marie-Tooth disease, type 2A1 MIM#118210; Hypotonia, coloboma, hypoplasia of the corpus callosum, severe neurodevelopmental delay
Mendeliome v0.8285 NUF2 Zornitza Stark Marked gene: NUF2 as ready
Mendeliome v0.8284 ERGIC3 Seb Lunke Marked gene: ERGIC3 as ready
Mendeliome v0.8283 FYCO1 Zornitza Stark Marked gene: FYCO1 as ready
Mendeliome v0.8283 FYCO1 Zornitza Stark Phenotypes for gene: FYCO1 were changed from to Cataract 18, MIM#610019
Mendeliome v0.8280 FYCO1 Zornitza Stark reviewed gene: FYCO1: Rating: GREEN; Mode of pathogenicity: None; Publications: 32355443; Phenotypes: Cataract 18, MIM#610019; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8278 JPH3 Seb Lunke Marked gene: JPH3 as ready
Mendeliome v0.8277 MYT1 Zornitza Stark changed review comment from: Five unrelated individuals reported with variants in this gene and OAV spectrum.; to: Five unrelated individuals reported with variants in this gene and OAV spectrum.

Single individual reported with missense variant as part of an ID cohort, limited evidence for disease association.
Mendeliome v0.8277 JPH3 Seb Lunke Added comment: Comment on list classification: Only STRs disease causing, see separate STR list. No evidence for SNVs etc.
Mendeliome v0.8276 MYT1 Zornitza Stark Marked gene: MYT1 as ready
Mendeliome v0.8273 HEATR5B Seb Lunke Phenotypes for gene: HEATR5B were changed from pontocerebellar hypoplasia to pontocerebellar hypoplasia; intellectual disability; seizures
Mendeliome v0.8272 ATP1A2 Zornitza Stark Phenotypes for gene: ATP1A2 were changed from to Alternating hemiplegia of childhood 1, MIM#104290; Hydrops fetalis, microcephaly, arthrogryposis, extensive cortical malformations; Developmental and epileptic encephalopathy, polymicrogyria
Mendeliome v0.8269 ATP1A2 Zornitza Stark edited their review of gene: ATP1A2: Added comment: Association with alternating hemiplegia is well established.

PMID 31608932: Three individuals from two unrelated families reported with balleliic LoF variants in this gene and hydrops/congenital abnormalities. Mouse model is perinatal lethal.

PMID 33880529: six individuals with de novo missense variants reported and DD/EE/PMG.; Changed rating: GREEN; Changed publications: 31608932, 33880529; Changed phenotypes: Alternating hemiplegia of childhood 1, MIM#104290, Hydrops fetalis, microcephaly, arthrogryposis, extensive cortical malformations, Developmental and epileptic encephalopathy, polymicrogyria; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8269 HEATR5B Seb Lunke Marked gene: HEATR5B as ready
Mendeliome v0.8266 PITRM1 Zornitza Stark Phenotypes for gene: PITRM1 were changed from Ataxia; Intellectual disability to Spinocerebellar ataxia-30 (SCAR30), MIM#619405; intellectual disability; cognitive decline; psychosis
Mendeliome v0.8265 PITRM1 Zornitza Stark edited their review of gene: PITRM1: Changed phenotypes: Spinocerebellar ataxia-30 (SCAR30), MIM#619405
Mendeliome v0.8265 VPS41 Zornitza Stark Phenotypes for gene: VPS41 were changed from Dystonia; intellectual disability to Spinocerebellar ataxia-29 (SCAR29), MIM#619389; Progressive neurodevelopmental disorder with ataxia, hypotonia, dystonia, intellectual disability and speech delay
Mendeliome v0.8264 IRX6 Eleanor Williams gene: IRX6 was added
gene: IRX6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: IRX6 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: IRX6 were set to 33891002
Phenotypes for gene: IRX6 were set to cone dystrophy, MONDO:0000455
Mode of pathogenicity for gene: IRX6 was set to Other
Review for gene: IRX6 was set to GREEN
Added comment: Not associated with any disorder in OMIM or Gene2Phenotype.

PMID: 33891002 - Khol et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments.

Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected.

They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae.
Sources: Literature
Mendeliome v0.8264 EPHA7 Zornitza Stark Marked gene: EPHA7 as ready
Mendeliome v0.8263 EPHA7 Zornitza Stark gene: EPHA7 was added
gene: EPHA7 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: EPHA7 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: EPHA7 were set to 34176129
Phenotypes for gene: EPHA7 were set to Intellectual disability
Review for gene: EPHA7 was set to AMBER
Added comment: Lévy et al (2021 - PMID: 34176129) provide evidence that haploinssuficiency of EPHA7 results in a neurodevelopmental disorder.

The authors report on 12 individuals belonging to 9 unrelated families, all harboring with 6q microdeletions spanning EPHA7.

Overlapping features included DD (13/13), ID (10/10 - mild in most cases, individuals with larger CNVs/additional variants had more severe phenotype), speech delay and behavioral disorders. Variable other features incl. hypotonia (70%), non specific facial features, eye abnormalities (40%) and cardiac defects (25%).

The CNVs ranged from 152 kb to few Mb in size but in 4 subjects (P5-8) were only minimal, involving only EPHA7.

9 out of 12 individuals had inherited the deletion (5 subjects paternal, 4 maternal), in 1 subject (P12) this occured de novo, while for 2 others inheritance was not specified. Most deletions were inherited from an unaffected parent (in 6/7 families), with unclear contribution in a further one.

The authors discuss on previous studies suggesting an important role for EphA7 in brain development (modulation of cell-cell adhesion and repulsion, regulation of dendrite morphogenesis in early corticogenesis, role in dendritic spine formation later in development. EphA7 has also been proposed to drive neuronal maturation and synaptic function).

Haploinsufficiency for other ephrins or ephrin receptors has been implicated in other NDDs.

Overall Lévy et al promote incomplete penetrance and variable expressivity with haploinsufficiency of this gene being a risk factor for NDD. [The gene has also an %HI of 2.76% and a pLI of 1].
Sources: Expert Review
Mendeliome v0.8262 DNM1 Zornitza Stark Marked gene: DNM1 as ready
Mendeliome v0.8259 GRK2 Zornitza Stark Marked gene: GRK2 as ready
Mendeliome v0.8257 WDR60 Zornitza Stark Marked gene: WDR60 as ready
Mendeliome v0.8254 WDR34 Zornitza Stark Marked gene: WDR34 as ready
Mendeliome v0.8251 WDR19 Zornitza Stark Marked gene: WDR19 as ready
Mendeliome v0.8248 TXNDC15 Zornitza Stark Marked gene: TXNDC15 as ready
Mendeliome v0.8245 TTC8 Zornitza Stark Marked gene: TTC8 as ready
Mendeliome v0.8245 TTC8 Zornitza Stark Phenotypes for gene: TTC8 were changed from to Bardet-Biedl syndrome 8, MIM# 615985
Mendeliome v0.8242 TTC8 Zornitza Stark reviewed gene: TTC8: Rating: GREEN; Mode of pathogenicity: None; Publications: 14520415, 19797195; Phenotypes: Bardet-Biedl syndrome 8, MIM# 615985; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8242 TTC21B Zornitza Stark Marked gene: TTC21B as ready
Mendeliome v0.8239 TRAF3IP1 Zornitza Stark Marked gene: TRAF3IP1 as ready
Mendeliome v0.8229 ATP9A Arina Puzriakova gene: ATP9A was added
gene: ATP9A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATP9A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ATP9A were set to http://dx.doi.org/10.1136/jmedgenet-2021-107843
Phenotypes for gene: ATP9A were set to Neurodevelopmental delay; Postnatal microcephaly; Failure to thrive; Gastrointestinal symptoms
Review for gene: ATP9A was set to AMBER
Added comment: Vogt et al. 2021 report on 3 individuals from 2 unrelated consanguineous families with different homozygous truncating variants in ATP9A, presenting with DD/ID of variable degree (2 mild, 1 severe), postnatal microcephaly (OFC range: −2.33 SD to −3.58 SD), failure to thrive, and gastrointestinal symptoms. Patient-derived fibroblasts showed reduced expression of ATP9A, and consistent with previous findings also overexpression of interacting partners, ARPC3 and SNX3.
Sources: Literature
Mendeliome v0.8229 ATP2C2 Eleanor Williams gene: ATP2C2 was added
gene: ATP2C2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATP2C2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: ATP2C2 were set to 33864365; 28440294
Phenotypes for gene: ATP2C2 were set to language impairment, HP:0002463
Review for gene: ATP2C2 was set to RED
Added comment: PMID: 33864365 - Martinelli et al 2021 - report a family with a missense variant NM_001286527.2:c.304G>A, p.(Val102Met) in ATP2C2 in a father and two siblings with specific language impairment. However two other affected siblings did not have this variant. This variant was also reported by Chen et al. They found that the variant had a higher frequency in language cases (1.8%, N = 360) compared with cohorts selected for dyslexia (0.8%, N = 520) and ADHD (0.7%, N = 150), which presented frequencies comparable to reference databases (0.9%, N = 24 046 gnomAD controls). They postulate that variant is not sufficient on its own to cause a disorder but is a susceptibility factor which increases the risk for language impairment.

PMID: 28440294 - Chen et al 2017 - report 2 probands with severe learning impairment, and missense variants in ATP2C2 (NM_001286527: c.G304A:p.V102M and NM_001291454:exon21: c.C1936T:p.R646W).
Sources: Literature
Mendeliome v0.8229 TMEM67 Zornitza Stark Marked gene: TMEM67 as ready
Mendeliome v0.8226 TMEM67 Zornitza Stark edited their review of gene: TMEM67: Added comment: Bi-allelic variants in this gene are associated with a range of ciliopathies, including JBTS, Meckel syndrome and nephronophthisis. Multiple families with each.; Changed publications: 16415887, 17377820, 17160906, 19508969; Changed phenotypes: Joubert syndrome 6, MIM# 610688, Meckel syndrome 3, MIM# 607361, Nephronophthisis 11, MIM# 613550, COACH syndrome 1, MIM# 216360
Mendeliome v0.8226 XDH Zornitza Stark Marked gene: XDH as ready
Mendeliome v0.8223 TCTEX1D2 Zornitza Stark Marked gene: TCTEX1D2 as ready
Mendeliome v0.8220 TCTN3 Zornitza Stark Marked gene: TCTN3 as ready
Mendeliome v0.8217 TCTN3 Zornitza Stark changed review comment from: Rare cause of JBS, I can only find two families reported plus one with OFD. Ataxia specifically described in one of the JBS individuals.; to: Three unrelated families reported with JBTS phenotype. Variants in this gene are associated with other ciliopathies as well (OFD and Mohr-Majewski).
Mendeliome v0.8217 SDCCAG8 Zornitza Stark Marked gene: SDCCAG8 as ready
Mendeliome v0.8217 SDCCAG8 Zornitza Stark Phenotypes for gene: SDCCAG8 were changed from to Bardet-Biedl syndrome 16, MIM# 615993; MONDO:0014444; Senior-Loken syndrome 7, MIM# 613615; MONDO:0013326; Nephronophthisis
Mendeliome v0.8214 SDCCAG8 Zornitza Stark reviewed gene: SDCCAG8: Rating: GREEN; Mode of pathogenicity: None; Publications: 20835237, 22626039, 22626039, 32432520, 31534065, 26968886; Phenotypes: Bardet-Biedl syndrome 16, MIM# 615993, MONDO:0014444, Senior-Loken syndrome 7, MIM# 613615, MONDO:0013326, Nephronophthisis; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8214 SBDS Zornitza Stark Marked gene: SBDS as ready
Mendeliome v0.8212 RPGRIP1L Zornitza Stark Marked gene: RPGRIP1L as ready
Mendeliome v0.8209 RPGRIP1L Zornitza Stark edited their review of gene: RPGRIP1L: Added comment: Bi-allelic variants in this gene are associated with a range of ciliopathies, including JBTS and Meckel syndrome. Mouse model.; Changed publications: 17558409, 17558407, 17960139, 26071364, 19574260, 29991045; Changed phenotypes: Joubert syndrome 7, MIM# 611560, Meckel syndrome 5, MIM# 611561, COACH syndrome 3, MIM# 619113, Nephronophthisis
Mendeliome v0.8209 NPHP4 Zornitza Stark Marked gene: NPHP4 as ready
Mendeliome v0.8206 NPHP1 Zornitza Stark Marked gene: NPHP1 as ready
Mendeliome v0.8203 TIE1 Zornitza Stark Marked gene: TIE1 as ready
Mendeliome v0.8202 TIE1 Zornitza Stark gene: TIE1 was added
gene: TIE1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TIE1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TIE1 were set to 32947856; 24764452
Phenotypes for gene: TIE1 were set to Lymphatic malformation 11, MIM# 619401
Review for gene: TIE1 was set to AMBER
Added comment: Three families reported, supportive animal model, though variants are missense and present at a low frequency in gnomad.
Sources: Literature
Mendeliome v0.8201 NUF2 Dean Phelan gene: NUF2 was added
gene: NUF2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NUF2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: NUF2 were set to PMID: 33721060
Phenotypes for gene: NUF2 were set to microcephaly; short stature; bilateral vocal cord paralysis; micrognathia; atrial septal defect
Review for gene: NUF2 was set to RED
Added comment: PMID: 33721060 - de novo missense variant identified in one male patient with microcephaly and short stature, with additional features, such as bilateral vocal cord paralysis, micrognathia and atrial septal defect.
Sources: Literature
Mendeliome v0.8201 ERGIC3 Elena Savva gene: ERGIC3 was added
gene: ERGIC3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ERGIC3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ERGIC3 were set to PMID: 33710394; 31585110
Phenotypes for gene: ERGIC3 were set to Intellectual disability
Review for gene: ERGIC3 was set to AMBER
Added comment: PMID: 33710394 - two homozygous sibs with mild ID, a novel canonical splice (c.717+1G>A). Absent in gnomAD, no splice studies. Classed as a VUS.

PMID: 31585110 - 1 hom (p.Gln233Argfs*10) in a male 8yo with Growth retardation, Microcephaly, Learning disability, Facial dysmorphism, Abnormal pigmentation.
Sources: Literature
Mendeliome v0.8201 HEATR5B Teresa Zhao gene: HEATR5B was added
gene: HEATR5B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HEATR5B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HEATR5B were set to PMID: 33824466
Phenotypes for gene: HEATR5B were set to pontocerebellar hypoplasia
Review for gene: HEATR5B was set to AMBER
Added comment: Four affected children from two families presenting with pontocerebellar hypoplasiawith neonatal seizures, severe ID and motor delay.

Two homozygous splice variants were reported ((c.5051–1G>A and c.5050+4A>G) in intron 31 of HEATR5B gene. Aberrant splicing was found in patient fibroblasts, which correlated
with reduced levels of HEATR5B protein.

Homozygous knockout mice were not viable.

*NOTE: gene (and alias) not found in OMIM
Sources: Literature
Mendeliome v0.8201 NEK8 Zornitza Stark Marked gene: NEK8 as ready
Mendeliome v0.8198 MKKS Zornitza Stark Marked gene: MKKS as ready
Mendeliome v0.8198 MKKS Zornitza Stark Phenotypes for gene: MKKS were changed from to Bardet-Biedl syndrome 6 (MIM#605231); McKusick-Kaufman syndrome, MIM# 236700; Retinitis pigmentosa
Mendeliome v0.8195 MKKS Zornitza Stark reviewed gene: MKKS: Rating: GREEN; Mode of pathogenicity: None; Publications: 10802661, 26900326, 10973251; Phenotypes: Bardet-Biedl syndrome 6 (MIM#605231), McKusick-Kaufman syndrome, MIM# 236700, Retinitis pigmentosa; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8195 IQCB1 Zornitza Stark Marked gene: IQCB1 as ready
Mendeliome v0.8192 IFT80 Zornitza Stark Marked gene: IFT80 as ready
Mendeliome v0.8189 LZTFL1 Zornitza Stark Marked gene: LZTFL1 as ready
Mendeliome v0.8189 LZTFL1 Zornitza Stark Phenotypes for gene: LZTFL1 were changed from to Bardet-Biedl syndrome 17 (MIM#615994)
Mendeliome v0.8186 LZTFL1 Zornitza Stark reviewed gene: LZTFL1: Rating: GREEN; Mode of pathogenicity: None; Publications: 22510444, 23692385, 27312011, 22072986; Phenotypes: Bardet-Biedl syndrome 17 (MIM#615994); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8186 TTC26 Zornitza Stark Marked gene: TTC26 as ready
Mendeliome v0.8185 TTC26 Zornitza Stark gene: TTC26 was added
gene: TTC26 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TTC26 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TTC26 were set to 34177428; 32617964; 31595528; 24596149; 22718903
Phenotypes for gene: TTC26 were set to Ciliopathy Syndrome with Biliary, Renal, Neurological, and Skeletal Manifestations
Review for gene: TTC26 was set to GREEN
Added comment: Three unrelated families and functional data including zebrafish model.
Sources: Literature
Mendeliome v0.8183 IFT43 Zornitza Stark Marked gene: IFT43 as ready
Mendeliome v0.8180 IFT140 Zornitza Stark Marked gene: IFT140 as ready
Mendeliome v0.8177 ARHGEF9 Zornitza Stark Mode of inheritance for gene: ARHGEF9 was changed from X-LINKED: hemizygous mutation in males, biallelic mutations in females to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.8175 DYNC2H1 Zornitza Stark Marked gene: DYNC2H1 as ready
Mendeliome v0.8172 DDX59 Zornitza Stark Marked gene: DDX59 as ready
Mendeliome v0.8169 CEP83 Zornitza Stark Marked gene: CEP83 as ready
Mendeliome v0.8166 RNU12 Bryony Thompson Marked gene: RNU12 as ready
Mendeliome v0.8165 RNU12 Bryony Thompson gene: RNU12 was added
gene: RNU12 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RNU12 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RNU12 were set to 34085356; 27863452
Phenotypes for gene: RNU12 were set to CDAGS syndrome MIM#603116; Craniosynostosis, Delayed closure of the fontanelles, cranial defects, clavicular hypoplasia, Anal and Genitourinary malformations, and Skin manifestations
Review for gene: RNU12 was set to GREEN
Added comment: 5 CDAGS syndrome families with biallelic variants all including NC_000022.10:g.43011402C>T and another variant on the second allele. Whole transcriptome sequencing analysis of patient lymphoblastoid cells identified differentially expressed genes, and differential alternative splicing analysis indicated there was an enrichment of alternative splicing events. Also, limited evidence for an association with cerebellar ataxia with a single large consanguineous family reported with a homozygous variant.
Sources: Literature
Mendeliome v0.8164 FHOD3 Zornitza Stark Marked gene: FHOD3 as ready
Mendeliome v0.8164 FHOD3 Zornitza Stark Phenotypes for gene: FHOD3 were changed from to Cardiomyopathy, familial hypertrophic, 28, MIM# 619402
Mendeliome v0.8161 FHOD3 Zornitza Stark reviewed gene: FHOD3: Rating: GREEN; Mode of pathogenicity: None; Publications: 32335906, 31742804, 30442288; Phenotypes: Cardiomyopathy, familial hypertrophic, 28, MIM# 619402; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8160 KCNJ16 Zornitza Stark Marked gene: KCNJ16 as ready
Mendeliome v0.8158 KLHL7 Zornitza Stark Marked gene: KLHL7 as ready
Mendeliome v0.8155 SLC34A3 Zornitza Stark Marked gene: SLC34A3 as ready
Mendeliome v0.8152 TNC Zornitza Stark Marked gene: TNC as ready
Mendeliome v0.8148 RIPK4 Zornitza Stark Marked gene: RIPK4 as ready
Mendeliome v0.8148 RIPK4 Zornitza Stark Phenotypes for gene: RIPK4 were changed from to Popliteal pterygium syndrome, Bartsocas-Papas type, MIM# 263650
Mendeliome v0.8145 RIPK4 Zornitza Stark reviewed gene: RIPK4: Rating: GREEN; Mode of pathogenicity: None; Publications: 28940926, 22197489, 22197488; Phenotypes: Popliteal pterygium syndrome, Bartsocas-Papas type, MIM# 263650; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8145 CEP290 Zornitza Stark Marked gene: CEP290 as ready
Mendeliome v0.8145 CEP290 Zornitza Stark Phenotypes for gene: CEP290 were changed from to Bardet-Biedl syndrome 14, MIM# 615991; Joubert syndrome 5 610188; Leber congenital amaurosis 10, MIM# 611755; Meckel syndrome 4, MIM# 611134; Senior-Loken syndrome 6, MIM# 610189
Mendeliome v0.8142 CEP290 Zornitza Stark reviewed gene: CEP290: Rating: GREEN; Mode of pathogenicity: None; Publications: 18327255, 20690115, 16682973, 16682970, 17564967, 16909394, 17564974; Phenotypes: Bardet-Biedl syndrome 14, MIM# 615991, Joubert syndrome 5 610188, Leber congenital amaurosis 10, MIM# 611755, Meckel syndrome 4, MIM# 611134, Senior-Loken syndrome 6, MIM# 610189; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8142 CEP164 Zornitza Stark Marked gene: CEP164 as ready
Mendeliome v0.8142 CEP164 Zornitza Stark Phenotypes for gene: CEP164 were changed from to Bardet-Biedl syndrome; Nephronophthisis 15, MIM# 614845; Oro-facio-digital syndrome
Mendeliome v0.8139 CEP164 Zornitza Stark reviewed gene: CEP164: Rating: GREEN; Mode of pathogenicity: None; Publications: 34132027, 34013113, 32055034, 27708425, 22863007; Phenotypes: Bardet-Biedl syndrome, Nephronophthisis 15, MIM# 614845, Oro-facio-digital syndrome; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8139 CEP120 Zornitza Stark Marked gene: CEP120 as ready
Mendeliome v0.8136 CEP104 Zornitza Stark Marked gene: CEP104 as ready
Mendeliome v0.8133 C5orf42 Zornitza Stark Marked gene: C5orf42 as ready
Mendeliome v0.8130 C21orf2 Zornitza Stark changed review comment from: Axial spondylometaphyseal dysplasia (SMDAX) is characterized by postnatal growth failure, including rhizomelic short stature in early childhood that evolves into short trunk in late childhood, and thoracic hypoplasia that may cause mild to moderate respiratory problems in the neonatal period and later susceptibility to airway infection. Impaired visual acuity comes to medical attention in early life and vision rapidly deteriorates. Retinal changes are diagnosed as retinitis pigmentosa or pigmentary retinal degeneration on funduscopic examination and as cone-rod dystrophy on ERG. Radiologic hallmarks include short ribs with flared and cupped anterior ends, mild spondylar dysplasia, lacy iliac crests, and metaphyseal irregularities essentially confined to the proximal femora. At least 7 unrelated families reported.

7 families also reported with isolated retinal dystrophy.; to: Axial spondylometaphyseal dysplasia (SMDAX) is characterized by postnatal growth failure, including rhizomelic short stature in early childhood that evolves into short trunk in late childhood, and thoracic hypoplasia that may cause mild to moderate respiratory problems in the neonatal period and later susceptibility to airway infection. Impaired visual acuity comes to medical attention in early life and vision rapidly deteriorates. Retinal changes are diagnosed as retinitis pigmentosa or pigmentary retinal degeneration on funduscopic examination and as cone-rod dystrophy on ERG. Radiologic hallmarks include short ribs with flared and cupped anterior ends, mild spondylar dysplasia, lacy iliac crests, and metaphyseal irregularities essentially confined to the proximal femora. At least 7 unrelated families reported.

7 families also reported with isolated retinal dystrophy.

New HGNC approved name is CFAP410.
Mendeliome v0.8130 C21orf2 Zornitza Stark Marked gene: C21orf2 as ready
Mendeliome v0.8130 C21orf2 Zornitza Stark Phenotypes for gene: C21orf2 were changed from to Spondylometaphyseal dysplasia, axial, MIM# 602271; Retinal dystrophy with macular staphyloma, MIM# 617547
Mendeliome v0.8127 C21orf2 Zornitza Stark reviewed gene: C21orf2: Rating: GREEN; Mode of pathogenicity: None; Publications: 26974433, 27548899, 28422394, 26294103, 23105016, 27548899; Phenotypes: Spondylometaphyseal dysplasia, axial, MIM# 602271, Retinal dystrophy with macular staphyloma, MIM# 617547; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8127 BBS9 Zornitza Stark Marked gene: BBS9 as ready
Mendeliome v0.8127 BBS9 Zornitza Stark Phenotypes for gene: BBS9 were changed from to Bardet-Biedl syndrome 9, MIM#615986; MONDO:0014437
Mendeliome v0.8124 BBS9 Zornitza Stark reviewed gene: BBS9: Rating: GREEN; Mode of pathogenicity: None; Publications: 16380913, 22353939, 32686083, 32037757; Phenotypes: Bardet-Biedl syndrome 9, MIM#615986, MONDO:0014437; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8124 BBS7 Zornitza Stark Marked gene: BBS7 as ready
Mendeliome v0.8124 BBS7 Zornitza Stark Phenotypes for gene: BBS7 were changed from to Bardet-Biedl syndrome 7, MIM# 615984; MONDO:0014435
Mendeliome v0.8121 BBS7 Zornitza Stark reviewed gene: BBS7: Rating: GREEN; Mode of pathogenicity: None; Publications: 12567324, 21937992, 19797195; Phenotypes: Bardet-Biedl syndrome 7, MIM# 615984, MONDO:0014435; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8121 BBS5 Zornitza Stark Marked gene: BBS5 as ready
Mendeliome v0.8121 BBS5 Zornitza Stark Phenotypes for gene: BBS5 were changed from to Bardet-Biedl syndrome 5, MIM#615983; MONDO:0014434
Mendeliome v0.8118 BBS5 Zornitza Stark reviewed gene: BBS5: Rating: GREEN; Mode of pathogenicity: None; Publications: 19252258, 15137946, 10053027, 15637713; Phenotypes: Bardet-Biedl syndrome 5, MIM#615983, MONDO:0014434; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8118 BBS4 Zornitza Stark Marked gene: BBS4 as ready
Mendeliome v0.8118 BBS4 Zornitza Stark Phenotypes for gene: BBS4 were changed from to Bardet-Biedl syndrome 4, MIM#615982; MONDO:0014433
Mendeliome v0.8115 BBS4 Zornitza Stark reviewed gene: BBS4: Rating: GREEN; Mode of pathogenicity: None; Publications: 12016587, 11381270; Phenotypes: Bardet-Biedl syndrome 4, MIM#615982, MONDO:0014433; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8115 ARL6 Zornitza Stark Marked gene: ARL6 as ready
Mendeliome v0.8115 ARL6 Zornitza Stark Gene: arl6 has been classified as Green List (High Evidence).
Mendeliome v0.8115 ARL6 Zornitza Stark Phenotypes for gene: ARL6 were changed from to Bardet-Biedl syndrome 3, MIM# 600151; Retinitis pigmentosa 55, MIM# 613575
Mendeliome v0.8114 ARL6 Zornitza Stark Publications for gene: ARL6 were set to
Mendeliome v0.8113 ARL6 Zornitza Stark Mode of inheritance for gene: ARL6 was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8112 ARL6 Zornitza Stark reviewed gene: ARL6: Rating: GREEN; Mode of pathogenicity: None; Publications: 15258860, 32361989, 31888296, 25402481, 31736247, 19858128; Phenotypes: Bardet-Biedl syndrome 3, MIM# 600151, Retinitis pigmentosa 55, MIM# 613575; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8111 SLCO2A1 Zornitza Stark Phenotypes for gene: SLCO2A1 were changed from to Hypertrophic osteoarthropathy, primary, autosomal dominant, MIM# 167100; Hypertrophic osteoarthropathy, primary, autosomal recessive 2, MIM# 614441
Mendeliome v0.8108 SLCO2A1 Zornitza Stark reviewed gene: SLCO2A1: Rating: GREEN; Mode of pathogenicity: None; Publications: 23509104, 27134495, 33852188, 22331663, 27134495]; Phenotypes: Hypertrophic osteoarthropathy, primary, autosomal dominant, MIM# 167100, Hypertrophic osteoarthropathy, primary, autosomal recessive 2, MIM# 614441; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8108 NDUFB11 Zornitza Stark Phenotypes for gene: NDUFB11 were changed from Linear skin defects with multiple congenital anomalies 3, XLD (MIM#300952); MONDO:0010494; Mitochondrial complex I deficiency, nuclear type 30, XLR (MIM#301021); MONDO:0026721 to Linear skin defects with multiple congenital anomalies 3, XLD (MIM#300952); MONDO:0010494; Mitochondrial complex I deficiency, nuclear type 30, XLR (MIM#301021); MONDO:0026721; X-linked sideroblastic anaemia
Mendeliome v0.8106 PPP2R1A Zornitza Stark changed review comment from: Intellectual disability with variable other features, including CC abnormalities and microcephaly.; to: Intellectual disability with variable other features, including CC abnormalities and microcephaly/macrocephaly.
Mendeliome v0.8106 PPP2R1A Zornitza Stark Marked gene: PPP2R1A as ready
Mendeliome v0.8106 PPP2R1A Zornitza Stark Phenotypes for gene: PPP2R1A were changed from to Mental retardation, autosomal dominant 36, MIM#616362; Microcephaly-corpus callosum hypoplasia-intellectual disability-facial dysmorphism syndrome, MONDO:0014605
Mendeliome v0.8103 PPP2R1A Zornitza Stark reviewed gene: PPP2R1A: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Mental retardation, autosomal dominant 36, MIM#616362, Microcephaly-corpus callosum hypoplasia-intellectual disability-facial dysmorphism syndrome, MONDO:0014605; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8102 ARHGEF10 Bryony Thompson Marked gene: ARHGEF10 as ready
Mendeliome v0.8102 ARHGEF10 Bryony Thompson Gene: arhgef10 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8102 ARHGEF10 Bryony Thompson Classified gene: ARHGEF10 as Amber List (moderate evidence)
Mendeliome v0.8102 ARHGEF10 Bryony Thompson Gene: arhgef10 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8100 PPP2R1A Elena Savva reviewed gene: PPP2R1A: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 26168268, 33106617; Phenotypes: Mental retardation, autosomal dominant 36 MIM#616362; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v0.8100 CLPB Zornitza Stark Marked gene: CLPB as ready
Mendeliome v0.8100 CLPB Zornitza Stark Phenotypes for gene: CLPB were changed from to 3-methylglutaconic aciduria, type VII, with cataracts, neurologic involvement and neutropaenia, MIM# 616271
Mendeliome v0.8097 CLPB Zornitza Stark reviewed gene: CLPB: Rating: GREEN; Mode of pathogenicity: None; Publications: 25597510, 34140661; Phenotypes: 3-methylglutaconic aciduria, type VII, with cataracts, neurologic involvement and neutropaenia, MIM# 616271; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8096 PON1 Zornitza Stark Marked gene: PON1 as ready
Mendeliome v0.8096 PON1 Zornitza Stark Phenotypes for gene: PON1 were changed from to {Coronary artery disease, susceptibility to}
Mendeliome v0.8094 PON1 Zornitza Stark reviewed gene: PON1: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: {Coronary artery disease, susceptibility to}; Mode of inheritance: None
Mendeliome v0.8094 ABCB4 Zornitza Stark Marked gene: ABCB4 as ready
Mendeliome v0.8091 OAS1 Zornitza Stark Marked gene: OAS1 as ready
Mendeliome v0.8091 OAS1 Zornitza Stark Phenotypes for gene: OAS1 were changed from to Autoinflammatory immunodeficiency; infantile-onset pulmonary alveolar proteinosis; hypogammaglobulinaemia
Mendeliome v0.8087 OAS1 Zornitza Stark reviewed gene: OAS1: Rating: GREEN; Mode of pathogenicity: None; Publications: 34145065, 29455859; Phenotypes: Autoinflammatory immunodeficiency, infantile-onset pulmonary alveolar proteinosis, hypogammaglobulinaemia; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8087 SLIT3 Zornitza Stark Marked gene: SLIT3 as ready
Mendeliome v0.8085 SOCS1 Zornitza Stark Phenotypes for gene: SOCS1 were changed from Common variable immunodeficiency; Early-onset autoimmunity to Autoinflammatory syndrome, familial, with or without immunodeficiency, MIM# 619375; Common variable immunodeficiency; Early-onset autoimmunity
Mendeliome v0.8084 SOCS1 Zornitza Stark edited their review of gene: SOCS1: Changed phenotypes: Autoinflammatory syndrome, familial, with or without immunodeficiency, MIM# 619375, Early-onset autoimmunity
Mendeliome v0.8083 IQGAP3 Zornitza Stark Marked gene: IQGAP3 as ready
Mendeliome v0.8083 IQGAP3 Zornitza Stark gene: IQGAP3 was added
gene: IQGAP3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: IQGAP3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: IQGAP3 were set to Hereditary neuropathy
Review for gene: IQGAP3 was set to RED
Added comment: Single multiplex family, intronic variant, limited functional data.
Sources: Literature
Mendeliome v0.8082 TINF2 Zornitza Stark Marked gene: TINF2 as ready
Mendeliome v0.8079 TINF2 Zornitza Stark edited their review of gene: TINF2: Added comment: RS is a severe variant of DKC with early bone marrow failure and retinopathy. Well established gene-disease associations.; Changed publications: 18252230, 21477109, 18979121, 18669893, 21199492, 33097095; Changed phenotypes: Dyskeratosis congenita, autosomal dominant 3, MIM# 613990, Revesz syndrome, MIM# 268130
Mendeliome v0.8079 POPDC3 Zornitza Stark changed review comment from: 5 affected individuals from 3 unrelated families reported, supportive animal model data.
Sources: Literature; to: 5 affected individuals from 3 unrelated families reported, supportive animal model data. Presentation was between adolescence and 40s with proximal muscle weakness primarily affecting the lower limbs, resulting in increased falls and difficulty running. The disorder was slowly progressive, with later involvement of the upper limbs. MRI showed fatty replacement of the thigh muscles and medial gastrocnemius, with some paraspinal muscles also affected. Some patients had calf hypertrophy. Serum CK was markedly elevated.
Sources: Literature
Mendeliome v0.8079 POPDC3 Zornitza Stark Marked gene: POPDC3 as ready
Mendeliome v0.8078 POPDC3 Zornitza Stark gene: POPDC3 was added
gene: POPDC3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: POPDC3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: POPDC3 were set to 31610034
Phenotypes for gene: POPDC3 were set to Muscular dystrophy, limb-girdle, autosomal recessive 26, MIM# 618848
Review for gene: POPDC3 was set to GREEN
Added comment: 5 affected individuals from 3 unrelated families reported, supportive animal model data.
Sources: Literature
Mendeliome v0.8077 ACD Zornitza Stark Marked gene: ACD as ready
Mendeliome v0.8071 WRAP53 Zornitza Stark Marked gene: WRAP53 as ready
Mendeliome v0.8068 EP300 Zornitza Stark Marked gene: EP300 as ready
Mendeliome v0.8065 PARN Zornitza Stark Marked gene: PARN as ready
Mendeliome v0.8065 PARN Zornitza Stark Gene: parn has been classified as Green List (High Evidence).
Mendeliome v0.8065 PARN Zornitza Stark Phenotypes for gene: PARN were changed from to Dyskeratosis congenita, autosomal recessive 6, MIM# 616353; Pulmonary fibrosis and/or bone marrow failure, telomere-related, 4, MIM# 616371
Mendeliome v0.8064 PARN Zornitza Stark Publications for gene: PARN were set to
Mendeliome v0.8063 PARN Zornitza Stark Mode of inheritance for gene: PARN was changed from Unknown to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8062 PARN Zornitza Stark reviewed gene: PARN: Rating: GREEN; Mode of pathogenicity: None; Publications: 25893599, 26342108, 25848748; Phenotypes: Dyskeratosis congenita, autosomal recessive 6, MIM# 616353, Pulmonary fibrosis and/or bone marrow failure, telomere-related, 4, MIM# 616371; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8062 KLF1 Zornitza Stark Marked gene: KLF1 as ready
Mendeliome v0.8059 SPAG17 Zornitza Stark Marked gene: SPAG17 as ready
Mendeliome v0.8059 SPAG17 Zornitza Stark gene: SPAG17 was added
gene: SPAG17 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SPAG17 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SPAG17 were set to 28548327
Phenotypes for gene: SPAG17 were set to Spermatogenic failure 55, MIM#619380
Review for gene: SPAG17 was set to RED
Added comment: Single family reported with two affected brothers, homozygous missense variant.
Sources: Literature
Mendeliome v0.8058 CATIP Zornitza Stark Marked gene: CATIP as ready
Mendeliome v0.8058 CATIP Zornitza Stark gene: CATIP was added
gene: CATIP was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: CATIP was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CATIP were set to 32503832
Phenotypes for gene: CATIP were set to Spermatogenic failure 54, MIM# 619379
Review for gene: CATIP was set to RED
Added comment: Homozygous missense variant reported in a single consanguineous family with 4 affecteds. Limited functional data.
Sources: Expert list
Mendeliome v0.8056 HAX1 Zornitza Stark Marked gene: HAX1 as ready
Mendeliome v0.8051 DNAJC30 Zornitza Stark Phenotypes for gene: DNAJC30 were changed from Leber Hereditary Optic Neuropathy to Leber Hereditary Optic Neuropathy, MIM#619382
Mendeliome v0.8050 DNAJC30 Zornitza Stark edited their review of gene: DNAJC30: Changed phenotypes: Leber Hereditary Optic Neuropathy, MIM#619382
Mendeliome v0.8049 ARCN1 Zornitza Stark Phenotypes for gene: ARCN1 were changed from to Short stature, rhizomelic, with microcephaly, micrognathia, and developmental delay (MIM#617164)
Mendeliome v0.8048 ARCN1 Zornitza Stark Publications for gene: ARCN1 were set to
Mendeliome v0.8047 ARCN1 Zornitza Stark Mode of inheritance for gene: ARCN1 was changed from Unknown to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8046 ARCN1 Zornitza Stark reviewed gene: ARCN1: Rating: GREEN; Mode of pathogenicity: None; Publications: 27476655, 33154040; Phenotypes: Short stature, rhizomelic, with microcephaly, micrognathia, and developmental delay (MIM#617164); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8046 NBEAL2 Zornitza Stark Marked gene: NBEAL2 as ready
Mendeliome v0.8043 GFI1 Zornitza Stark Marked gene: GFI1 as ready
Mendeliome v0.8040 SLC13A5 Zornitza Stark Marked gene: SLC13A5 as ready
Mendeliome v0.8037 GATA2 Zornitza Stark Marked gene: GATA2 as ready
Mendeliome v0.8034 GATA1 Zornitza Stark Marked gene: GATA1 as ready
Mendeliome v0.8032 ELANE Zornitza Stark Marked gene: ELANE as ready
Mendeliome v0.8029 EFL1 Zornitza Stark Marked gene: EFL1 as ready
Mendeliome v0.8026 CXCR4 Zornitza Stark Marked gene: CXCR4 as ready
Mendeliome v0.8023 CTC1 Zornitza Stark Marked gene: CTC1 as ready
Mendeliome v0.8020 ANKRD26 Zornitza Stark Marked gene: ANKRD26 as ready
Mendeliome v0.8017 AK2 Zornitza Stark Marked gene: AK2 as ready
Mendeliome v0.8017 AK2 Zornitza Stark Phenotypes for gene: AK2 were changed from to Reticular dysgenesis, MIM# 267500
Mendeliome v0.8014 AK2 Zornitza Stark reviewed gene: AK2: Rating: GREEN; Mode of pathogenicity: None; Publications: 19043416; Phenotypes: Reticular dysgenesis, MIM# 267500; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8014 ADA2 Zornitza Stark Marked gene: ADA2 as ready
Mendeliome v0.8011 ADA2 Zornitza Stark commented on gene: ADA2: Vasculitis, autoinflammation, immunodeficiency, and haematologic defects syndrome (VAIHS) is an autosomal recessive multisystem disorder with onset in childhood. The phenotype is highly variable, but most patients have features of a systemic vascular inflammatory disorder with skin ulceration and recurrent strokes affecting the small vessels of the brain resulting in neurologic dysfunction. Other features may include recurrent fever, elevated acute-phase proteins, myalgias, lesions resembling polyarteritis nodosa, and/or livedo racemosa or reticularis with an inflammatory vasculitis on biopsy. Some patients may have renal and/or gastrointestinal involvement, hypertension, aneurysms, or ischemic necrosis of the digits. Some affected individuals have immunodeficiency. At least 10 unrelated families reported, the p.Gly47Arg variant is a common founder variant in the Jewish population.
Mendeliome v0.8011 IFT74 Zornitza Stark Phenotypes for gene: IFT74 were changed from Bardet-Biedl syndrome 20, MIM# 617119 to Bardet-Biedl syndrome 20, MIM# 617119; Joubert syndrome
Mendeliome v0.8009 IFT74 Zornitza Stark edited their review of gene: IFT74: Added comment: PMID 33531668: Identified IFT74 as a JBTS-associated gene in 3 unrelated families through WES. All the affected individuals carried truncated variants and shared one missense variant (p.Q179E) found only in East Asians. The expression of the human p.Q179E-IFT74 variant displayed compromised rescue effects in zebrafish ift74 morphants. Attenuated ciliogenesis; altered distribution of IFT proteins and ciliary membrane proteins, including ARL13B, INPP5E, and GPR161; and disrupted hedgehog signaling were observed in patient fibroblasts with IFT74 variants.; Changed publications: 27486776, 32144365, 33531668; Changed phenotypes: Bardet-Biedl syndrome 20, MIM# 617119, Joubert syndrome
Mendeliome v0.8009 RFX4 Zornitza Stark Marked gene: RFX4 as ready
Mendeliome v0.8008 RFX4 Zornitza Stark gene: RFX4 was added
gene: RFX4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RFX4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RFX4 were set to 33658631
Phenotypes for gene: RFX4 were set to ID, ASD, ADHD
Review for gene: RFX4 was set to GREEN
Added comment: Report of 38 individuals (from 33 unrelated families) with de novo or inherited loss of function variants in RFX3 (15 families), RFX4 (4 families), and RFX7 (14 families), identified through WES. Individuals share neurobehavioural features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes. These genes are potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis.
Sources: Literature
Mendeliome v0.8007 RFX3 Zornitza Stark Marked gene: RFX3 as ready
Mendeliome v0.8006 RFX3 Zornitza Stark gene: RFX3 was added
gene: RFX3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RFX3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RFX3 were set to 33658631
Phenotypes for gene: RFX3 were set to ID, ASD, ADHD
Review for gene: RFX3 was set to GREEN
Added comment: Report of 38 individuals (from 33 unrelated families) with de novo or inherited loss of function variants in RFX3 (15 families), RFX4 (4 families), and RFX7 (14 families), identified through WES. Individuals share neurobehavioural features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes. These genes are potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis.
Sources: Literature
Mendeliome v0.8005 RFX7 Zornitza Stark Marked gene: RFX7 as ready
Mendeliome v0.8004 RFX7 Zornitza Stark gene: RFX7 was added
gene: RFX7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RFX7 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RFX7 were set to 33658631
Phenotypes for gene: RFX7 were set to ID, ASD, ADHD
Review for gene: RFX7 was set to GREEN
Added comment: Report of 38 individuals (from 33 unrelated families) with de novo or inherited loss of function variants in RFX3 (15 families), RFX4 (4 families), and RFX7 (14 families), identified through WES. Individuals share neurobehavioural features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes. These genes are potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis.
Sources: Literature
Mendeliome v0.8003 SEMA3F Zornitza Stark Marked gene: SEMA3F as ready
Mendeliome v0.8002 SEMA3F Zornitza Stark gene: SEMA3F was added
gene: SEMA3F was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SEMA3F was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SEMA3F were set to 33495532
Phenotypes for gene: SEMA3F were set to Hypogonadotropic hypogonadism
Review for gene: SEMA3F was set to GREEN
Added comment: Screened 216 patients with Idiopathic hypogonadotropic hypogonadism by exome sequencing. Identified 10 individuals from 7 families with heterozygous SEMA3F missense variants. In 4 of the kindreds, there was at least one more gene known to be associated with IHH (oligogenecity). Provide unequivocal human embryonic data showing the expression of SEMA3F along the developing human GnRH migratory pathway. SEMA3Fs harboring the P452T, T29M, and T724M missense variants showed impaired SEMA3F secretion in whole cell lysates.
Sources: Literature
Mendeliome v0.8001 PLXNA3 Zornitza Stark Marked gene: PLXNA3 as ready
Mendeliome v0.8000 PLXNA3 Zornitza Stark gene: PLXNA3 was added
gene: PLXNA3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PLXNA3 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: PLXNA3 were set to 33495532
Phenotypes for gene: PLXNA3 were set to Hypogonadotropic hypogonadism
Review for gene: PLXNA3 was set to GREEN
Added comment: Screened 216 patients with Idiopathic hypogonadotropic hypogonadism by exome sequencing. Identified 7 individuals from 5 families with hemizygous PLXNA3 missense variants. In 2 of the kindreds, there was at least one more gene known to be associated with IHH (oligogenecity). Data provided with evidence that PLXNA3, a key component of the SEMA3F holoreceptor complex,31 is expressed by the human GnRH and olfactory/vomeronasal systems. S646P variant showed PLXNA3 localization exclusively in the ER, indicating that the variant S646P disrupts cell surface localization of PLXNA3.
Sources: Literature
Mendeliome v0.7999 DLG4 Zornitza Stark Phenotypes for gene: DLG4 were changed from Intellectual disability; Marfanoid habitus to Intellectual developmental disorder 62, MIM# 618793
Mendeliome v0.7997 DLG4 Zornitza Stark edited their review of gene: DLG4: Added comment: PMID 33597769: 53 patients (42 previously unpublished) with DLG4 variants. The clinical picture predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit–hyperactivity disorder.; Changed publications: 27479843, 25123844, 19617690, 29460436, 23020937, 28135719, 33597769; Changed phenotypes: Intellectual developmental disorder 62, MIM# 618793
Mendeliome v0.7997 GNAI1 Zornitza Stark Marked gene: GNAI1 as ready
Mendeliome v0.7994 SURF1 Elena Savva reviewed gene: SURF1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 24027061; Phenotypes: Charcot-Marie-Tooth disease, type 4K MIM#616684, Mitochondrial complex IV deficiency, nuclear type 1 MIM#220110; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.7994 FARSA Zornitza Stark Classified gene: FARSA as Green List (high evidence)
Mendeliome v0.7994 FARSA Zornitza Stark Gene: farsa has been classified as Green List (High Evidence).
Mendeliome v0.7993 FARSA Zornitza Stark edited their review of gene: FARSA: Added comment: Schuch et al. (2021) report 3 unrelated individuals with bi-allelic variants in FARSA. Identified through WES and variants segregated with disease. Functional evidence was obtained with reduced FARS1 enzyme activity levels in fibroblasts or EBV-transformed lymphoblastoid cell lines (EBV-LCLs) of patients. Common to all was a chronic interstitial lung disease starting early in life and characterized by bilateral ground-glass opacification on HR-CT, and cholesterol pneumonitis in lung histology. Additional abnormalities in other organ systems include liver disease, neurological manifestations, and growth restriction.; Changed rating: GREEN; Changed publications: 31355908, 33598926; Changed phenotypes: Rajab interstitial lung disease with brain calcifications 2, MIM# 619013
Mendeliome v0.7990 ZNF81 Zornitza Stark Marked gene: ZNF81 as ready
Mendeliome v0.7986 RELN Ee Ming Wong edited their review of gene: RELN: Added comment: - Six affected individuals carrying missense variants in RELN including
1. Two individuals with compound heterozygous variants
- One of the variants has 26 homozygotes in gnomAD and therefore pathogenicity of this variant is in question
- LoF demonstrated for three of the variants (reduced RELN secretion), except for p.Y1821H which demonstrated an apparently increased RELN secretion (GoF)
2. Two brothers carrying the maternally inherited variant (mother apparently healthy)
- LoF demonstrated for these variants
3. Two individuals de novo for RELN variants
- Dominant negative demonstrated for these variants where secretion of WT-RELN was impaired when co-transfected with mutant constructs in HEK293T cells; Changed rating: AMBER; Changed publications: Riva et al bioRxiv (pre-print, not peer-reviewed); Changed phenotypes: Pachygyria, Polymicrogyria, Heterotopia; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7986 NIID Bryony Thompson Marked STR: NIID as ready
Mendeliome v0.7985 NIID Bryony Thompson STR: NIID was added
STR: NIID was added to Mendeliome. Sources: Literature
Mode of inheritance for STR: NIID was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: NIID were set to 31178126; 31332381; 31819945; 33887199; 33943039; 32250060; 31332380; 32852534; 32989102
Phenotypes for STR: NIID were set to Neuronal intranuclear inclusion disease MIM#603472; Tremor, hereditary essential, 6 MIM#618866
Review for STR: NIID was set to GREEN
STR: NIID was marked as clinically relevant
Added comment: NM_001364012.2:c.-164GGC[(66_517)]
Large number of families and sporadic cases reported with expansions, with a range of neurodegenerative phenotypes, including: dementia, Parkinsonism/tremor, peripheral neuropathy, leukoencephalopathy, myopathy, motor neurone disease.
Normal repeat range: 7-60
Pathogenic repeat range: >=61-500
Mechanism of disease is translation of repeat expansion into a toxic polyglycine protein, identified in both mouse models and tissue samples from affected individuals.
Sources: Literature
Mendeliome v0.7983 TRPM6 Zornitza Stark Marked gene: TRPM6 as ready
Mendeliome v0.7981 CNTNAP1 Zornitza Stark Marked gene: CNTNAP1 as ready
Mendeliome v0.7978 GLDN Zornitza Stark Marked gene: GLDN as ready
Mendeliome v0.7975 ZBTB42 Zornitza Stark Marked gene: ZBTB42 as ready
Mendeliome v0.7974 ZBTB42 Zornitza Stark gene: ZBTB42 was added
gene: ZBTB42 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: ZBTB42 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZBTB42 were set to 25055871
Phenotypes for gene: ZBTB42 were set to Lethal congenital contracture syndrome 6, MIM# 616248
Review for gene: ZBTB42 was set to AMBER
Added comment: Homozygous missense variant reported in a family with three stillbirths and a phenotype consistent with LCCS. Supportive zebrafish model.
Sources: Expert Review
Mendeliome v0.7973 MYBPC1 Zornitza Stark Marked gene: MYBPC1 as ready
Mendeliome v0.7973 MYBPC1 Zornitza Stark Phenotypes for gene: MYBPC1 were changed from to Arthrogryposis, distal, type 1B 614335; Lethal congenital contracture syndrome 4, MIM# 614915; Myopathy, congenital, with tremor MIM#618524
Mendeliome v0.7970 MYBPC1 Zornitza Stark reviewed gene: MYBPC1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20045868, 22610851, 23873045, 26661508, 31264822, 31025394; Phenotypes: Arthrogryposis, distal, type 1B 614335, Lethal congenital contracture syndrome 4, MIM# 614915, Myopathy, congenital, with tremor MIM#618524; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7970 ERBB3 Zornitza Stark Marked gene: ERBB3 as ready
Mendeliome v0.7970 ERBB3 Zornitza Stark Phenotypes for gene: ERBB3 were changed from Lethal congenital contractural syndrome 2, MIM# 607598 to Lethal congenital contractural syndrome 2, MIM# 607598; Hirschsprung disease; Arthrogryposis
Mendeliome v0.7967 TRPM6 Kristin Rigbye reviewed gene: TRPM6: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Hypomagnesemia 1, intestinal (MIM#602014), AR; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7967 MUSK Zornitza Stark Marked gene: MUSK as ready
Mendeliome v0.7964 DOK7 Zornitza Stark Marked gene: DOK7 as ready
Mendeliome v0.7961 TPM2 Zornitza Stark Marked gene: TPM2 as ready
Mendeliome v0.7961 TPM2 Zornitza Stark Phenotypes for gene: TPM2 were changed from to Arthrogryposis, distal, type 1A 108120; Arthrogryposis, distal, type 2B4 108120; CAP myopathy 2 609285; Nemaline myopathy 4, autosomal dominant 609285; Multiple pterygium syndrome
Mendeliome v0.7958 TPM2 Zornitza Stark reviewed gene: TPM2: Rating: GREEN; Mode of pathogenicity: None; Publications: 32092148, 27726070, 32092148, 24692096; Phenotypes: Arthrogryposis, distal, type 1A 108120, Arthrogryposis, distal, type 2B4 108120, CAP myopathy 2 609285, Nemaline myopathy 4, autosomal dominant 609285, Multiple pterygium syndrome; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7958 CHRNG Zornitza Stark Marked gene: CHRNG as ready
Mendeliome v0.7958 CHRNG Zornitza Stark Phenotypes for gene: CHRNG were changed from to Escobar syndrome, MIM# 265000; Multiple pterygium syndrome, lethal type, MIM# 253290; MONDO:0009926; MONDO:0009668
Mendeliome v0.7955 CHRNG Zornitza Stark reviewed gene: CHRNG: Rating: GREEN; Mode of pathogenicity: None; Publications: 16826520, 16826531, 22167768; Phenotypes: Escobar syndrome, MIM# 265000, Multiple pterygium syndrome, lethal type, MIM# 253290, MONDO:0009926, MONDO:0009668; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7955 CD207 Zornitza Stark Marked gene: CD207 as ready
Mendeliome v0.7951 KIF17 Zornitza Stark Marked gene: KIF17 as ready
Mendeliome v0.7951 KIF17 Zornitza Stark gene: KIF17 was added
gene: KIF17 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KIF17 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: KIF17 were set to 33922911; 30458707; 28341548
Phenotypes for gene: KIF17 were set to Microphthalmia; Coloboma
Review for gene: KIF17 was set to RED
Added comment: Two siblings reported with MAC spectrum and homozygous missense variant in this gene. Some pre-existing data linking KIF17 to eye development.
Sources: Literature
Mendeliome v0.7950 SASH3 Zornitza Stark Marked gene: SASH3 as ready
Mendeliome v0.7949 SASH3 Zornitza Stark gene: SASH3 was added
gene: SASH3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SASH3 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: SASH3 were set to 33876203
Phenotypes for gene: SASH3 were set to Combined immunodeficiency; immune dysregulation
Review for gene: SASH3 was set to GREEN
Added comment: Four unrelated males reported presenting with combined immunodeficiency and immune dysregulation manifesting as recurrent sinopulmonary, cutaneous and mucosal infections, and refractory autoimmune cytopaenias. One missense variant, rest were nonsense.
Sources: Literature
Mendeliome v0.7946 FOXP1 Zornitza Stark reviewed gene: FOXP1: Rating: GREEN; Mode of pathogenicity: None; Publications: 26633542, 28741757; Phenotypes: Mental retardation with language impairment and with or without autistic features 613670; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7946 PARP6 Zornitza Stark Publications for gene: PARP6 were set to Cells 2021, 10(6), 1289; https://doi.org/10.3390/cells10061289
Mendeliome v0.7945 PARP6 Zornitza Stark edited their review of gene: PARP6: Changed publications: 34067418
Mendeliome v0.7945 DNAH2 Zornitza Stark edited their review of gene: DNAH2: Added comment: PMID 32732226: compound het variants identified in a fetus with hydrops and complex congenital heart disease detected by fetal ultrasound. Autopsy showed multiple congenital abnormalities including hydrops, heterotaxy, complex congenital heart disease, hypotrophic splenium, and common mesentery.; Changed publications: 30811583, 32732226; Changed phenotypes: Spermatogenic failure 45, MIM# 619094, Heterotaxy
Mendeliome v0.7945 MYBPC2 Zornitza Stark Marked gene: MYBPC2 as ready
Mendeliome v0.7945 MYBPC2 Zornitza Stark gene: MYBPC2 was added
gene: MYBPC2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MYBPC2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MYBPC2 were set to 32732226
Phenotypes for gene: MYBPC2 were set to Fetal akinesia; Hydrops; Hygroma; Multiple pterygium
Review for gene: MYBPC2 was set to RED
Added comment: Novel candidate gene identified in a fetus with fetal akinesia detected by ultrasound. Autopsy showed multiple congenital abnormalities including hydrops, hygroma, multiple pterygium. A homozygous variant (c.3394G>A/ p.Glu1132Lys) in MYBPC2 was found by exome sequencing with concordant segregation among one affected sib and two unaffected sibs.
Sources: Literature
Mendeliome v0.7944 SCN7A Zornitza Stark Marked gene: SCN7A as ready
Mendeliome v0.7944 SCN7A Zornitza Stark gene: SCN7A was added
gene: SCN7A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SCN7A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SCN7A were set to 32732226
Phenotypes for gene: SCN7A were set to Holoprosencephaly
Review for gene: SCN7A was set to RED
Added comment: Novel candidate gene identified in a fetus with holoprosencephaly detected by ultrasound. Autopsy showed multiple congenital abnormalities including IUGR, microcephaly, bilateral, ablepharon, corpus callosum agenesis, myelomeningocele, tracheal atresia, absent nipples, unilateral simian crease, and hypoplastic phalanges. Compound heterozygous variants including a truncating variant were found by exome sequencing with concordant segregation.
Sources: Literature
Mendeliome v0.7943 SPTBN5 Zornitza Stark Marked gene: SPTBN5 as ready
Mendeliome v0.7943 SPTBN5 Zornitza Stark gene: SPTBN5 was added
gene: SPTBN5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SPTBN5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SPTBN5 were set to 32732226; 28007035
Phenotypes for gene: SPTBN5 were set to Sacral agenesis; congenital anomalies
Review for gene: SPTBN5 was set to RED
Added comment: Identified as a candidate gene in a sacral agenesis cohort.

PMID 32732226: compound het variants identified in a fetus with multicystic kidney and oligohydramnios detected by fetal ultrasound. Autopsy showed multiple congenital abnormalities including hygroma coli, spina bifida, polycystic kidneys, facial dysmorphism, common mesenterin, rachischisis, sacral vertebral agenesis.
Sources: Literature
Mendeliome v0.7942 WDR91 Zornitza Stark Phenotypes for gene: WDR91 were changed from to Hydrocephalus; cerebellar hypoplasia; hygroma
Mendeliome v0.7938 WDR91 Zornitza Stark commented on gene: WDR91: PMID 32732226: Novel candidate gene identified in a fetus with hygroma and hydrocephaly detected by fetal ultrasound. Autopsy showed multiple congenital abnormalities including hygroma, macrocephaly, abnormal ears, unilateral simian crease, hydrocephaly, cerebellar hypoplasia, and interventricular communication. A homozygous truncating variant was found by exome sequencing with concordant segregation among 4 affected fetus, 2 healthy sibs and both parents. Mouse models support role in brain development.
Mendeliome v0.7938 WDR91 Zornitza Stark reviewed gene: WDR91: Rating: AMBER; Mode of pathogenicity: None; Publications: 34028500, 28860274, 32732226; Phenotypes: Hydrocephalus, cerebellar hypoplasia, hygroma; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7938 PLEKHN1 Zornitza Stark Marked gene: PLEKHN1 as ready
Mendeliome v0.7938 PLEKHN1 Zornitza Stark gene: PLEKHN1 was added
gene: PLEKHN1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PLEKHN1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PLEKHN1 were set to 33884296
Phenotypes for gene: PLEKHN1 were set to Sensory Neuropathy
Review for gene: PLEKHN1 was set to RED
Added comment: Hom missense variant in single patient with severely reduced/absent pain and temperature sensation
Sources: Literature
Mendeliome v0.7937 ZNF3 Zornitza Stark Marked gene: ZNF3 as ready
Mendeliome v0.7937 SMPDL3A Seb Lunke changed review comment from: Hom missense variant in twin sisters with deverely reduced pain and temperature sensation
Sources: Literature; to: Hom missense variant in twin sisters with severely reduced pain and temperature sensation
Sources: Literature
Mendeliome v0.7937 ZNF3 Zornitza Stark gene: ZNF3 was added
gene: ZNF3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZNF3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZNF3 were set to 32732226
Phenotypes for gene: ZNF3 were set to Hydrocephalus; cleft palate; microphthalmia
Review for gene: ZNF3 was set to RED
Added comment: Novel candidate gene identified in a fetus with hydrocephaly and facial cleft detected by fetal ultrasound. Autopsy showed multiple congenital abnormalities including a median cleft palate, partial maxillar agenesis, bilateral severe microphthalmia, arhinencephaly, partial thalamic fusion. A homozygous truncating variant (c.396A>G/ p.*132Trpext*69) in ZNF3 was found by exome sequencing.
Sources: Literature
Mendeliome v0.7936 SMPDL3A Seb Lunke Marked gene: SMPDL3A as ready
Mendeliome v0.7936 WRAP73 Zornitza Stark Marked gene: WRAP73 as ready
Mendeliome v0.7936 SMPDL3A Seb Lunke gene: SMPDL3A was added
gene: SMPDL3A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SMPDL3A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SMPDL3A were set to 33884296
Phenotypes for gene: SMPDL3A were set to Sensory Neuropathy
Added comment: Hom missense variant in twin sisters with deverely reduced pain and temperature sensation
Sources: Literature
Mendeliome v0.7932 EIF2AK2 Zornitza Stark edited their review of gene: EIF2AK2: Added comment: Four unrelated families reported with dystonia, recurrent variant, (p.Gly130Arg); Changed publications: 32197074, 33866603; Changed phenotypes: Intellectual disability, white matter abnormalities, ataxia, regression with febrile illness, Dystonia
Mendeliome v0.7932 SLC37A4 Zornitza Stark Marked gene: SLC37A4 as ready
Mendeliome v0.7929 TUBA1A Zornitza Stark Marked gene: TUBA1A as ready
Mendeliome v0.7929 TUBA1A Zornitza Stark Phenotypes for gene: TUBA1A were changed from to Lissencephaly 3, MIM# 611603; Congenital fibrosis of the extraocular muscles, AD
Mendeliome v0.7926 COL9A3 Zornitza Stark Phenotypes for gene: COL9A3 were changed from Epiphyseal dysplasia, multiple, 3, with or without myopathy, MIM# 600969; Stickler syndrome; Deafness to Epiphyseal dysplasia, multiple, 3, with or without myopathy, MIM# 600969; Stickler syndrome AR; Deafness AD; Peripheral vitreoretinal degeneration and retinal detachment, AD
Mendeliome v0.7921 ANGPTL8 Zornitza Stark Marked gene: ANGPTL8 as ready
Mendeliome v0.7920 SRCAP Zornitza Stark Marked gene: SRCAP as ready
Mendeliome v0.7920 SRCAP Zornitza Stark Phenotypes for gene: SRCAP were changed from to Floating-Harbor syndrome MIM#136140; Neurodevelopmental disorder, non-Floating Harbor
Mendeliome v0.7917 SRCAP Zornitza Stark reviewed gene: SRCAP: Rating: GREEN; Mode of pathogenicity: None; Publications: 33909990; Phenotypes: Floating-Harbor syndrome MIM#136140, Neurodevelopmental disorder, non-Floating Harbor; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7917 ADAMTSL2 Zornitza Stark Marked gene: ADAMTSL2 as ready
Mendeliome v0.7917 ADAMTSL2 Zornitza Stark Phenotypes for gene: ADAMTSL2 were changed from to Geleophysic dysplasia 1, MIM# 231050; Dermatosparaxic Ehlers Danlos syndrome
Mendeliome v0.7914 ADAMTSL2 Zornitza Stark reviewed gene: ADAMTSL2: Rating: GREEN; Mode of pathogenicity: None; Publications: 33369194, 26879370, 21415077; Phenotypes: Geleophysic dysplasia 1, MIM# 231050, Dermatosparaxic Ehlers Danlos syndrome; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7914 UNC45A Zornitza Stark Phenotypes for gene: UNC45A were changed from Cholestasis; Diarrhoea; Bone fragility; Impaired hearing to Osteootohepatoenteric syndrome, MIM# 619377; Cholestasis; Diarrhoea; Bone fragility; Impaired hearing
Mendeliome v0.7913 UNC45A Zornitza Stark edited their review of gene: UNC45A: Changed phenotypes: Osteootohepatoenteric syndrome, MIM# 619377, Cholestasis, Diarrhoea, Bone fragility, Impaired hearing
Mendeliome v0.7912 HS3ST6 Zornitza Stark Marked gene: HS3ST6 as ready
Mendeliome v0.7912 HS3ST6 Zornitza Stark gene: HS3ST6 was added
gene: HS3ST6 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: HS3ST6 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: HS3ST6 were set to 33508266
Phenotypes for gene: HS3ST6 were set to Hereditary angioedema-8 (HAE8), MIM#619367
Review for gene: HS3ST6 was set to RED
Added comment: Three affected individuals from a single family reported, missense variant, no functional data.
Sources: Expert list
Mendeliome v0.7911 MYOF Zornitza Stark Marked gene: MYOF as ready
Mendeliome v0.7911 MYOF Zornitza Stark gene: MYOF was added
gene: MYOF was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: MYOF was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MYOF were set to 32542751
Phenotypes for gene: MYOF were set to Hereditary angioedema-7 (HAE7), MIM#619366
Review for gene: MYOF was set to RED
Added comment: Three individuals from one family reported, onset of recurrent episodic swelling of the face, lips, and oral mucosa was in the second decade. Variant was also present in another unaffected family member. Some functional data.
Sources: Expert list
Mendeliome v0.7910 KNG1 Zornitza Stark Marked gene: KNG1 as ready
Mendeliome v0.7910 KNG1 Zornitza Stark Phenotypes for gene: KNG1 were changed from to Hereditary angioedema-6 (HAE6), MIM#619363
Mendeliome v0.7906 KNG1 Zornitza Stark reviewed gene: KNG1: Rating: AMBER; Mode of pathogenicity: None; Publications: 31087670, 33114181; Phenotypes: Hereditary angioedema-6 (HAE6), MIM#619363; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7906 ANGPT1 Zornitza Stark Marked gene: ANGPT1 as ready
Mendeliome v0.7906 ANGPT1 Zornitza Stark Phenotypes for gene: ANGPT1 were changed from Hereditary angioedema to Hereditary angioedema-5 (HAE5), MIM#619361
Mendeliome v0.7905 ANGPT1 Zornitza Stark reviewed gene: ANGPT1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Hereditary angioedema-5 (HAE5), MIM#619361; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7905 PLG Zornitza Stark changed review comment from: Association between mono-allelic variants and HAE: Over 20 families reported with a recurrent variant, p.Lys330Glu. Single family reported with a different variant. Note bi-allelic variants are associated with a separate disorder.

Bi-allelic variants and plasminogen deficiency: congenital plasminogen deficiency is characterised clinically by chronic mucosal pseudomembranous lesions consisting of subepithelial fibrin deposition and inflammation. The most common clinical manifestation is ligneous ('wood-like') conjunctivitis, a redness and subsequent formation of pseudomembranes mostly on the palpebral surfaces of the eye that progress to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa. The lesions may be triggered by local injury and/or infection and often recur after local excision. Pseudomembranous lesions of other mucous membranes often occur in the mouth, nasopharynx, trachea, and female genital tract. Some affected children also have congenital occlusive hydrocephalus. At least 3 unrelated families reported.; to: Association between mono-allelic variants and HAE: Over 20 families reported with a recurrent variant, p.Lys330Glu. Single family reported with a different variant. Note bi-allelic variants are associated with a separate disorder.

Bi-allelic variants and plasminogen deficiency: congenital plasminogen deficiency is characterised clinically by chronic mucosal pseudomembranous lesions consisting of subepithelial fibrin deposition and inflammation. The most common clinical manifestation is ligneous ('wood-like') conjunctivitis, a redness and subsequent formation of pseudomembranes mostly on the palpebral surfaces of the eye that progress to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa. The lesions may be triggered by local injury and/or infection and often recur after local excision. Pseudomembranous lesions of other mucous membranes often occur in the mouth, nasopharynx, trachea, and female genital tract. Some affected children also have congenital occlusive hydrocephalus. Over 20 unrelated families reported.
Mendeliome v0.7905 PLG Zornitza Stark Marked gene: PLG as ready
Mendeliome v0.7905 PLG Zornitza Stark Phenotypes for gene: PLG were changed from to Hereditary angioedema-4 (HAE4), MIM#619360; Plasminogen deficiency, type I, MIM# 217090
Mendeliome v0.7902 PLG Zornitza Stark reviewed gene: PLG: Rating: GREEN; Mode of pathogenicity: None; Publications: 28795768, 29548426, 29987869, 9242524, 10233898; Phenotypes: Hereditary angioedema-4 (HAE4), MIM#619360, Plasminogen deficiency, type I, MIM# 217090; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7901 PRKD1 Zornitza Stark Phenotypes for gene: PRKD1 were changed from Congenital heart defects and ectodermal dysplasia, 617364 to Congenital heart defects and ectodermal dysplasia, 617364; Congenital heart disease, autosomal recessive
Mendeliome v0.7897 PRKD1 Zornitza Stark edited their review of gene: PRKD1: Added comment: Additional publications supporting association with bi-allelic disease:

PMID: 33919081: Three sisters with pulmonary stenosis, truncus arteriosis, and atrial septal defect were homozygous for c.265-1G>T. Their asymptomatic father was also homozygous, however he had two affected sisters (not genotyped), raising the possibility that PRKD1 may undergo autosomal recessive inheritance mode with gender limitation. PMID: 25713110: Two sisters with truncus arteriosis were homozygous for R618X.; Changed publications: 27479907, 32817298, 25713110, 33919081; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7897 ATXN2L Seb Lunke Marked gene: ATXN2L as ready
Mendeliome v0.7895 LTBP1 Seb Lunke Marked gene: LTBP1 as ready
Mendeliome v0.7893 SLC30A5 Seb Lunke Marked gene: SLC30A5 as ready
Mendeliome v0.7893 CADM3 Seb Lunke Marked gene: CADM3 as ready
Mendeliome v0.7893 CADM3 Seb Lunke Added comment: Comment when marking as ready: Three families, but evidence not that great and missing segregation, so stays amber.
Mendeliome v0.7892 PGM2L1 Sue White Marked gene: PGM2L1 as ready
Mendeliome v0.7891 BCAS3 Sue White Marked gene: BCAS3 as ready
Mendeliome v0.7891 TUBA1A Kristin Rigbye edited their review of gene: TUBA1A: Changed phenotypes: Congenital fibrosis of the extraocular muscles, AD
Mendeliome v0.7891 TUBA1A Kristin Rigbye reviewed gene: TUBA1A: Rating: GREEN; Mode of pathogenicity: None; Publications: 30677308; Phenotypes: Congenital fibrosis of the extraocular muscles; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7891 LTBP1 Chern Lim gene: LTBP1 was added
gene: LTBP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LTBP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LTBP1 were set to 33991472
Phenotypes for gene: LTBP1 were set to cutis laxa syndrome
Review for gene: LTBP1 was set to GREEN
gene: LTBP1 was marked as current diagnostic
Added comment: PMID:33991472
- Premature truncating variants in multiple affected individuals from 4 unrelated consanguineous families.
- Affected individuals present with connective tissue features (cutis laxa and inguinal hernia), craniofacial dysmorphology, variable heart defects, and prominent skeletal features (craniosynostosis, short stature, brachydactyly, and syndactyly).
- Functional studies done on patient fibroblasts and zebrafish models.
Sources: Literature
Mendeliome v0.7891 SLC30A5 Melanie Marty gene: SLC30A5 was added
gene: SLC30A5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC30A5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC30A5 were set to 33547425; 12095919
Phenotypes for gene: SLC30A5 were set to Perinatal lethal cardiomyopathy
Review for gene: SLC30A5 was set to AMBER
Added comment: Four affected children from two unrelated families with cardiomyopathy, hydrops fetalis, or cystic hygroma that all deceased perinatally. 2 different homozygous PTCs variants found. Knockout of SLC30A5 in mouse models showed reduced body growth and reduced bone density. About 60% of the mice died due to bradyarrhythmia.
Sources: Literature
Mendeliome v0.7891 SRCAP Paul De Fazio reviewed gene: SRCAP: Rating: GREEN; Mode of pathogenicity: None; Publications: 33909990; Phenotypes: Floating-Harbor syndrome MIM#136140; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v0.7891 COL9A3 Kristin Rigbye reviewed gene: COL9A3: Rating: GREEN; Mode of pathogenicity: None; Publications: 33633367; Phenotypes: Epiphyseal dysplasia, multiple, 3, with or without myopathy, AD, MIM# 600969, Stickler syndrome, AR, Deafness, AD, Peripheral vitreoretinal degeneration and retinal detachment, AD; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7891 CADM3 Teresa Zhao gene: CADM3 was added
gene: CADM3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CADM3 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: CADM3 were set to PMID: 33889941
Phenotypes for gene: CADM3 were set to Charcot-Marie-Tooth disease
Review for gene: CADM3 was set to AMBER
Added comment: Three families reported with the same missense variant in CADM3 p.Tyr172Cys (one family de novo), with mice work to show reduced expression of the mutant protein in axons and abnormal axonal organization.
Sources: Literature
Mendeliome v0.7891 ANGPTL8 Dean Phelan gene: ANGPTL8 was added
gene: ANGPTL8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ANGPTL8 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ANGPTL8 were set to PMID: 33909604
Phenotypes for gene: ANGPTL8 were set to Low serum triglycerides; Coronary artery disease
Review for gene: ANGPTL8 was set to RED
Added comment: PMID: 33909604 - Population studies showed PTV are associated with both lipid levels and coronary artery disease.
Sources: Literature
Mendeliome v0.7891 PGM2L1 Chern Lim gene: PGM2L1 was added
gene: PGM2L1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PGM2L1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PGM2L1 were set to 33979636
Phenotypes for gene: PGM2L1 were set to severe developmental and speech delay, dysmorphic facial features, ear anomalies, high arched palate, strabismus, hypotonia, and keratosis pilaris
Review for gene: PGM2L1 was set to GREEN
gene: PGM2L1 was marked as current diagnostic
Added comment: PMID: 33979636:
- Hom/chet PTVs in 4 unrelated individuals. All four affected individuals had severe developmental and speech delay, dysmorphic facial features, ear anomalies, high arched palate, strabismus, hypotonia, and keratosis pilaris. Early obesity and seizures were present in three individuals.
- Studies on patient fibroblasts and cell lines indicated that PGM2L1 deficiency causes a decrease, but not a disappearance, of the sugar bisphosphates needed for the formation of NDP-sugars and that there is no evidence that this leads to a glycosylation defect.
Sources: Literature
Mendeliome v0.7891 KCNB1 Zornitza Stark Marked gene: KCNB1 as ready
Mendeliome v0.7891 KCNB1 Zornitza Stark Phenotypes for gene: KCNB1 were changed from to Epileptic encephalopathy, early infantile, 26, MIM# 616056
Mendeliome v0.7888 KCNB1 Zornitza Stark reviewed gene: KCNB1: Rating: GREEN; Mode of pathogenicity: None; Publications: 31600826, 31513310; Phenotypes: Epileptic encephalopathy, early infantile, 26, MIM# 616056; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7888 SYT1 Zornitza Stark Marked gene: SYT1 as ready
Mendeliome v0.7885 UBTF Zornitza Stark Marked gene: UBTF as ready
Mendeliome v0.7882 ZEB2 Zornitza Stark Marked gene: ZEB2 as ready
Mendeliome v0.7881 SLC9A6 Zornitza Stark Marked gene: SLC9A6 as ready
Mendeliome v0.7881 SLC9A6 Zornitza Stark Phenotypes for gene: SLC9A6 were changed from to Mental retardation, X-linked syndromic, Christianson type, MIM# 300243; MONDO:0010278
Mendeliome v0.7878 SLC9A6 Zornitza Stark reviewed gene: SLC9A6: Rating: GREEN; Mode of pathogenicity: None; Publications: 18342287, 19377476, 25044251, 33278113, 32569089, 31879735; Phenotypes: Mental retardation, X-linked syndromic, Christianson type, MIM# 300243, MONDO:0010278; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.7878 RPL3L Zornitza Stark Phenotypes for gene: RPL3L were changed from Neonatal dilated cardiomyopathy to Cardiomyopathy, dilated, 2D, MIM# 619371; Neonatal dilated cardiomyopathy
Mendeliome v0.7877 RPL3L Zornitza Stark reviewed gene: RPL3L: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Cardiomyopathy, dilated, 2D, MIM# 619371, Neonatal dilated cardiomyopathy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7875 SATB2 Zornitza Stark Marked gene: SATB2 as ready
Mendeliome v0.7872 MEF2C Zornitza Stark Phenotypes for gene: MEF2C were changed from Chromosome 5q14.3 deletion syndrome, 613443; Mental retardation, stereotypic movements, epilepsy, and/or cerebral malformations, 613443 to Chromosome 5q14.3 deletion syndrome, 613443; Mental retardation, stereotypic movements, epilepsy, and/or cerebral malformations, 613443; MONDO:0013266
Mendeliome v0.7870 MEF2C Zornitza Stark reviewed gene: MEF2C: Rating: GREEN; Mode of pathogenicity: None; Publications: 19876902, 19471318, 19592390, 19592390, 20513142, 34055696, 34022131; Phenotypes: Mental retardation, stereotypic movements, epilepsy, and/or cerebral malformations, MIM# 613443, MONDO:0013266 Edit; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7870 MBD5 Zornitza Stark Marked gene: MBD5 as ready
Mendeliome v0.7870 MBD5 Zornitza Stark Phenotypes for gene: MBD5 were changed from to Mental retardation, autosomal dominant 1, MIM# 156200; MONDO:0007974
Mendeliome v0.7867 MBD5 Zornitza Stark reviewed gene: MBD5: Rating: GREEN; Mode of pathogenicity: None; Publications: 18812405, 21981781, 23708187, 22726846, 33912662; Phenotypes: Mental retardation, autosomal dominant 1, MIM# 156200, MONDO:0007974; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7867 IQSEC2 Zornitza Stark Phenotypes for gene: IQSEC2 were changed from Mental retardation, X-linked 1/78, MIM#309530 to Mental retardation, X-linked 1/78, MIM# 309530, MONDO:0010656; Severe intellectual disability-progressive postnatal microcephaly- midline stereotypic hand movements syndrome MONDO:0018347
Mendeliome v0.7865 IQSEC2 Zornitza Stark reviewed gene: IQSEC2: Rating: GREEN; Mode of pathogenicity: None; Publications: 33368194, 20473311, 23674175; Phenotypes: Mental retardation, X-linked 1/78, MIM# 309530, MONDO:0010656, Severe intellectual disability-progressive postnatal microcephaly- midline stereotypic hand movements syndrome MONDO:0018347; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.7865 EEF1A2 Zornitza Stark Phenotypes for gene: EEF1A2 were changed from Epileptic encephalopathy, early infantile, 33, MIM# 616409; Mental retardation, autosomal dominant 38, MIM# 616393 to Mental retardation, autosomal dominant 38, MIM# 616393; MONDO:0014617; Developmental and epileptic encephalopathy 33, MIM# 616409; MONDO:0014625
Mendeliome v0.7863 EEF1A2 Zornitza Stark reviewed gene: EEF1A2: Rating: GREEN; Mode of pathogenicity: None; Publications: 24697219, 32196822, 32160274, 32062104, 31893083; Phenotypes: Mental retardation, autosomal dominant 38, MIM# 616393, MONDO:0014617, Developmental and epileptic encephalopathy 33, MIM# 616409, MONDO:0014625; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7863 MASP1 Zornitza Stark Marked gene: MASP1 as ready
Mendeliome v0.7860 BRPF1 Zornitza Stark Marked gene: BRPF1 as ready
Mendeliome v0.7857 TRAF7 Zornitza Stark Marked gene: TRAF7 as ready
Mendeliome v0.7857 TRAF7 Zornitza Stark Phenotypes for gene: TRAF7 were changed from to Cardiac, facial, and digital anomalies with developmental delay, MIM# 618164
Mendeliome v0.7854 TRAF7 Zornitza Stark reviewed gene: TRAF7: Rating: GREEN; Mode of pathogenicity: None; Publications: 32376980; Phenotypes: Cardiac, facial, and digital anomalies with developmental delay, MIM# 618164; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7854 UBE3B Zornitza Stark Marked gene: UBE3B as ready
Mendeliome v0.7850 HSPG2 Zornitza Stark reviewed gene: HSPG2: Rating: GREEN; Mode of pathogenicity: None; Publications: 11101850, 16927315, 11279527; Phenotypes: Schwartz-Jampel syndrome, type 1, MIM# 255800, MONDO:0009717, Dyssegmental dysplasia, Silverman-Handmaker type, MIM# 224410, MONDO:0009140; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7850 HLA-DRB1 Zornitza Stark Marked gene: HLA-DRB1 as ready
Mendeliome v0.7849 HLA-DRA Zornitza Stark Marked gene: HLA-DRA as ready
Mendeliome v0.7848 HLA-C Zornitza Stark Marked gene: HLA-C as ready
Mendeliome v0.7847 HLA-B Zornitza Stark Marked gene: HLA-B as ready
Mendeliome v0.7846 HLA-A Zornitza Stark Marked gene: HLA-A as ready
Mendeliome v0.7845 TAF6 Zornitza Stark Marked gene: TAF6 as ready
Mendeliome v0.7842 ANGPT2 Zornitza Stark Phenotypes for gene: ANGPT2 were changed from Primary lymphoedema to Lymphatic malformation-10, MIM#619369; Primary lymphoedema
Mendeliome v0.7841 ANGPT2 Zornitza Stark edited their review of gene: ANGPT2: Changed phenotypes: Lymphatic malformation-10, MIM#619369, Primary lymphoedema
Mendeliome v0.7841 SLC24A5 Zornitza Stark Marked gene: SLC24A5 as ready
Mendeliome v0.7838 SLC45A2 Zornitza Stark Marked gene: SLC45A2 as ready
Mendeliome v0.7835 TYR Zornitza Stark Marked gene: TYR as ready
Mendeliome v0.7833 TYRP1 Zornitza Stark Marked gene: TYRP1 as ready
Mendeliome v0.7830 MC1R Zornitza Stark Marked gene: MC1R as ready
Mendeliome v0.7826 LRMDA Zornitza Stark Marked gene: LRMDA as ready
Mendeliome v0.7823 SERPINF2 Zornitza Stark Marked gene: SERPINF2 as ready
Mendeliome v0.7820 SERPINE1 Zornitza Stark Marked gene: SERPINE1 as ready
Mendeliome v0.7817 TBXA2R Zornitza Stark Marked gene: TBXA2R as ready
Mendeliome v0.7813 P2RY12 Zornitza Stark Marked gene: P2RY12 as ready
Mendeliome v0.7810 MCFD2 Zornitza Stark Marked gene: MCFD2 as ready
Mendeliome v0.7807 LMAN1 Zornitza Stark Marked gene: LMAN1 as ready
Mendeliome v0.7804 ITGA2B Zornitza Stark Marked gene: ITGA2B as ready
Mendeliome v0.7801 LMOD1 Zornitza Stark Marked gene: LMOD1 as ready
Mendeliome v0.7797 POU4F1 Bryony Thompson Marked gene: POU4F1 as ready
Mendeliome v0.7796 POU4F1 Bryony Thompson gene: POU4F1 was added
gene: POU4F1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: POU4F1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: POU4F1 were set to 33783914; 8876243
Phenotypes for gene: POU4F1 were set to Ataxia; intention tremor; hypotonia
Review for gene: POU4F1 was set to GREEN
Added comment: 4 unrelated probands presenting with paediatric onset ataxia, intention tremor, and hypotonia, with de novo loss of function variants, and supporting null mouse model.
Sources: Literature
Mendeliome v0.7795 HPS6 Zornitza Stark Marked gene: HPS6 as ready
Mendeliome v0.7792 HPS4 Zornitza Stark Marked gene: HPS4 as ready
Mendeliome v0.7789 HPS3 Zornitza Stark Marked gene: HPS3 as ready
Mendeliome v0.7786 HPS1 Zornitza Stark Marked gene: HPS1 as ready
Mendeliome v0.7783 GP9 Zornitza Stark Marked gene: GP9 as ready
Mendeliome v0.7783 GP9 Zornitza Stark Phenotypes for gene: GP9 were changed from to Bernard-Soulier syndrome, type C, MIM# 231200
Mendeliome v0.7780 GP9 Zornitza Stark reviewed gene: GP9: Rating: GREEN; Mode of pathogenicity: None; Publications: 8049428, 33553065, 32030720, 31484196; Phenotypes: Bernard-Soulier syndrome, type C, MIM# 231200; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7780 GP6 Zornitza Stark Marked gene: GP6 as ready
Mendeliome v0.7777 GP1BB Zornitza Stark Marked gene: GP1BB as ready
Mendeliome v0.7777 GP1BB Zornitza Stark Phenotypes for gene: GP1BB were changed from to Bernard-Soulier syndrome, type B, MIM# 231200; Macrothrombocytopaenia
Mendeliome v0.7774 GP1BB Zornitza Stark reviewed gene: GP1BB: Rating: GREEN; Mode of pathogenicity: None; Publications: 8703016, 9116284, 10887115, 33813986, 33657022, 33216977, 31997307, 1730088, 11222377; Phenotypes: Bernard-Soulier syndrome, type B, MIM# 231200, Macrothrombocytopaenia; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7774 CREB3L3 Zornitza Stark Marked gene: CREB3L3 as ready
Mendeliome v0.7773 PSMC3 Zornitza Stark Phenotypes for gene: PSMC3 were changed from Deafness; cataract to Deafness, cataract, impaired intellectual development, and polyneuropathy, MIM#619354
Mendeliome v0.7772 PSMC3 Zornitza Stark edited their review of gene: PSMC3: Changed phenotypes: Deafness, cataract, impaired intellectual development, and polyneuropathy, MIM#619354
Mendeliome v0.7772 PSMC3 Zornitza Stark edited their review of gene: PSMC3: Changed phenotypes: Feafness, cataract, impaired intellectual development, and polyneuropathy, MIM#619354
Mendeliome v0.7772 SCNN1B Zornitza Stark Marked gene: SCNN1B as ready
Mendeliome v0.7770 FGB Zornitza Stark Marked gene: FGB as ready
Mendeliome v0.7767 FGB Zornitza Stark changed review comment from: Inherited disorders of fibrinogen affect either the quantity (afibrinogenaemia and hypofibrinogenaemia) or the quality (dysfibrinogenemia) of the circulating fibrinogen or both.

Afibrinogenaemia is characterized by the complete absence of immunoreactive fibrinogen. Bleeding due to afibrinogenaemia usually manifests in the neonatal period, with 85% of cases presenting umbilical cord bleeding, but a later age of onst is not unusual. Bleeding may occur in the skin, gastrointestinal tract, genitourinary tract, or the central nervous system, with intracranial haemorrhage being reported as the major cause of death. Patients are susceptible to spontaneous rupture of the spleen. First-trimester pregnancy loss is common. Both arterial and venous thromboembolic complications have been reported. Hypofibrinogenaemia is a milder disorder. Well established gene-disease association.; to: Inherited disorders of fibrinogen affect either the quantity (afibrinogenaemia and hypofibrinogenaemia) or the quality (dysfibrinogenemia) of the circulating fibrinogen or both.

Afibrinogenaemia is characterized by the complete absence of immunoreactive fibrinogen. Bleeding due to afibrinogenaemia usually manifests in the neonatal period, with 85% of cases presenting umbilical cord bleeding, but a later age of onst is not unusual. Bleeding may occur in the skin, gastrointestinal tract, genitourinary tract, or the central nervous system, with intracranial haemorrhage being reported as the major cause of death. Patients are susceptible to spontaneous rupture of the spleen. First-trimester pregnancy loss is common. Both arterial and venous thromboembolic complications have been reported. Hypofibrinogenaemia is a milder disorder.

Well established gene-disease association.
Mendeliome v0.7767 F9 Zornitza Stark Marked gene: F9 as ready
Mendeliome v0.7764 F8 Zornitza Stark Marked gene: F8 as ready
Mendeliome v0.7761 F7 Zornitza Stark Marked gene: F7 as ready
Mendeliome v0.7758 F5 Zornitza Stark Marked gene: F5 as ready
Mendeliome v0.7756 F13A1 Zornitza Stark Marked gene: F13A1 as ready
Mendeliome v0.7753 F10 Zornitza Stark Marked gene: F10 as ready
Mendeliome v0.7750 F10 Zornitza Stark commented on gene: F10: Factor X deficiency shows variable phenotypic severity. Affected individuals can manifest prolonged nasal and mucosal haemorrhage, menorrhagia, haematuria, and occasionally haemarthrosis. More than 20 unrelated families reported.
Mendeliome v0.7750 MCM7 Zornitza Stark Marked gene: MCM7 as ready
Mendeliome v0.7749 MCM7 Arina Puzriakova gene: MCM7 was added
gene: MCM7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MCM7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MCM7 were set to 33654309; 34059554
Phenotypes for gene: MCM7 were set to Meier-Gorlin syndrome; Microcephaly; Intellectual disability; Lipodystrophy; Adrenal insufficiency
Review for gene: MCM7 was set to AMBER
Added comment: MCM7 is a component of the MCM complex, a DNA helicase which is essential for DNA replication. Other components have been linked to disease with phenotypes including microcephaly and ID. MCM7 is not associated with any phenotype in OMIM or G2P at present.
------
Currently there are 3 unrelated pedigrees in literature with different biallelic MCM7 variants associated with disease (see below). Although there is some functional data in support of variant-level deleteriousness or gene-level pathogenicity, the clinical gestalt is very different between the 3 families.

- PMID: 33654309 (2021) - Two unrelated individuals with different compound het variants in MCM7 but disparate clinical features. One patient had typical Meier-Gorlin syndrome (including growth retardation, microcephaly, congenital lung emphysema, absent breast development, microtia, facial dysmorphism) whereas the second case had a multi-system disorder with neonatal progeroid appearance, lipodystrophy and adrenal insufficiency. While small at birth, the second patient did not demonstrate reduced stature or microcephaly at age 14.5 years. Both individuals had normal neurodevelopment.
Functional studies using patient-derived fibroblasts demonstrate that the identified MCM7 variants were deleterious at either transcript or protein levels and through interfering with MCM complex formation, impact efficiency of S phase progression.

- PMID: 34059554 (2021) - Homozygous missense variant identified in three affected individuals from a consanguineous family with severe primary microcephaly, severe ID and behavioural abnormalities. Knockdown of Mcm7 in mouse neuroblastoma cells lead to reduced cell viability and proliferation with increased apoptosis, which were rescued by overexpression of wild-type but not mutant MCM7.
Sources: Literature
Mendeliome v0.7749 DTNBP1 Zornitza Stark Marked gene: DTNBP1 as ready
Mendeliome v0.7746 BLOC1S3 Zornitza Stark Marked gene: BLOC1S3 as ready
Mendeliome v0.7743 AP3B1 Zornitza Stark Marked gene: AP3B1 as ready
Mendeliome v0.7740 LHCGR Zornitza Stark Marked gene: LHCGR as ready
Mendeliome v0.7736 NEB Zornitza Stark Phenotypes for gene: NEB were changed from Nemaline myopathy 2, autosomal recessive 256030 to Nemaline myopathy 2, autosomal recessive 256030; MONDO:0009725; Arthrogryposis multiplex congenita 6, MIM# 619334
Mendeliome v0.7735 NEB Zornitza Stark reviewed gene: NEB: Rating: GREEN; Mode of pathogenicity: None; Publications: 10051637, 22367672, 26578207, 33376055; Phenotypes: Arthrogryposis multiplex congenita 6, MIM# 619334; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7735 GEMIN5 Zornitza Stark Marked gene: GEMIN5 as ready
Mendeliome v0.7734 GEMIN5 Zornitza Stark gene: GEMIN5 was added
gene: GEMIN5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GEMIN5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GEMIN5 were set to 33963192
Phenotypes for gene: GEMIN5 were set to Neurodevelopmental disorder with cerebellar atrophy and motor dysfunction, MIM# 619333
Review for gene: GEMIN5 was set to GREEN
Added comment: Neurodevelopmental disorder with cerebellar atrophy and motor dysfunction (NEDCAM) is an autosomal recessive disorder characterized by global developmental delay with prominent motor abnormalities, mainly axial hypotonia, gait ataxia, and appendicular spasticity. Affected individuals have cognitive impairment and speech delay; brain imaging shows cerebellar atrophy. 30 individuals from 22 unrelated families reported.
Sources: Literature
Mendeliome v0.7733 ANO6 Zornitza Stark Marked gene: ANO6 as ready
Mendeliome v0.7730 KLHL3 Zornitza Stark Marked gene: KLHL3 as ready
Mendeliome v0.7727 KCNJ5 Zornitza Stark Marked gene: KCNJ5 as ready
Mendeliome v0.7725 HSD11B2 Zornitza Stark Marked gene: HSD11B2 as ready
Mendeliome v0.7725 HSD11B2 Zornitza Stark Phenotypes for gene: HSD11B2 were changed from to Apparent mineralocorticoid excess, MIM# 218030; MONDO:0009025
Mendeliome v0.7722 HSD11B2 Zornitza Stark reviewed gene: HSD11B2: Rating: GREEN; Mode of pathogenicity: None; Publications: 7670488, 9683587, 17314322; Phenotypes: Apparent mineralocorticoid excess, MIM# 218030, MONDO:0009025; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7722 CLCN2 Zornitza Stark Marked gene: CLCN2 as ready
Mendeliome v0.7719 CACNA1D Zornitza Stark Marked gene: CACNA1D as ready
Mendeliome v0.7719 CACNA1D Zornitza Stark Phenotypes for gene: CACNA1D were changed from to Primary aldosteronism, seizures, and neurologic abnormalities, MIM# 615474; MONDO:0014200; Sinoatrial node dysfunction and deafness, MIM# 614896
Mendeliome v0.7716 CACNA1D Zornitza Stark reviewed gene: CACNA1D: Rating: GREEN; Mode of pathogenicity: None; Publications: 23913001, 32336187, 30698561, 21131953, 15357422, 22678062; Phenotypes: Primary aldosteronism, seizures, and neurologic abnormalities, MIM# 615474, MONDO:0014200, Sinoatrial node dysfunction and deafness, MIM# 614896; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7716 CACNA1H Zornitza Stark Marked gene: CACNA1H as ready
Mendeliome v0.7713 COX16 Zornitza Stark Phenotypes for gene: COX16 were changed from Hypertrophic cardiomyopathy; encephalopathy; severe fatal lactic acidosis to Mitochondrial complex IV deficiency, nuclear type 22, MIM# 619355; Hypertrophic cardiomyopathy; encephalopathy; severe fatal lactic acidosis
Mendeliome v0.7712 COX16 Zornitza Stark reviewed gene: COX16: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Mitochondrial complex IV deficiency, nuclear type 22, MIM# 619355; Mode of inheritance: None
Mendeliome v0.7709 NFU1 Zornitza Stark Marked gene: NFU1 as ready
Mendeliome v0.7706 RAB11B Zornitza Stark commented on gene: RAB11B: NDAGSCW is a neurodevelopmental disorder characterized by severely delayed psychomotor development apparent from infancy. Affected individuals have delayed and difficulty walking, intellectual disability, absent speech, and variable additional features, including hip dysplasia, tapering fingers, and seizures. Brain imaging shows decreased cortical white matter, often with decreased cerebellar white matter, thin corpus callosum, and thin brainstem.
Mendeliome v0.7706 RAB11B Zornitza Stark Marked gene: RAB11B as ready
Mendeliome v0.7703 UFSP2 Zornitza Stark Marked gene: UFSP2 as ready
Mendeliome v0.7700 UFSP2 Zornitza Stark changed review comment from: Ni et al (2021 - PMID: 33473208) describe the phenotype of 8 children (belonging to 4 families - 2 of which consanguineous) homozygous for a UFSP2 missense variant [NM_018359.5:c.344T>A; p.(Val115Glu)]. Likely founder variant in all.

Hip dysplasia: single 8 generation family reported.

Spondyloepimetaphyseal dysplasia, Di Rocco type: two families reported.; to: Ni et al (2021 - PMID: 33473208) describe the phenotype of 8 children (belonging to 4 families - 2 of which consanguineous) homozygous for a UFSP2 missense variant [NM_018359.5:c.344T>A; p.(Val115Glu)]. Likely founder variant in all. Additional cases identified through the 100,000 Genomes project.

Hip dysplasia: single 8 generation family reported.

Spondyloepimetaphyseal dysplasia, Di Rocco type: two families reported.
Mendeliome v0.7700 KLHL13 Zornitza Stark Marked gene: KLHL13 as ready
Mendeliome v0.7699 PRX Zornitza Stark Marked gene: PRX as ready
Mendeliome v0.7699 PRX Zornitza Stark Phenotypes for gene: PRX were changed from to Charcot-Marie-Tooth disease, type 4F, MIM# 614895; Dejerine-Sottas disease, MIM# 145900
Mendeliome v0.7696 PRX Zornitza Stark reviewed gene: PRX: Rating: GREEN; Mode of pathogenicity: None; Publications: 11133365, 11157804, 15197604, 21079185, 22847150, 10839370, 32460404, 31523542, 31426691; Phenotypes: Charcot-Marie-Tooth disease, type 4F, MIM# 614895, Dejerine-Sottas disease, MIM# 145900; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7696 PLEKHG5 Zornitza Stark Marked gene: PLEKHG5 as ready
Mendeliome v0.7696 PLEKHG5 Zornitza Stark Phenotypes for gene: PLEKHG5 were changed from to Charcot-Marie-Tooth disease, recessive intermediate C, MIM# 615376; Spinal muscular atrophy, distal, autosomal recessive, 4, MIM# 611067
Mendeliome v0.7693 PLEKHG5 Zornitza Stark reviewed gene: PLEKHG5: Rating: GREEN; Mode of pathogenicity: None; Publications: 17564964, 23777631, 23844677, 33492783, 33275839, 33220101, 23777631; Phenotypes: Charcot-Marie-Tooth disease, recessive intermediate C, MIM# 615376, Spinal muscular atrophy, distal, autosomal recessive, 4, MIM# 611067; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7693 NEFL Zornitza Stark Marked gene: NEFL as ready
Mendeliome v0.7693 NEFL Zornitza Stark Phenotypes for gene: NEFL were changed from to Charcot-Marie-Tooth disease, dominant intermediate G, MIM# 617882; Charcot-Marie-Tooth disease, type 1F, MIM# 607734; Charcot-Marie-Tooth disease, type 2E 607684
Mendeliome v0.7690 NEFL Zornitza Stark reviewed gene: NEFL: Rating: GREEN; Mode of pathogenicity: None; Publications: 10841809, 12393795, 14733962, 24887401, 25877835, 20039262, 12566280, 29191368, 28902413; Phenotypes: Charcot-Marie-Tooth disease, dominant intermediate G, MIM# 617882, Charcot-Marie-Tooth disease, type 1F, MIM# 607734, Charcot-Marie-Tooth disease, type 2E 607684; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7690 ADNP Zornitza Stark Marked gene: ADNP as ready
Mendeliome v0.7687 CHUK Zornitza Stark Marked gene: CHUK as ready
Mendeliome v0.7687 CHUK Zornitza Stark Phenotypes for gene: CHUK were changed from to Popliteal pterygium syndrome, Bartsocas-Papas type 2, MIM# 619339; Cocoon syndrome, MIM# 613630; AEC-like syndrome
Mendeliome v0.7683 CHUK Zornitza Stark reviewed gene: CHUK: Rating: AMBER; Mode of pathogenicity: None; Publications: 25691407, 20961246, 10195895, 10195896, 29523099, 28513979; Phenotypes: Popliteal pterygium syndrome, Bartsocas-Papas type 2, MIM# 619339, Cocoon syndrome, MIM# 613630, AEC-like syndrome; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7682 PARP6 Zornitza Stark Mode of inheritance for gene: PARP6 was changed from BIALLELIC, autosomal or pseudoautosomal to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7681 PARP6 Zornitza Stark edited their review of gene: PARP6: Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7681 PARP6 Zornitza Stark Marked gene: PARP6 as ready
Mendeliome v0.7681 PARP6 Zornitza Stark Gene: parp6 has been classified as Green List (High Evidence).
Mendeliome v0.7681 PARP6 Zornitza Stark Classified gene: PARP6 as Green List (high evidence)
Mendeliome v0.7681 PARP6 Zornitza Stark Gene: parp6 has been classified as Green List (High Evidence).
Mendeliome v0.7680 PARP6 Zornitza Stark gene: PARP6 was added
gene: PARP6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PARP6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PARP6 were set to Cells 2021, 10(6), 1289; https://doi.org/10.3390/cells10061289
Phenotypes for gene: PARP6 were set to Intellectual disability; Epilepsy; Microcephaly
Review for gene: PARP6 was set to GREEN
Added comment: Four unrelated individuals reported with de novo variants in this gene and a neurodevelopmental phenotype. Supportive functional data. One pair of siblings with a homozygous missense: limited evidence for bi-allelic variants causing disease.
Sources: Literature
Mendeliome v0.7679 MAPKBP1 Zornitza Stark Marked gene: MAPKBP1 as ready
Mendeliome v0.7676 SLC6A6 Zornitza Stark Phenotypes for gene: SLC6A6 were changed from Early retinal degeneration; cardiomyopathy to Hypotaurinaemic retinal degeneration and cardiomyopathy (HTRDC), MIM#145350; Early retinal degeneration; cardiomyopathy
Mendeliome v0.7675 DNAJB2 Zornitza Stark Marked gene: DNAJB2 as ready
Mendeliome v0.7675 DNAJB2 Zornitza Stark Phenotypes for gene: DNAJB2 were changed from to Spinal muscular atrophy, distal, autosomal recessive, 5, MIM# 614881; MONDO:0014866
Mendeliome v0.7672 DNAJB2 Zornitza Stark reviewed gene: DNAJB2: Rating: GREEN; Mode of pathogenicity: None; Publications: 22522442, 25274842, 33369814, 22522442; Phenotypes: Spinal muscular atrophy, distal, autosomal recessive, 5, MIM# 614881, MONDO:0014866; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7672 ATP7A Zornitza Stark Phenotypes for gene: ATP7A were changed from Occipital horn syndrome, 304150; X-linked recessive Menkes disease, 309400 Spinal muscular atrophy, distal, X-linked 3, 300489 to Menkes disease MIM#309400; Occipital horn syndrome MIM#304150; Spinal muscular atrophy, distal, X-linked 3, MIM# 300489
Mendeliome v0.7670 ATP7A Zornitza Stark reviewed gene: ATP7A: Rating: GREEN; Mode of pathogenicity: None; Publications: 20170900, 33137485, 31969342, 31558336; Phenotypes: Menkes disease MIM#309400, Occipital horn syndrome MIM#304150, Spinal muscular atrophy, distal, X-linked 3, MIM# 300489; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.7670 UFSP2 Zornitza Stark changed review comment from: Ni et al (2021 - PMID: 33473208) describe the phenotype of 8 children (belonging to 4 families - 2 of which consanguineous) homozygous for a UFSP2 missense variant [NM_018359.5:c.344T>A; p.(Val115Glu)]. Likely founder variant in all.

Hip dysplasia: single 8 generation family reported.

Spondyloepimetaphyseal dysplasia, Di Rocco type: single 3-generation family reported.; to: Ni et al (2021 - PMID: 33473208) describe the phenotype of 8 children (belonging to 4 families - 2 of which consanguineous) homozygous for a UFSP2 missense variant [NM_018359.5:c.344T>A; p.(Val115Glu)]. Likely founder variant in all.

Hip dysplasia: single 8 generation family reported.

Spondyloepimetaphyseal dysplasia, Di Rocco type: two families reported.
Mendeliome v0.7670 TRPV6 Zornitza Stark Marked gene: TRPV6 as ready
Mendeliome v0.7670 TRPV6 Zornitza Stark Phenotypes for gene: TRPV6 were changed from to Hyperparathyroidism, transient neonatal, MIM# 618188; Early onset chronic pancreatitis susceptibility
Mendeliome v0.7667 TRPV6 Zornitza Stark reviewed gene: TRPV6: Rating: GREEN; Mode of pathogenicity: None; Publications: 32383311, 31930989, 29861107; Phenotypes: Hyperparathyroidism, transient neonatal, MIM# 618188, Early onset chronic pancreatitis susceptibility; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7667 FAR1 Zornitza Stark Phenotypes for gene: FAR1 were changed from Peroxisomal fatty acyl-CoA reductase 1 disorder, MIM#616154; spastic paraparesis and bilateral cataracts to Peroxisomal fatty acyl-CoA reductase 1 disorder, MIM#616154; Cataracts, spastic paraparesis, and speech delay, MIM#619338
Mendeliome v0.7666 FAR1 Zornitza Stark edited their review of gene: FAR1: Changed phenotypes: Peroxisomal fatty acyl-CoA reductase 1 disorder, MIM#616154, Cataracts, spastic paraparesis, and speech delay, MIM#619338
Mendeliome v0.7664 RETREG1 Zornitza Stark Marked gene: RETREG1 as ready
Mendeliome v0.7664 RETREG1 Zornitza Stark Phenotypes for gene: RETREG1 were changed from to Neuropathy, hereditary sensory and autonomic, type IIB, MIM# 613115; MONDO:0013142
Mendeliome v0.7661 RETREG1 Zornitza Stark reviewed gene: RETREG1: Rating: GREEN; Mode of pathogenicity: None; Publications: 19838196, 24327336, 31737055, 31596031; Phenotypes: Neuropathy, hereditary sensory and autonomic, type IIB, MIM# 613115, MONDO:0013142; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7661 SBF1 Zornitza Stark Marked gene: SBF1 as ready
Mendeliome v0.7661 SBF1 Zornitza Stark Phenotypes for gene: SBF1 were changed from to Charcot-Marie-Tooth disease, type 4B3 , MIM#615284; MONDO:0014117
Mendeliome v0.7658 SBF1 Zornitza Stark reviewed gene: SBF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 23749797, 23749797, 32444983, 30039846, 28005197; Phenotypes: Charcot-Marie-Tooth disease, type 4B3 , MIM#615284, MONDO:0014117; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7658 SBF2 Zornitza Stark Marked gene: SBF2 as ready
Mendeliome v0.7658 SBF2 Zornitza Stark Phenotypes for gene: SBF2 were changed from to Charcot-Marie-Tooth disease, type 4B2 , MIM#604563
Mendeliome v0.7655 SBF2 Zornitza Stark reviewed gene: SBF2: Rating: GREEN; Mode of pathogenicity: None; Publications: 12554688, 15477569, 12687498, 15304601, 31772832, 31070812; Phenotypes: Charcot-Marie-Tooth disease, type 4B2 , MIM#604563; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7655 SCN10A Zornitza Stark Marked gene: SCN10A as ready
Mendeliome v0.7652 TBC1D2B Zornitza Stark Phenotypes for gene: TBC1D2B were changed from Global developmental delay; Intellectual disability; Seizures; Gingival overgrowth; Behavioral abnormality; Abnormality of the mandible; Abnormality of brain morphology; Abnormality of the eye; Hearing abnormality to Neurodevelopmental disorder with seizures and gingival overgrowth (NEDSGO), MIM#619323; Global developmental delay; Intellectual disability; Seizures; Gingival overgrowth; Behavioral abnormality; Abnormality of the mandible; Abnormality of brain morphology; Abnormality of the eye; Hearing abnormality
Mendeliome v0.7651 TBC1D2B Zornitza Stark edited their review of gene: TBC1D2B: Changed phenotypes: Neurodevelopmental disorder with seizures and gingival overgrowth (NEDSGO), MIM#619323, Global developmental delay, Intellectual disability, Seizures, Gingival overgrowth, Behavioral abnormality, Abnormality of the mandible, Abnormality of brain morphology, Abnormality of the eye, Hearing abnormality
Mendeliome v0.7651 COL5A1 Zornitza Stark Marked gene: COL5A1 as ready
Mendeliome v0.7651 COL5A1 Zornitza Stark Phenotypes for gene: COL5A1 were changed from to Ehlers-Danlos syndrome, classic type, 1, MIM# 130000; Fibromuscular dysplasia, multifocal, MIM# 619329
Mendeliome v0.7648 COL5A1 Zornitza Stark reviewed gene: COL5A1: Rating: GREEN; Mode of pathogenicity: None; Publications: 30071989, 32938213; Phenotypes: Ehlers-Danlos syndrome, classic type, 1, MIM# 130000, Fibromuscular dysplasia, multifocal, MIM# 619329; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7648 SCN1A Zornitza Stark Phenotypes for gene: SCN1A were changed from Epileptic encephalopathy, early infantile, 6 (Dravet syndrome), MIM# 607208; Genetic Epilepsy Febrile Seizures plus (GEFS+) Syndrome; Febrile seizures; Arthrogryposis multiplex congenita to Epileptic encephalopathy, early infantile, 6 (Dravet syndrome), MIM# 607208; Developmental and epileptic encephalopathy 6B, non-Dravet, MIM# 619317; Genetic Epilepsy Febrile Seizures plus (GEFS+) Syndrome; Febrile seizures; Arthrogryposis multiplex congenita
Mendeliome v0.7647 SCN1A Zornitza Stark edited their review of gene: SCN1A: Changed phenotypes: Epileptic encephalopathy, early infantile, 6 (Dravet syndrome), MIM# 607208, Developmental and epileptic encephalopathy 6B, non-Dravet, MIM# 619317, Genetic Epilepsy Febrile Seizures plus (GEFS+) Syndrome, Febrile seizures, Arthrogryposis multiplex congenita
Mendeliome v0.7646 DKC1 Zornitza Stark Marked gene: DKC1 as ready
Mendeliome v0.7646 DKC1 Zornitza Stark Phenotypes for gene: DKC1 were changed from to Dyskeratosis congenita, X-linked 305000; Hoyeraal-Hreidarsson Syndrome
Mendeliome v0.7643 DKC1 Zornitza Stark reviewed gene: DKC1: Rating: GREEN; Mode of pathogenicity: None; Publications: 31269755, 26951492, 29081935, 25940403; Phenotypes: Dyskeratosis congenita, X-linked 305000, Hoyeraal-Hreidarsson Syndrome; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.7643 THOC2 Zornitza Stark Marked gene: THOC2 as ready
Mendeliome v0.7643 THOC2 Zornitza Stark Phenotypes for gene: THOC2 were changed from to Mental retardation, X-linked 12/35 MIM#300957
Mendeliome v0.7640 FGA Zornitza Stark Marked gene: FGA as ready
Mendeliome v0.7640 FGA Zornitza Stark Phenotypes for gene: FGA were changed from to Afibrinogenemia, congenital (MIM#202400), AR; Amyloidosis, familial visceral (MIM#105200), AD
Mendeliome v0.7637 THOC2 Paul De Fazio changed review comment from: Multiple (>10) individuals with neurodevelopmental phenotypes reported with missense, splice, and exon deletion variants. Variants are reported de novo or inherited from a carrier mother. Note that null (whole gene deletion or NMD) variants have not been reported in affected individuals. Arg77Cys appears to be recurrent (reported in multiple individuals).; to: Multiple (>10) males with neurodevelopmental phenotypes reported with missense, splice, and exon deletion variants. Variants are reported de novo or inherited from a carrier mother. Note that null (whole gene deletion or NMD) variants have not been reported in affected individuals. Arg77Cys appears to be recurrent (reported in multiple individuals).
Mendeliome v0.7637 THOC2 Paul De Fazio reviewed gene: THOC2: Rating: GREEN; Mode of pathogenicity: None; Publications: 26166480, 32116545, 29851191, 32960281; Phenotypes: Mental retardation, X-linked 12/35 MIM#300957; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v0.7637 FGA Chern Lim reviewed gene: FGA: Rating: GREEN; Mode of pathogenicity: None; Publications: 31064749, 17295221, 19073821, 11739173; Phenotypes: Afibrinogenemia, congenital (MIM#202400), AR, Amyloidosis, familial visceral (MIM#105200), AD; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.7637 GRHL2 Zornitza Stark Marked gene: GRHL2 as ready
Mendeliome v0.7634 ST14 Zornitza Stark Marked gene: ST14 as ready
Mendeliome v0.7631 CPE Zornitza Stark Marked gene: CPE as ready
Mendeliome v0.7630 CPE Zornitza Stark gene: CPE was added
gene: CPE was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: CPE was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CPE were set to 26120850; 32936766
Phenotypes for gene: CPE were set to Intellectual developmental disorder and hypogonadotropic hypogonadism, MIM# 619326
Review for gene: CPE was set to AMBER
Added comment: Four affected individuals from two unrelated families reported, bi-allelic LoF variants.
Sources: Expert Review
Mendeliome v0.7629 CELSR1 Zornitza Stark Marked gene: CELSR1 as ready
Mendeliome v0.7627 SLC2A4RG Zornitza Stark Marked gene: SLC2A4RG as ready
Mendeliome v0.7626 SLCO1B1 Zornitza Stark Marked gene: SLCO1B1 as ready
Mendeliome v0.7626 SLCO1B1 Zornitza Stark Added comment: Comment when marking as ready: Not a monogenic disorder.
Mendeliome v0.7623 SIAH1 Zornitza Stark Phenotypes for gene: SIAH1 were changed from Developmental delay; Infantile hypotonia; Dysmorphic features; Laryngomalacia to Buratti-Harel syndrome, MIM# 619314; Developmental delay; Infantile hypotonia; Dysmorphic features; Laryngomalacia
Mendeliome v0.7622 SIAH1 Zornitza Stark reviewed gene: SIAH1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Buratti-Harel syndrome, MIM# 619314; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7622 SMARCA5 Zornitza Stark Marked gene: SMARCA5 as ready
Mendeliome v0.7622 SMARCA5 Zornitza Stark Gene: smarca5 has been classified as Green List (High Evidence).
Mendeliome v0.7622 SMARCA5 Zornitza Stark Classified gene: SMARCA5 as Green List (high evidence)
Mendeliome v0.7622 SMARCA5 Zornitza Stark Gene: smarca5 has been classified as Green List (High Evidence).
Mendeliome v0.7621 SMARCA5 Zornitza Stark gene: SMARCA5 was added
gene: SMARCA5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SMARCA5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SMARCA5 were set to 33980485
Phenotypes for gene: SMARCA5 were set to Neurodevelopmental disorder; microcephaly; dysmorphic features
Review for gene: SMARCA5 was set to GREEN
Added comment: 12 individuals reported with either de novo or appropriately segregating variants in this gene and mild developmental delay, frequent postnatal short stature and microcephaly, and recurrent dysmorphic features. Functional data supports gene-disease association.
Sources: Literature
Mendeliome v0.7618 LEMD2 Zornitza Stark changed review comment from: Recurrent de novo variant in both individuals; to: Recurrent de novo variant in both individuals p.Ser479Phe.
Mendeliome v0.7618 LEMD2 Zornitza Stark Phenotypes for gene: LEMD2 were changed from progeroid disorder to Marbach-Rustad progeroid syndrome, OMIM# 619322; progeroid disorder
Mendeliome v0.7617 LEMD2 Zornitza Stark reviewed gene: LEMD2: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Marbach-Rustad progeroid syndrome, OMIM# 619322; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7615 SEPT9 Zornitza Stark edited their review of gene: SEPT9: Added comment: Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant form of recurrent focal neuropathy characterized clinically by acute, recurrent episodes of brachial plexus neuropathy with muscle weakness and atrophy preceded by severe pain in the affected arm. Multiple founder variants, including p.Arg88Trp. Also note intragenic duplication and 5'UTR variant reported, which may not be detectable by all NGS assays.; Changed publications: 16186812, 19451530, 19939853, 19139049
Mendeliome v0.7615 SLC5A7 Zornitza Stark Marked gene: SLC5A7 as ready
Mendeliome v0.7615 SLC5A7 Zornitza Stark Phenotypes for gene: SLC5A7 were changed from to Neuronopathy, distal hereditary motor, type VIIA, MIM# 158580; MONDO:0008024; Myasthenic syndrome, congenital, 20, presynaptic, MIM# 617143
Mendeliome v0.7612 SLC5A7 Zornitza Stark reviewed gene: SLC5A7: Rating: GREEN; Mode of pathogenicity: None; Publications: 23141292, 15173594, 29782645, 29582019, 27569547, 29189923, 30172469; Phenotypes: Neuronopathy, distal hereditary motor, type VIIA, MIM# 158580, MONDO:0008024, Myasthenic syndrome, congenital, 20, presynaptic, MIM# 617143; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7612 MCM10 Zornitza Stark Phenotypes for gene: MCM10 were changed from Susceptibility to CMV; Restrictive cardiomyopathy to Immunodeficiency-80 with or without congenital cardiomyopathy (IMD80), MIM#619313; Susceptibility to CMV; Restrictive cardiomyopathy
Mendeliome v0.7611 MCM10 Zornitza Stark edited their review of gene: MCM10: Changed phenotypes: Immunodeficiency-80 with or without congenital cardiomyopathy (IMD80), MIM#619313, Susceptibility to CMV, Restrictive cardiomyopathy
Mendeliome v0.7611 NR3C2 Zornitza Stark Marked gene: NR3C2 as ready
Mendeliome v0.7608 SCNN1A Zornitza Stark Marked gene: SCNN1A as ready
Mendeliome v0.7608 SCNN1A Zornitza Stark Phenotypes for gene: SCNN1A were changed from to Liddle syndrome 3 618126, MIM# AD, MONDO:0029132; Bronchiectasis with or without elevated sweat chloride 2, MIM# 613021 AD, MONDO:0013087; Pseudohypoaldosteronism, type I, MIM# 264350 AR, MIM#0009917
Mendeliome v0.7605 SCNN1A Zornitza Stark reviewed gene: SCNN1A: Rating: GREEN; Mode of pathogenicity: None; Publications: 31301676, 28710092, 19462466, 19017867; Phenotypes: Liddle syndrome 3 618126, MIM# AD, MONDO:0029132, Bronchiectasis with or without elevated sweat chloride 2, MIM# 613021 AD, MONDO:0013087, Pseudohypoaldosteronism, type I, MIM# 264350 AR, MIM#0009917; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7605 SPTLC1 Zornitza Stark Marked gene: SPTLC1 as ready
Mendeliome v0.7605 SPTLC1 Zornitza Stark Phenotypes for gene: SPTLC1 were changed from to Neuropathy, hereditary sensory and autonomic, type IA, MIM# 162400; Serine palmitoyl transferase deficiency (Disorders of complex lipid synthesis)
Mendeliome v0.7602 SPTLC2 Zornitza Stark Marked gene: SPTLC2 as ready
Mendeliome v0.7602 SPTLC2 Zornitza Stark Phenotypes for gene: SPTLC2 were changed from to Neuropathy, hereditary sensory and autonomic, type IC, 613640; MONDO:0013337; Serine palmitoyl transferase deficiency (Disorders of complex lipid synthesis)
Mendeliome v0.7599 ZPR1 Zornitza Stark Marked gene: ZPR1 as ready
Mendeliome v0.7598 SPEN Zornitza Stark Marked gene: SPEN as ready
Mendeliome v0.7598 SPEN Zornitza Stark Phenotypes for gene: SPEN were changed from Intellectual disability; autism; congenital anomalies to Radio-Tartaglia syndrome, MIM# 619312; Intellectual disability; autism; congenital anomalies
Mendeliome v0.7596 SPEN Zornitza Stark reviewed gene: SPEN: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Radio-Tartaglia syndrome, MIM# 619312; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7596 AFF3 Zornitza Stark Marked gene: AFF3 as ready
Mendeliome v0.7593 KDR Zornitza Stark Marked gene: KDR as ready
Mendeliome v0.7593 KDR Zornitza Stark Phenotypes for gene: KDR were changed from to Pulmonary hypertension; Haemangioma, capillary infantile, somatic 602089
Mendeliome v0.7590 KDR Zornitza Stark reviewed gene: KDR: Rating: GREEN; Mode of pathogenicity: None; Publications: 31980491, 29650961, 18931684; Phenotypes: Pulmonary hypertension, Haemangioma, capillary infantile, somatic 602089; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7590 TRIM2 Zornitza Stark Marked gene: TRIM2 as ready
Mendeliome v0.7590 TRIM2 Zornitza Stark Phenotypes for gene: TRIM2 were changed from to Charcot-Marie-Tooth disease, type 2R, MIM# 615490; MONDO:0014208
Mendeliome v0.7587 TRIM2 Zornitza Stark reviewed gene: TRIM2: Rating: GREEN; Mode of pathogenicity: None; Publications: 23562820, 25893792, 18687884, 32815244, 32205255, 25893792; Phenotypes: Charcot-Marie-Tooth disease, type 2R, MIM# 615490, MONDO:0014208; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7587 RAB7A Zornitza Stark Marked gene: RAB7A as ready
Mendeliome v0.7587 RAB7A Zornitza Stark Phenotypes for gene: RAB7A were changed from to Charcot-Marie-Tooth disease, type 2B, MIM# 600882; MONDO:0010949
Mendeliome v0.7584 RAB7A Zornitza Stark reviewed gene: RAB7A: Rating: GREEN; Mode of pathogenicity: None; Publications: 12545426, 17060578, 32326241, 29130394, 25614874; Phenotypes: Charcot-Marie-Tooth disease, type 2B, MIM# 600882, MONDO:0010949; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7584 PRDM12 Zornitza Stark Marked gene: PRDM12 as ready
Mendeliome v0.7584 PRDM12 Zornitza Stark Phenotypes for gene: PRDM12 were changed from to Neuropathy, hereditary sensory and autonomic, type VIII, MIM# 616488; MONDO:0014662
Mendeliome v0.7581 PRDM12 Zornitza Stark reviewed gene: PRDM12: Rating: GREEN; Mode of pathogenicity: None; Publications: 26005867, 33789102, 33010785, 32828702; Phenotypes: Neuropathy, hereditary sensory and autonomic, type VIII, MIM# 616488, MONDO:0014662; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7581 FIP1L1 Zornitza Stark Marked gene: FIP1L1 as ready
Mendeliome v0.7580 THBS2 Zornitza Stark Marked gene: THBS2 as ready
Mendeliome v0.7580 THBS2 Zornitza Stark Phenotypes for gene: THBS2 were changed from to {Lumbar disc herniation, susceptibility to} 603932
Mendeliome v0.7578 THBS2 Zornitza Stark reviewed gene: THBS2: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: {Lumbar disc herniation, susceptibility to} 603932; Mode of inheritance: None
Mendeliome v0.7578 ADIPOQ Zornitza Stark Marked gene: ADIPOQ as ready
Mendeliome v0.7578 ADIPOQ Zornitza Stark Added comment: Comment when marking as ready: No evidence for association with Mendelian disease.
Mendeliome v0.7575 INTU Zornitza Stark Marked gene: INTU as ready
Mendeliome v0.7572 NGF Zornitza Stark Marked gene: NGF as ready
Mendeliome v0.7572 NGF Zornitza Stark Phenotypes for gene: NGF were changed from to Neuropathy, hereditary sensory and autonomic, type V, MIM# 608654; MONDO:0012092
Mendeliome v0.7569 NGF Zornitza Stark reviewed gene: NGF: Rating: GREEN; Mode of pathogenicity: None; Publications: 14976160, 20978020, 33884296, 32693191, 31685654, 30296891; Phenotypes: Neuropathy, hereditary sensory and autonomic, type V, MIM# 608654, MONDO:0012092; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7569 SPEG Zornitza Stark Phenotypes for gene: SPEG were changed from Centronuclear myopathy 5, MIM# 615959 to Centronuclear myopathy 5, MIM# 615959; Dilated cardiomyopathy
Mendeliome v0.7567 SPEG Zornitza Stark edited their review of gene: SPEG: Added comment: PMIDs 32925938;33794647: Reports of early onset isolated DCM, as well as cardiomyopathy in the context of skeletal myopathy.; Changed publications: 25087613, 31625632, 30412272, 30157964, 29614691, 29474540, 28624463, 26578207, 25087613, 32925938, 33794647; Changed phenotypes: Centronuclear myopathy 5, MIM# 615959, Dilated cardiomyopathy
Mendeliome v0.7567 NDUFB3 Zornitza Stark Marked gene: NDUFB3 as ready
Mendeliome v0.7567 NDUFB3 Zornitza Stark Phenotypes for gene: NDUFB3 were changed from to Mitochondrial complex I deficiency, nuclear type 25, MIM# 618246; MONDO:0032629
Mendeliome v0.7564 NDUFB3 Zornitza Stark reviewed gene: NDUFB3: Rating: GREEN; Mode of pathogenicity: None; Publications: 27091925; Phenotypes: Mitochondrial complex I deficiency, nuclear type 25, MIM# 618246, MONDO:0032629; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7564 NDUFB3 Elena Savva reviewed gene: NDUFB3: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 22499348; Phenotypes: Mitochondrial complex I deficiency, nuclear type 25, MIM#618246; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7563 EXOSC1 Zornitza Stark Phenotypes for gene: EXOSC1 were changed from Pontocerebellar hypoplasia to Pontocerebellar hypoplasia, type 1F, MIM# 619304
Mendeliome v0.7562 EXOSC1 Zornitza Stark edited their review of gene: EXOSC1: Changed phenotypes: Pontocerebellar hypoplasia, type 1F, MIM# 619304
Mendeliome v0.7562 SLC25A46 Zornitza Stark Phenotypes for gene: SLC25A46 were changed from Neuropathy, hereditary motor and sensory, type VIB, MIM# 616505 to Neuropathy, hereditary motor and sensory, type VIB, MIM# 616505; Pontocerebellar hypoplasia, type 1E, MIM# 619303
Mendeliome v0.7561 SLC25A46 Zornitza Stark changed review comment from: Hereditary motor and sensory neuropathy type VIB is an autosomal recessive complex progressive neurologic disorder characterized mainly by early-onset optic atrophy resulting in progressive visual loss and peripheral axonal sensorimotor neuropathy with highly variable age at onset and severity. Affected individuals also have cerebellar or pontocerebellar atrophy on brain imaging, and they show abnormal movements, such as ataxia, dysmetria, and myoclonus.

At least 10 unrelated families reported, supportive functional data.; to: Hereditary motor and sensory neuropathy type VIB is an autosomal recessive complex progressive neurologic disorder characterized mainly by early-onset optic atrophy resulting in progressive visual loss and peripheral axonal sensorimotor neuropathy with highly variable age at onset and severity. Affected individuals also have cerebellar or pontocerebellar atrophy on brain imaging, and they show abnormal movements, such as ataxia, dysmetria, and myoclonus. New disease entity added by OMIM in 2021 to reflect this more severe end of the spectrum.

At least 10 unrelated families reported, supportive functional data.
Mendeliome v0.7561 SLC25A46 Zornitza Stark edited their review of gene: SLC25A46: Changed phenotypes: Neuropathy, hereditary motor and sensory, type VIB, MIM# 616505, Pontocerebellar hypoplasia, type 1E, MIM# 619303
Mendeliome v0.7559 EXOC2 Zornitza Stark Phenotypes for gene: EXOC2 were changed from Global developmental delay; Intellectual disability; Abnormality of the face; Abnormality of brain morphology to Neurodevelopmental disorder with dysmorphic facies and cerebellar hypoplasia, MIM# 619306; Global developmental delay; Intellectual disability; Abnormality of the face; Abnormality of brain morphology
Mendeliome v0.7558 EXOC2 Zornitza Stark edited their review of gene: EXOC2: Changed phenotypes: Neurodevelopmental disorder with dysmorphic facies and cerebellar hypoplasia, MIM# 619306, Global developmental delay, Intellectual disability, Abnormality of the face, Abnormality of brain morphology
Mendeliome v0.7558 SPI1 Zornitza Stark Marked gene: SPI1 as ready
Mendeliome v0.7557 SPI1 Zornitza Stark gene: SPI1 was added
gene: SPI1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SPI1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SPI1 were set to 33951726
Phenotypes for gene: SPI1 were set to Agammaglobulinaemia
Review for gene: SPI1 was set to GREEN
Added comment: Six unrelated individuals reported, four with de novo variants, two unphased. Some functional data.
Sources: Literature
Mendeliome v0.7556 NDRG1 Zornitza Stark Marked gene: NDRG1 as ready
Mendeliome v0.7556 NDRG1 Zornitza Stark Phenotypes for gene: NDRG1 were changed from to Charcot Marie Tooth disease, type 4D, 601455; MONDO:0011085; Auditory neuropathy
Mendeliome v0.7553 NDRG1 Zornitza Stark reviewed gene: NDRG1: Rating: GREEN; Mode of pathogenicity: None; Publications: 10831399, 24136616, 33334662, 29724652, 29174527, 28776325; Phenotypes: Charcot Marie Tooth disease, type 4D, 601455, MONDO:0011085, Auditory neuropathy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7553 MTMR2 Zornitza Stark Marked gene: MTMR2 as ready
Mendeliome v0.7553 MTMR2 Zornitza Stark Phenotypes for gene: MTMR2 were changed from to Charcot-Marie-Tooth disease, type 4B1, 601382; MONDO:0011066
Mendeliome v0.7550 MTMR2 Zornitza Stark reviewed gene: MTMR2: Rating: GREEN; Mode of pathogenicity: None; Publications: 10802647, 16249189, 33653949, 32586600, 32488727, 31680794; Phenotypes: Charcot-Marie-Tooth disease, type 4B1, 601382, MONDO:0011066; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7550 TMEM222 Zornitza Stark Marked gene: TMEM222 as ready
Mendeliome v0.7549 TMEM222 Zornitza Stark gene: TMEM222 was added
gene: TMEM222 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TMEM222 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMEM222 were set to 33824500
Phenotypes for gene: TMEM222 were set to Intellectual disability; Epilepsy; Microcephaly
Review for gene: TMEM222 was set to GREEN
Added comment: Polla et al (2021 - PMID: 33824500) report 17 individuals from 9 unrelated families, with biallelic TMEM222 pathogenic variants. The phenotype included motor, speech delay and moderate to severe ID (as universal features). Other manifestations included hypotonia (10/15), broad gait (5/12), seizures (7/17 - belonging to 6/9 families), MRI abnormalities (5/8). Variable behavioral abnormalities were observed (aggressive behavior, shy character, stereotypic movements etc). Abnormal OFC was a feature in several with microcephaly in 7 subjects from 4 families (measurements not available for all 17). Nonspecific facial features were reported in 10/17.
Sources: Literature
Mendeliome v0.7548 CHD5 Zornitza Stark Marked gene: CHD5 as ready
Mendeliome v0.7546 MME Zornitza Stark Marked gene: MME as ready
Mendeliome v0.7546 MME Zornitza Stark Phenotypes for gene: MME were changed from to Charcot-Marie-Tooth disease, axonal, type 2T, MIM# 617017; MONDO:0014866; Spinocerebellar ataxia 43 MIM#617018
Mendeliome v0.7543 MME Zornitza Stark reviewed gene: MME: Rating: GREEN; Mode of pathogenicity: None; Publications: 26991897, 27588448, 33144514, 31429185, 27583304; Phenotypes: Charcot-Marie-Tooth disease, axonal, type 2T, MIM# 617017, MONDO:0014866, Spinocerebellar ataxia 43 MIM#617018; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7543 FBXO31 Zornitza Stark Phenotypes for gene: FBXO31 were changed from Mental retardation, autosomal recessive 45, MIM#615979; Cerebral palsy, intellectual disability, autosomal dominant to Mental retardation, autosomal recessive 45, MIM#615979; Spastic-dystonic cerebral palsy, intellectual disability, de novo dominant
Mendeliome v0.7541 FBXO31 Zornitza Stark changed review comment from: Single consanguineous family reported with homozygous truncating variant, limited functional evidence.
Sources: Expert list; to: AR intellectual disability: Single consanguineous family reported with homozygous truncating variant, limited functional evidence.
Sources: Expert list
Mendeliome v0.7541 FBXO31 Zornitza Stark edited their review of gene: FBXO31: Added comment: PMIDs 33675180; 32989326: three unrelated individuals with de novo missense variant, (p.Asp334Asn) and spastic-dystonic CP.; Changed rating: GREEN; Changed publications: 24623383, 33675180, 32989326; Changed phenotypes: Mental retardation, autosomal recessive 45, MIM#615979, Spastic-dystonic cerebral palsy, de novo dominant; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7541 RCAN1 Zornitza Stark Marked gene: RCAN1 as ready
Mendeliome v0.7539 ZNFX1 Zornitza Stark Marked gene: ZNFX1 as ready
Mendeliome v0.7536 STXBP3 Zornitza Stark Marked gene: STXBP3 as ready
Mendeliome v0.7535 STXBP3 Zornitza Stark gene: STXBP3 was added
gene: STXBP3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: STXBP3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: STXBP3 were set to 33891011
Phenotypes for gene: STXBP3 were set to Very Early Onset Inflammatory Bowel Disease; Bilateral Sensorineural Hearing Loss; Immune Dysregulation
Review for gene: STXBP3 was set to GREEN
Added comment: 10 individuals from 5 families reported.
Sources: Literature
Mendeliome v0.7534 IL21R Zornitza Stark Marked gene: IL21R as ready
Mendeliome v0.7531 SCD Zornitza Stark Marked gene: SCD as ready
Mendeliome v0.7530 DPYSL5 Zornitza Stark Marked gene: DPYSL5 as ready
Mendeliome v0.7529 SIN3B Zornitza Stark Marked gene: SIN3B as ready
Mendeliome v0.7523 JAG2 Zornitza Stark Marked gene: JAG2 as ready
Mendeliome v0.7522 NEPRO Zornitza Stark Marked gene: NEPRO as ready
Mendeliome v0.7521 LRSAM1 Zornitza Stark Marked gene: LRSAM1 as ready
Mendeliome v0.7521 LRSAM1 Zornitza Stark Phenotypes for gene: LRSAM1 were changed from to Charcot-Marie-Tooth disease, axonal, type 2P, MIM# 614436; MONDO:0013753
Mendeliome v0.7518 LRSAM1 Zornitza Stark reviewed gene: LRSAM1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20865121, 22012984, 22781092, 27686364, 33568173, 33414056, 30996334; Phenotypes: Charcot-Marie-Tooth disease, axonal, type 2P, MIM# 614436, MONDO:0013753; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7518 LITAF Zornitza Stark Marked gene: LITAF as ready
Mendeliome v0.7518 LITAF Zornitza Stark Phenotypes for gene: LITAF were changed from to Charcot-Marie-Tooth disease, type 1C, MIM# 601098; MONDO:0010995
Mendeliome v0.7515 LITAF Zornitza Stark reviewed gene: LITAF: Rating: GREEN; Mode of pathogenicity: None; Publications: 12525712, 19541485, 23359569, 32665875, 28211240; Phenotypes: Charcot-Marie-Tooth disease, type 1C, MIM# 601098, MONDO:0010995; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7515 SLC3A1 Zornitza Stark Marked gene: SLC3A1 as ready
Mendeliome v0.7512 LSM7 Bryony Thompson Marked gene: LSM7 as ready
Mendeliome v0.7511 LSM7 Bryony Thompson gene: LSM7 was added
gene: LSM7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LSM7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LSM7 were set to DOI:https://doi.org/10.1016/j.xhgg.2021.100034
Phenotypes for gene: LSM7 were set to Leukodystrophy; foetal death
Review for gene: LSM7 was set to AMBER
Added comment: Homozygous variant (p.Asp41Asn) identified in a child with leukodystrophy and a homozygous variant (p.Arg69Pro) identified in an individual that died in utero. In vitro and in vivo (zebrafish) assays supporting pathogenicity of the 2 variants.
Sources: Literature
Mendeliome v0.7510 PTPN4 Bryony Thompson Marked gene: PTPN4 as ready
Mendeliome v0.7509 PTPN4 Bryony Thompson gene: PTPN4 was added
gene: PTPN4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PTPN4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PTPN4 were set to 17953619; 25424712; 30238967; DOI: https://doi.org/10.1016/j.xhgg.2021.100033
Phenotypes for gene: PTPN4 were set to Intellectual disability; developmental delay
Review for gene: PTPN4 was set to GREEN
Added comment: >3 unrelated probands and supporting mouse model
PMID: 17953619 - knockout mouse model has impaired motor learning and cerebellar synaptic plasticity
PMID: 25424712 - twins with a de novo whole gene deletion and a Rett-like neurodevelopmental disorder
PMID: 30238967 - mosaic de novo variant (p.Leu72Ser) identified in a child with developmental delay, autistic features, hypotonia, increased immunoglobulin E and dental problems. Also supporting mouse assays demonstrating loss of protein expression in dendritic spines
DOI: https://doi.org/10.1016/j.xhgg.2021.100033 - missense and truncating variants in six unrelated individuals with varying degrees of intellectual disability or developmental delay. 5 were able to undergo segregation analysis and found to be de novo.
Sources: Literature
Mendeliome v0.7508 SLC3A1 Michelle Torres reviewed gene: SLC3A1: Rating: GREEN; Mode of pathogenicity: None; Publications: 25964309; Phenotypes: Cystinuria (MIM#220100) AD, AR; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7507 POLR3K Zornitza Stark Marked gene: POLR3K as ready
Mendeliome v0.7506 POLR3K Zornitza Stark gene: POLR3K was added
gene: POLR3K was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: POLR3K was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: POLR3K were set to 30584594; 33659930
Phenotypes for gene: POLR3K were set to Hypomyelinating leukodystrophy-21, MIM#619310
Review for gene: POLR3K was set to AMBER
Added comment: Two individuals from same ethnic background reported with a common homozygous missense variant in this gene, suggestive of founder effect. Some functional evidence, and note other gene family members are linked to similar phenotypes. Neurodegenerative phenotype: global developmental delay apparent from infancy with loss of motor, speech, and cognitive milestones in the first decades of life.
Sources: Expert Review
Mendeliome v0.7505 SAG Zornitza Stark Marked gene: SAG as ready
Mendeliome v0.7502 YWHAG Zornitza Stark Marked gene: YWHAG as ready
Mendeliome v0.7502 YWHAG Zornitza Stark Added comment: Comment when marking as ready: Developmental and epileptic encephalopathy-56 (DEE56) is a neurodevelopmental disorder characterized by early-onset seizures in most patients, followed by impaired intellectual development, variable behavioral abnormalities, and sometimes additional neurologic features, such as ataxia
Mendeliome v0.7498 OCRL Zornitza Stark Marked gene: OCRL as ready
Mendeliome v0.7491 NEK1 Zornitza Stark Marked gene: NEK1 as ready
Mendeliome v0.7488 OCRL Eleanor Williams changed review comment from: PMID: 33517444 - Ramadesikan et al 2021 - studied the cellular effect of 7 OCRL1 (OCRL) variants identified in Lowe Syndrome patients in kidney epithelial cells. Differences in cell spreading, ciliogenesis, protein localization and degree of Golgi apparatus fragmentation were observed. The results help provide a framework to explains symptom heterogeneity and may help stratify patients.; to: Genotype/Phenotype information:
PMID: 33517444 - Ramadesikan et al 2021 - studied the cellular effect of 7 OCRL1 (OCRL) variants identified in Lowe Syndrome patients in kidney epithelial cells. Differences in cell spreading, ciliogenesis, protein localization and degree of Golgi apparatus fragmentation were observed. The results help provide a framework to explains symptom heterogeneity and may help stratify patients.
Mendeliome v0.7488 PDGFRB Eleanor Williams reviewed gene: PDGFRB: Rating: ; Mode of pathogenicity: None; Publications: 33450762; Phenotypes: Ocular pterygium-digital keloid dysplasia; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.7488 INF2 Zornitza Stark Marked gene: INF2 as ready
Mendeliome v0.7488 INF2 Zornitza Stark Phenotypes for gene: INF2 were changed from to Charcot-Marie-Tooth disease, dominant intermediate E, MIM# 614455; Glomerulosclerosis, focal segmental, 5, MIM# 613237
Mendeliome v0.7485 INF2 Zornitza Stark reviewed gene: INF2: Rating: GREEN; Mode of pathogenicity: None; Publications: 22187985, 30680856, 25943269, 20023659; Phenotypes: Charcot-Marie-Tooth disease, dominant intermediate E, MIM# 614455, Glomerulosclerosis, focal segmental, 5, MIM# 613237; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7485 MED25 Zornitza Stark changed review comment from: Basel-Vanagaite-Smirin-Yosef syndrome is an autosomal recessive multiple congenital anomaly disorder characterized by severely delayed psychomotor development resulting in mental retardation, as well as variable eye, brain, cardiac, and palatal abnormalities.

7 individuals from 4 families reported initially, founder variant p.Tyr39Cys. Over 20 individuals reported since, including other variants.; to: Basel-Vanagaite-Smirin-Yosef syndrome is an autosomal recessive multiple congenital anomaly disorder characterized by severely delayed psychomotor development resulting in intellectual disability, as well as variable eye, brain, cardiac, and palatal abnormalities.

7 individuals from 4 families reported initially, founder variant p.Tyr39Cys. Over 20 individuals reported since, including other variants.
Mendeliome v0.7485 MED25 Zornitza Stark Marked gene: MED25 as ready
Mendeliome v0.7485 MED25 Zornitza Stark Phenotypes for gene: MED25 were changed from to Basel-Vanagait-Smirin-Yosef syndrome, MIM# 616449; Congenital cataract-microcephaly-naevus flammeus syndrome MONDO:0014643
Mendeliome v0.7482 MED25 Zornitza Stark reviewed gene: MED25: Rating: GREEN; Mode of pathogenicity: None; Publications: 25792360, 32816121; Phenotypes: Basel-Vanagait-Smirin-Yosef syndrome, MIM# 616449, Congenital cataract-microcephaly-naevus flammeus syndrome MONDO:0014643; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7482 HSPB1 Zornitza Stark Marked gene: HSPB1 as ready
Mendeliome v0.7482 HSPB1 Zornitza Stark Phenotypes for gene: HSPB1 were changed from to Charcot Marie Tooth disease, axonal, type 2F, 606595; MONDO:0011687; Neuropathy, distal hereditary motor, type IIB, 608634; MONDO:0012080
Mendeliome v0.7479 HSPB1 Zornitza Stark reviewed gene: HSPB1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21785432, 15122254, 18832141, 32639100, 32334137; Phenotypes: Charcot Marie Tooth disease, axonal, type 2F, 606595, MONDO:0011687, Neuropathy, distal hereditary motor, type IIB, 608634, MONDO:0012080; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7479 HINT1 Zornitza Stark Marked gene: HINT1 as ready
Mendeliome v0.7479 HINT1 Zornitza Stark Phenotypes for gene: HINT1 were changed from to Neuromyotonia and axonal neuropathy, autosomal recessive, MIM# 137200; Gamstorp-Wohlfart syndrome, MONDO:0007646
Mendeliome v0.7476 HINT1 Zornitza Stark reviewed gene: HINT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 22961002, 33663550, 33404983, 31848916; Phenotypes: Neuromyotonia and axonal neuropathy, autosomal recessive, MIM# 137200, Gamstorp-Wohlfart syndrome, MONDO:0007646; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7476 GNB4 Zornitza Stark Marked gene: GNB4 as ready
Mendeliome v0.7476 GNB4 Zornitza Stark Phenotypes for gene: GNB4 were changed from to Charcot-Marie-Tooth disease, dominant intermediate F, MIM# 615185; MONDO:0014074
Mendeliome v0.7473 GNB4 Zornitza Stark reviewed gene: GNB4: Rating: GREEN; Mode of pathogenicity: None; Publications: 23434117, 28642160, 27908631; Phenotypes: Charcot-Marie-Tooth disease, dominant intermediate F, MIM# 615185, MONDO:0014074; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7473 GJB1 Zornitza Stark Marked gene: GJB1 as ready
Mendeliome v0.7473 GJB1 Zornitza Stark Phenotypes for gene: GJB1 were changed from to Charcot-Marie-Tooth neuropathy, X-linked dominant, 1, MIM# 302800; MONDO:0010549; reversible posterior leukoencephalopathy
Mendeliome v0.7470 NEPRO Chern Lim gene: NEPRO was added
gene: NEPRO was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NEPRO was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NEPRO were set to 26633546; 29620724; 31250547
Phenotypes for gene: NEPRO were set to Anauxetic dysplasia 3, MIM618853
Review for gene: NEPRO was set to AMBER
Added comment: PMIDs 26633546, 29620724: 2 families with the same homozygous missense variant, haplotype analysis confirmed the founder nature of the variant.

PMID 31250547: 1 family with homozygous novel missense

All 5 affected individuals have severe short stature, brachydactyly, skin laxity, joint hypermobility, and joint dislocations. They also have short metacarpals, broad middle phalanges, and metaphyseal irregularities. No functional studies.
Sources: Literature
Mendeliome v0.7470 GJB1 Zornitza Stark reviewed gene: GJB1: Rating: GREEN; Mode of pathogenicity: None; Publications: 8266101, 17100997, 17353473, 31842800; Phenotypes: Charcot-Marie-Tooth neuropathy, X-linked dominant, 1, MIM# 302800, MONDO:0010549, reversible posterior leukoencephalopathy; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.7470 FGD4 Zornitza Stark Marked gene: FGD4 as ready
Mendeliome v0.7470 FGD4 Zornitza Stark Phenotypes for gene: FGD4 were changed from to Charcot Marie Tooth disease, type 4H, 609311; MONDO:0012250
Mendeliome v0.7467 FGD4 Zornitza Stark reviewed gene: FGD4: Rating: GREEN; Mode of pathogenicity: None; Publications: 17564959, 31152969, 28847448, 28543957; Phenotypes: Charcot Marie Tooth disease, type 4H, 609311, MONDO:0012250; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7467 COX6A1 Zornitza Stark Marked gene: COX6A1 as ready
Mendeliome v0.7467 COX6A1 Zornitza Stark Phenotypes for gene: COX6A1 were changed from to Charcot Marie Tooth disease, recessive intermediate D, MIM# 616039; MONDO:0014467
Mendeliome v0.7464 COX6A1 Zornitza Stark reviewed gene: COX6A1: Rating: GREEN; Mode of pathogenicity: None; Publications: 25152455, 26302975, 25152455; Phenotypes: Charcot Marie Tooth disease, recessive intermediate D, MIM# 616039, MONDO:0014467; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7464 JAG2 Belinda Chong gene: JAG2 was added
gene: JAG2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: JAG2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: JAG2 were set to PMID: 33861953
Phenotypes for gene: JAG2 were set to muscular dystrophy
Review for gene: JAG2 was set to GREEN
Added comment: Whole-exome sequencing identified 13 families with rare homozygous or compound heterozygous JAG2 variants. Bi-allelic variants include 10 missense variants that disrupt highly conserved amino acids, a nonsense variant, two frameshift variants, an in-frame deletion, and a microdeletion encompassing JAG2. Onset of muscle weakness occurred from infancy to young adulthood. Serum creatine kinase (CK) levels were normal or mildly elevated. Muscle histology was primarily dystrophic. MRI of the lower extremities revealed a distinct, slightly asymmetric pattern of muscle involvement with cores of preserved and affected muscles in quadriceps and tibialis anterior, in some cases resembling patterns seen in POGLUT1-associated muscular dystrophy.
Sources: Literature
Mendeliome v0.7464 VPS41 Kristin Rigbye changed review comment from: "Five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function."; to: "Five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function."

"Affected individuals were born after uneventful pregnancies and presented in most cases early in life with developmental delay. Various degrees of ataxia, hypotonia, and dystonia were present in all affected individuals, preventing independent ambulation. Likewise, nystagmus was commonly described. In addition, all affected individuals displayed intellectual disability and speech delay. Two siblings further presented with therapy-resistant epilepsy. No major dysmorphic features were found. In two individuals, retinal pigment alterations were noticed. Brain MRI revealed mild cerebellar atrophy and vermian atrophy without other major structural abnormalities in most affected individuals while in one case (Subject 9) bilateral hyperintensities at the nucleus caudatus area were noted. No hearing or vision problems were noted and in cases where nerve conduction studies were performed, these were normal. Transmission electron microscopy (TEM) on peripheral blood lymphocytes from Subject 2 and lymphoblastoid cells from Subject 3 revealed more multilayered vesicles compared to control cells."
Mendeliome v0.7464 SIN3B Elena Savva gene: SIN3B was added
gene: SIN3B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SIN3B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: SIN3B were set to PMID: 33811806
Phenotypes for gene: SIN3B were set to Syndromic intellectual disability/autism spectrum disorder
Review for gene: SIN3B was set to GREEN
Added comment: PMID: 33811806
- 9 affected patients, all de novo (2 PTCs, 2 missense, multigenic CNVs)
- syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant ASD, congenital malformations, corpus callosum defects, and impaired growth.
- CNVs encompassing the gene have been found
Sources: Literature
Mendeliome v0.7464 DPYSL5 Michelle Torres gene: DPYSL5 was added
gene: DPYSL5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DPYSL5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DPYSL5 were set to 33894126
Phenotypes for gene: DPYSL5 were set to Neurodevelopmental disorder with corpus callosum agenesis and cerebellar abnormalities
Review for gene: DPYSL5 was set to GREEN
Added comment: Nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. The recurrent de novo p.Glu41Lys was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Both impaired DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and βIII-tubulin, ultimately leading to abnormal brain development
Sources: Literature
Mendeliome v0.7464 CDC40 Zornitza Stark Phenotypes for gene: CDC40 were changed from Pontocerebellar hypoplasia; microcephaly; seizures to Pontocerebellar hypoplasia, type 15, MIM# 619302; microcephaly; seizures
Mendeliome v0.7463 CDC40 Zornitza Stark edited their review of gene: CDC40: Changed phenotypes: Pontocerebellar hypoplasia, type 15, MIM# 619302, microcephaly, seizures
Mendeliome v0.7463 PPIL1 Zornitza Stark Phenotypes for gene: PPIL1 were changed from Pontocerebellar hypoplasia; microcephaly; seizures to Pontocerebellar hypoplasia, type 14, MIM# 619301; microcephaly; seizures
Mendeliome v0.7462 PPIL1 Zornitza Stark edited their review of gene: PPIL1: Changed phenotypes: Pontocerebellar hypoplasia, type 14, MIM# 619301, microcephaly, seizures
Mendeliome v0.7462 BICD2 Zornitza Stark Marked gene: BICD2 as ready
Mendeliome v0.7462 BICD2 Zornitza Stark Phenotypes for gene: BICD2 were changed from to Spinal muscular atrophy, lower extremity-predominant, 2A, autosomal dominant, MIM# 615290; MONDO:0014121; Spinal muscular atrophy, lower extremity-predominant, 2B, autosomal dominant, MIM# 618291
Mendeliome v0.7459 BICD2 Zornitza Stark reviewed gene: BICD2: Rating: GREEN; Mode of pathogenicity: None; Publications: 23664116, 23664119, 23664120, 27751653, 28635954, 30054298, 29528393; Phenotypes: Spinal muscular atrophy, lower extremity-predominant, 2A, autosomal dominant, MIM# 615290, MONDO:0014121, Spinal muscular atrophy, lower extremity-predominant, 2B, autosomal dominant, MIM# 618291; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7459 SMARCA2 Zornitza Stark Phenotypes for gene: SMARCA2 were changed from Nicolaides-Baraitser syndrome, MIM #601358; Blepharophimosis-intellectual disability syndrome to Nicolaides-Baraitser syndrome, MIM #601358; Blepharophimosis-intellectual disability syndrome, MIM#619293
Mendeliome v0.7457 KCNQ5 Zornitza Stark Marked gene: KCNQ5 as ready
Mendeliome v0.7457 KCNQ5 Zornitza Stark Phenotypes for gene: KCNQ5 were changed from to Mental retardation, autosomal dominant 46, MIM# 617601
Mendeliome v0.7454 KCNQ5 Zornitza Stark reviewed gene: KCNQ5: Rating: GREEN; Mode of pathogenicity: None; Publications: 28669405, 30359776; Phenotypes: Mental retardation, autosomal dominant 46, MIM# 617601; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7454 KCNK9 Zornitza Stark Marked gene: KCNK9 as ready
Mendeliome v0.7454 KCNK9 Zornitza Stark Phenotypes for gene: KCNK9 were changed from to Birk-Barel syndrome, MIM# 612292; MONDO:0012856
Mendeliome v0.7451 KCNK9 Zornitza Stark reviewed gene: KCNK9: Rating: GREEN; Mode of pathogenicity: None; Publications: 28333430, 27151206, 24980697, 18678320; Phenotypes: Birk-Barel syndrome, MIM# 612292, MONDO:0012856; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, paternally imprinted (maternal allele expressed)
Mendeliome v0.7451 KCNK9 Ain Roesley reviewed gene: KCNK9: Rating: GREEN; Mode of pathogenicity: None; Publications: 18678320, 27151206; Phenotypes: Birk-Barel syndrome (MIM#612292); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, paternally imprinted (maternal allele expressed)
Mendeliome v0.7451 ATL1 Zornitza Stark edited their review of gene: ATL1: Changed phenotypes: Neuropathy, hereditary sensory, type ID , MIM#613708, MONDO:0013381, Spastic paraplegia 3A, MIM 182600, Hereditary spastic paraplegia, AR
Mendeliome v0.7451 ATL1 Zornitza Stark Marked gene: ATL1 as ready
Mendeliome v0.7451 ATL1 Zornitza Stark Phenotypes for gene: ATL1 were changed from Neuropathy, hereditary sensory, type ID , MIM#613708; MONDO:0013381 to Neuropathy, hereditary sensory, type ID , MIM#613708; MONDO:0013381; Spastic paraplegia 3A, MIM 182600; Hereditary spastic paraplegia, AR
Mendeliome v0.7450 ATL1 Zornitza Stark Phenotypes for gene: ATL1 were changed from to Neuropathy, hereditary sensory, type ID , MIM#613708; MONDO:0013381
Mendeliome v0.7447 ATL1 Zornitza Stark reviewed gene: ATL1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21194679, 24604904, 22340599, 16401858, 16537571, 17657515, 28396731, 24473461, 26888483; Phenotypes: Neuropathy, hereditary sensory, type ID , MIM#613708, MONDO:0013381; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7447 COQ2 Zornitza Stark Marked gene: COQ2 as ready
Mendeliome v0.7447 COQ2 Zornitza Stark Phenotypes for gene: COQ2 were changed from to Coenzyme Q10 deficiency, primary, 1, MIM# 607426; MONDO:0011829
Mendeliome v0.7444 COQ2 Zornitza Stark reviewed gene: COQ2: Rating: GREEN; Mode of pathogenicity: None; Publications: 16400613, 17332895, 17855635; Phenotypes: Coenzyme Q10 deficiency, primary, 1, MIM# 607426, MONDO:0011829; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7444 COA6 Zornitza Stark Marked gene: COA6 as ready
Mendeliome v0.7444 COA6 Zornitza Stark Phenotypes for gene: COA6 were changed from to Mitochondrial complex IV deficiency, nuclear type 13, MIM# 616501; Cardioencephalomyopathy, fatal infantile, MONDO:0014668
Mendeliome v0.7441 COA6 Zornitza Stark reviewed gene: COA6: Rating: GREEN; Mode of pathogenicity: None; Publications: 24549041, 25339201, 31851937, 26160915; Phenotypes: Mitochondrial complex IV deficiency, nuclear type 13, MIM# 616501, Cardioencephalomyopathy, fatal infantile, MONDO:0014668; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7441 CARS2 Zornitza Stark Marked gene: CARS2 as ready
Mendeliome v0.7441 CARS2 Zornitza Stark Gene: cars2 has been classified as Green List (High Evidence).
Mendeliome v0.7441 CARS2 Zornitza Stark Phenotypes for gene: CARS2 were changed from to Combined oxidative phosphorylation deficiency 27, MIM# 616672; MONDO:0014728
Mendeliome v0.7440 CARS2 Zornitza Stark Publications for gene: CARS2 were set to
Mendeliome v0.7439 CARS2 Zornitza Stark Mode of inheritance for gene: CARS2 was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7438 CARS2 Zornitza Stark reviewed gene: CARS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 25361775, 25787132, 30139652; Phenotypes: Combined oxidative phosphorylation deficiency 27, MIM# 616672, MONDO:0014728; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7438 PPP2R5C Zornitza Stark Marked gene: PPP2R5C as ready
Mendeliome v0.7437 PPP2R5C Sue White gene: PPP2R5C was added
gene: PPP2R5C was added to Mendeliome. Sources: Research
Mode of inheritance for gene: PPP2R5C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: PPP2R5C were set to macrocephaly; intellectual disability
Penetrance for gene: PPP2R5C were set to Complete
Review for gene: PPP2R5C was set to AMBER
Added comment: Emerging unpublished evidence of monoallelic missense variants causing intellectual disability and macrocephaly
Sources: Research
Mendeliome v0.7436 SLX4 Zornitza Stark Marked gene: SLX4 as ready
Mendeliome v0.7432 SGCE Zornitza Stark Marked gene: SGCE as ready
Mendeliome v0.7429 PRKRA Zornitza Stark Marked gene: PRKRA as ready
Mendeliome v0.7426 KMT2B Zornitza Stark Marked gene: KMT2B as ready
Mendeliome v0.7423 CIZ1 Zornitza Stark Marked gene: CIZ1 as ready
Mendeliome v0.7419 NPAS2 Zornitza Stark Marked gene: NPAS2 as ready
Mendeliome v0.7415 NPAS2 Alison Compton changed review comment from: The brothers with NOA from consanguineous Turkish family, homozygous NM_002518.3(NPAS2) c.1363C>G; p.(Pro455Ala) variant identified. Heterozygous in mother, and fertile brother and sister. Not present in 1000 Genomes, EVS or gnomAD. Predicted to be “benign” by Polyphen2, and "neutral" by both SIFT and Mutation taster. Not predicted to in a functional domain. Not listed as a disease-gene in OMIM, no other 'pathogenic' or 'likely pathogenic' variants listed in ClinVar. Paper did not include any functional work.; to: Three brothers with NOA from consanguineous Turkish family, homozygous NM_002518.3(NPAS2) c.1363C>G; p.(Pro455Ala) variant identified. Found to be heterozygous in mother, and fertile brother and sister. Not present in 1000 Genomes, EVS or gnomAD. Predicted to be “benign” by Polyphen2, and "neutral" by both SIFT and Mutation taster. Not predicted to be within a functional domain. Gene not listed as a disease-gene in OMIM, no other 'pathogenic' or 'likely pathogenic' variants listed in ClinVar. Publication did not include any functional work as support.
Mendeliome v0.7415 PNKD Zornitza Stark Marked gene: PNKD as ready
Mendeliome v0.7415 PNKD Zornitza Stark Phenotypes for gene: PNKD were changed from to Paroxysmal nonkinesigenic dyskinesia 1, MIM# 118800; MONDO:0007326
Mendeliome v0.7412 PNKD Zornitza Stark reviewed gene: PNKD: Rating: GREEN; Mode of pathogenicity: None; Publications: 15262732, 15496428, 15824259, 19124534, 21487022; Phenotypes: Paroxysmal nonkinesigenic dyskinesia 1, MIM# 118800, MONDO:0007326; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7412 MECR Zornitza Stark Marked gene: MECR as ready
Mendeliome v0.7409 HPCA Zornitza Stark Marked gene: HPCA as ready
Mendeliome v0.7406 GNAL Zornitza Stark Marked gene: GNAL as ready
Mendeliome v0.7403 ADCY5 Zornitza Stark Marked gene: ADCY5 as ready
Mendeliome v0.7399 XPNPEP3 Zornitza Stark edited their review of gene: XPNPEP3: Added comment: PMID 20179356: two families with 5 individuals reported. Functional data, including animal models, supportive evidence for involvement in ciliary function.

PMID 32660933: Additional case reported.; Changed rating: GREEN; Changed publications: 20179356, 32660933
Mendeliome v0.7399 THAP1 Zornitza Stark Marked gene: THAP1 as ready
Mendeliome v0.7395 CHST11 Zornitza Stark Marked gene: CHST11 as ready
Mendeliome v0.7394 CHST11 Zornitza Stark gene: CHST11 was added
gene: CHST11 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: CHST11 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CHST11 were set to 26436107; 29514872
Phenotypes for gene: CHST11 were set to Osteochondrodysplasia, brachydactyly, and overlapping malformed digits, MIM# 618167
Review for gene: CHST11 was set to AMBER
Added comment: Osteochondrodysplasia, brachydactyly, and overlapping malformed digits (OCBMD) is characterized by bilateral symmetric skeletal defects that primarily affect the limbs. Affected individuals have mild short stature due to shortening of the lower leg bones, as well as hand and foot malformations, predominantly brachydactyly and overlapping digits. Other skeletal defects include scoliosis, dislocated patellae and fibulae, and pectus excavatum.

Two unrelated families reported, note one had a homozygous deletion. One family had 10 affected individuals.
Sources: Expert Review
Mendeliome v0.7392 PSMB8 Zornitza Stark Marked gene: PSMB8 as ready
Mendeliome v0.7388 EFEMP1 Zornitza Stark edited their review of gene: EFEMP1: Added comment: PMID 33807164: third unrelated family reported with CTD phenotype, single affected individual with bi-alllelic LoF variant, cutis laxa and multiple herniations.; Changed publications: 32006683, 31792352, 33807164
Mendeliome v0.7388 PPARG Zornitza Stark Marked gene: PPARG as ready
Mendeliome v0.7388 PPARG Zornitza Stark Gene: pparg has been classified as Green List (High Evidence).
Mendeliome v0.7388 PPARG Zornitza Stark Phenotypes for gene: PPARG were changed from to Lipodystrophy, familial partial, type 3, MIM# 604367; MONDO:0011448
Mendeliome v0.7387 PPARG Zornitza Stark Publications for gene: PPARG were set to
Mendeliome v0.7386 PPARG Zornitza Stark Mode of inheritance for gene: PPARG was changed from Unknown to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7385 PPARG Zornitza Stark reviewed gene: PPARG: Rating: GREEN; Mode of pathogenicity: None; Publications: 10622252, 12453919, 11788685, 31863320; Phenotypes: Lipodystrophy, familial partial, type 3, MIM# 604367, MONDO:0011448; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7385 POLD1 Zornitza Stark Marked gene: POLD1 as ready
Mendeliome v0.7385 POLD1 Zornitza Stark Phenotypes for gene: POLD1 were changed from to Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome, MIM# 615381; MONDO:0014157
Mendeliome v0.7382 POLD1 Zornitza Stark reviewed gene: POLD1: Rating: GREEN; Mode of pathogenicity: None; Publications: 23770608, 33618333, 33369179, 32826474, 30023403, 29199204, 28791128; Phenotypes: Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome, MIM# 615381, MONDO:0014157; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7382 PLIN1 Zornitza Stark Marked gene: PLIN1 as ready
Mendeliome v0.7382 PLIN1 Zornitza Stark Phenotypes for gene: PLIN1 were changed from to Lipodystrophy, familial partial, type 4, MIM# 613877
Mendeliome v0.7378 PLIN1 Zornitza Stark reviewed gene: PLIN1: Rating: AMBER; Mode of pathogenicity: None; Publications: 21345103, 31504636, 30020498, 25114292; Phenotypes: Lipodystrophy, familial partial, type 4, MIM# 613877; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7378 PCYT1A Zornitza Stark Marked gene: PCYT1A as ready
Mendeliome v0.7374 KCNJ6 Zornitza Stark changed review comment from: Keppen-Lubinsky syndrome characterised by severely delayed psychomotor development, hypertonia, hyperreflexia, generalized lipodystrophy giving an aged appearance, and distinctive dysmorphic features, including microcephaly, prominent eyes, narrow nasal bridge, and open mouth.

Three unrelated individuals reported with de novo variants in this gene (one recurred in 2), mouse model.; to: Keppen-Lubinsky syndrome characterised by severely delayed psychomotor development, hypertonia, hyperreflexia, generalized lipodystrophy giving an aged appearance, and distinctive dysmorphic features, including microcephaly, prominent eyes, narrow nasal bridge, and open mouth.

Four unrelated individuals reported with de novo variants in this gene (one recurred in 2), mouse model. One of the individuals did not have lipodystrophy but had a prominent hyperkinetic movement disorder.
Mendeliome v0.7374 KCNJ6 Zornitza Stark Marked gene: KCNJ6 as ready
Mendeliome v0.7371 EIF4G1 Zornitza Stark Marked gene: EIF4G1 as ready
Mendeliome v0.7371 EIF4G1 Zornitza Stark Phenotypes for gene: EIF4G1 were changed from to {Parkinson disease 18} 614251
Mendeliome v0.7367 EIF4G1 Zornitza Stark reviewed gene: EIF4G1: Rating: RED; Mode of pathogenicity: None; Publications: 21907011, 23408866, 25368108; Phenotypes: {Parkinson disease 18} 614251; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7367 CIDEC Zornitza Stark Marked gene: CIDEC as ready
Mendeliome v0.7367 CIDEC Zornitza Stark Phenotypes for gene: CIDEC were changed from to Lipodystrophy, familial partial, type 5, MIM# 615238
Mendeliome v0.7363 CIDEC Zornitza Stark reviewed gene: CIDEC: Rating: RED; Mode of pathogenicity: None; Publications: 20049731; Phenotypes: Lipodystrophy, familial partial, type 5, MIM# 615238; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7363 SAG Teresa Zhao reviewed gene: SAG: Rating: GREEN; Mode of pathogenicity: None; Publications: 22419846, 9452120; Phenotypes: Oguchi disease-1 (MIM#258100), AR, Retinitis pigmentosa 47 (MIM#613758); Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7363 LIG3 Zornitza Stark changed review comment from: Three unrelated families and functional data.
Sources: Literature; to: Seven individuals from three unrelated families and functional data, variable ages of onset from early childhood to late adolescence.
Sources: Literature
Mendeliome v0.7363 LIG3 Zornitza Stark Marked gene: LIG3 as ready
Mendeliome v0.7362 LIG3 Zornitza Stark gene: LIG3 was added
gene: LIG3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LIG3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LIG3 were set to 33855352
Phenotypes for gene: LIG3 were set to gut dysmotility; spasticity; ataxia; repetitive behaviours; neurogenic bladder; macular degeneration; leukoencephalopathy; cerebellar atrophy
Review for gene: LIG3 was set to GREEN
Added comment: Three unrelated families and functional data.
Sources: Literature
Mendeliome v0.7361 HNRNPDL Bryony Thompson Marked gene: HNRNPDL as ready
Mendeliome v0.7360 HNRNPDL Bryony Thompson gene: HNRNPDL was added
gene: HNRNPDL was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: HNRNPDL was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: HNRNPDL were set to 24647604; 31267206; 31995753; 32407983; 32904822; 32367994
Phenotypes for gene: HNRNPDL were set to Muscular dystrophy, limb-girdle, autosomal dominant 3 MIM#609115
Review for gene: HNRNPDL was set to GREEN
gene: HNRNPDL was marked as current diagnostic
Added comment: At least 5 families reported with either D378H/N, and supporting functional assays demonstrating that these variants affect protein function. No other pathogenic variants have been reported. A VUS has been reported (along with another SETX variant) in an individual with a multi-system disorder, including a metabolic myopathy.
Sources: Expert list
Mendeliome v0.7359 JMJD1C Zornitza Stark Marked gene: JMJD1C as ready
Mendeliome v0.7358 JMJD1C Zornitza Stark gene: JMJD1C was added
gene: JMJD1C was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: JMJD1C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: JMJD1C were set to 26181491; 32996679
Phenotypes for gene: JMJD1C were set to Intellectual disability
Review for gene: JMJD1C was set to GREEN
Added comment: Reported in ID cohort (with Rett-like phenotypic overlap) with supporting functional studies (PMID: 26181491). 7 individuals with rare variants identified, and variants demonstrated to be de novo in 2, one with a Rett-like phenotype and the other with ID. Functional study of the JMJD1C mutant Rett syndrome patient demonstrated that the altered protein had abnormal subcellular localization, diminished activity to demethylate the DNA damage-response protein MDC1, and reduced binding to MECP2. JMJD1C protein shown to be widely expressed in brain regions and that its depletion compromised dendritic activity.

Splice-disrupting JMJD1C variant reported in association with learning disability and myoclonic epilepsy (PMID 32996679).

Disruption of gene due to balanced translocation (PMID 33591602) implicated in autism spectrum disease phenotype.
Sources: Expert Review
Mendeliome v0.7357 CAVIN1 Zornitza Stark Marked gene: CAVIN1 as ready
Mendeliome v0.7354 CAV1 Zornitza Stark Marked gene: CAV1 as ready
Mendeliome v0.7354 CAV1 Zornitza Stark Phenotypes for gene: CAV1 were changed from to Lipodystrophy, familial partial, type 7, autosomal dominant MIM# 606721; Lipodystrophy, congenital generalized, type 3, autosomal recessive, MIM# 612526
Mendeliome v0.7351 CAV1 Zornitza Stark reviewed gene: CAV1: Rating: GREEN; Mode of pathogenicity: None; Publications: 18237401, 25898808, 11739396, 18211975, 27717241, 26176221, 33836561, 33776068, 32502478, 22474227, 28768485; Phenotypes: Lipodystrophy, familial partial, type 7, autosomal dominant MIM# 606721, Lipodystrophy, congenital generalized, type 3, autosomal recessive, MIM# 612526; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7351 AFF4 Zornitza Stark Marked gene: AFF4 as ready
Mendeliome v0.7347 DNAJB13 Zornitza Stark changed review comment from: Additional individual identified by VCGS laboratory, homozygous LoF variant.; to: Additional individual identified by VCGS laboratory, homozygous LoF variant and PCD.
Mendeliome v0.7347 DNAJB13 Zornitza Stark changed review comment from: Additional individual identified by VCGS laboratory.; to: Additional individual identified by VCGS laboratory, homozygous LoF variant.
Mendeliome v0.7347 GCGR Zornitza Stark Marked gene: GCGR as ready
Mendeliome v0.7344 MED27 Zornitza Stark Phenotypes for gene: MED27 were changed from Intellectual disability; cerebellar hypoplasia; dystonia to Neurodevelopmental disorder with spasticity, cataracts, and cerebellar hypoplasia, MIM# 619286
Mendeliome v0.7343 MED27 Zornitza Stark reviewed gene: MED27: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with spasticity, cataracts, and cerebellar hypoplasia, MIM# 619286; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7343 ABCB6 Zornitza Stark Marked gene: ABCB6 as ready
Mendeliome v0.7343 ABCB6 Zornitza Stark Phenotypes for gene: ABCB6 were changed from to Pseudohyperkalemia, familial, 2, due to red cell leak, MIM# 609153; Microphthalmia, isolated, with coloboma 7, MIM# 614497; Dyschromatosis universalis hereditaria 3, MIM# 615402
Mendeliome v0.7340 ABCB6 Zornitza Stark reviewed gene: ABCB6: Rating: GREEN; Mode of pathogenicity: None; Publications: 23180570; Phenotypes: Pseudohyperkalemia, familial, 2, due to red cell leak, MIM# 609153, Microphthalmia, isolated, with coloboma 7, MIM# 614497, Dyschromatosis universalis hereditaria 3, MIM# 615402; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7340 ABCA1 Zornitza Stark Marked gene: ABCA1 as ready
Mendeliome v0.7340 PRDM15 Zornitza Stark Marked gene: PRDM15 as ready
Mendeliome v0.7339 PRDM15 Zornitza Stark gene: PRDM15 was added
gene: PRDM15 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRDM15 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PRDM15 were set to 31950080
Phenotypes for gene: PRDM15 were set to Steroid resistant nephrotic syndrome; Holoprosencephaly
Review for gene: PRDM15 was set to AMBER
Added comment: Four consanguineous families reported with same homozygous variant, C844Y, shown to be LoF. Syndromic SRNS including HPE, brain malformations, polydactyly, congenital heart disease. Mouse model, extensive functional data focused on the brain phenotype. Two additional homozygous missense identified with isolated SRNS.
Sources: Literature
Mendeliome v0.7338 ZIC2 Zornitza Stark Marked gene: ZIC2 as ready
Mendeliome v0.7335 TGIF1 Zornitza Stark Marked gene: TGIF1 as ready
Mendeliome v0.7332 SIX3 Zornitza Stark Marked gene: SIX3 as ready
Mendeliome v0.7329 DISP1 Zornitza Stark Marked gene: DISP1 as ready
Mendeliome v0.7325 TBX3 Zornitza Stark Marked gene: TBX3 as ready
Mendeliome v0.7325 TBX3 Zornitza Stark Phenotypes for gene: TBX3 were changed from to Ulnar-mammary syndrome, MIM# 181450; MONDO:0008411
Mendeliome v0.7322 TBX3 Zornitza Stark reviewed gene: TBX3: Rating: GREEN; Mode of pathogenicity: None; Publications: 9207801, 19938096, 28145909; Phenotypes: Ulnar-mammary syndrome, MIM# 181450, MONDO:0008411; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7322 SALL1 Zornitza Stark Marked gene: SALL1 as ready
Mendeliome v0.7317 HELLS Zornitza Stark Marked gene: HELLS as ready
Mendeliome v0.7314 ZBTB24 Zornitza Stark Marked gene: ZBTB24 as ready
Mendeliome v0.7311 CDCA7 Zornitza Stark Marked gene: CDCA7 as ready
Mendeliome v0.7307 XPC Zornitza Stark Marked gene: XPC as ready
Mendeliome v0.7304 XPA Zornitza Stark Marked gene: XPA as ready
Mendeliome v0.7301 RMI2 Zornitza Stark Marked gene: RMI2 as ready
Mendeliome v0.7297 RAD51 Zornitza Stark Marked gene: RAD51 as ready
Mendeliome v0.7294 POLH Zornitza Stark Marked gene: POLH as ready
Mendeliome v0.7294 POLH Zornitza Stark Phenotypes for gene: POLH were changed from to Xeroderma pigmentosum, variant type, MIM# 278750; MONDO:0010214
Mendeliome v0.7291 POLH Zornitza Stark reviewed gene: POLH: Rating: GREEN; Mode of pathogenicity: None; Publications: 10385124, 10398605; Phenotypes: Xeroderma pigmentosum, variant type, MIM# 278750, MONDO:0010214; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7291 NEUROD2 Zornitza Stark Phenotypes for gene: NEUROD2 were changed from Epileptic encephalopathy, early infantile, 72, MIM# 618374 to Epileptic encephalopathy, early infantile, 72, MIM# 618374; Intellectual disability
Mendeliome v0.7289 NEUROD2 Zornitza Stark edited their review of gene: NEUROD2: Added comment: Additional two individuals reported with de novo variants and predominantly ID phenotype.; Changed publications: 33438828, 30323019; Changed phenotypes: Epileptic encephalopathy, early infantile, 72, MIM# 618374
Mendeliome v0.7289 MRE11 Zornitza Stark Marked gene: MRE11 as ready
Mendeliome v0.7286 MPLKIP Zornitza Stark Marked gene: MPLKIP as ready
Mendeliome v0.7283 PIK3CD Zornitza Stark Marked gene: PIK3CD as ready
Mendeliome v0.7280 GTF2H5 Zornitza Stark Marked gene: GTF2H5 as ready
Mendeliome v0.7277 GTF2E2 Zornitza Stark Marked gene: GTF2E2 as ready
Mendeliome v0.7273 FANCL Zornitza Stark Marked gene: FANCL as ready
Mendeliome v0.7270 FANCI Zornitza Stark Marked gene: FANCI as ready
Mendeliome v0.7267 FANCG Zornitza Stark Marked gene: FANCG as ready
Mendeliome v0.7264 FANCF Zornitza Stark Marked gene: FANCF as ready
Mendeliome v0.7261 FANCE Zornitza Stark Marked gene: FANCE as ready
Mendeliome v0.7258 MDM2 Zornitza Stark Marked gene: MDM2 as ready
Mendeliome v0.7254 NDUFB11 Zornitza Stark Phenotypes for gene: NDUFB11 were changed from Linear skin defects with multiple congenital anomalies 3, XLD (MIM#300952); MONDO:0010494; Mitochondrial complex I deficiency, nuclear type 30, XLR (MIM#301021); Linear skin defects with multiple congenital anomalies 3, XLD (MIM#300952); Mitochondrial complex I deficiency, nuclear type 30, XLR (MIM#301021) to Linear skin defects with multiple congenital anomalies 3, XLD (MIM#300952); MONDO:0010494; Mitochondrial complex I deficiency, nuclear type 30, XLR (MIM#301021); MONDO:0026721
Mendeliome v0.7253 NDUFB11 Zornitza Stark Phenotypes for gene: NDUFB11 were changed from Linear skin defects with multiple congenital anomalies 3, XLD (MIM#300952); Mitochondrial complex I deficiency, nuclear type 30, XLR (MIM#301021) to Linear skin defects with multiple congenital anomalies 3, XLD (MIM#300952); MONDO:0010494; Mitochondrial complex I deficiency, nuclear type 30, XLR (MIM#301021); Linear skin defects with multiple congenital anomalies 3, XLD (MIM#300952); Mitochondrial complex I deficiency, nuclear type 30, XLR (MIM#301021)
Mendeliome v0.7252 NDUFB11 Zornitza Stark Marked gene: NDUFB11 as ready
Mendeliome v0.7252 NDUFB11 Zornitza Stark Phenotypes for gene: NDUFB11 were changed from to Linear skin defects with multiple congenital anomalies 3, XLD (MIM#300952); Mitochondrial complex I deficiency, nuclear type 30, XLR (MIM#301021)
Mendeliome v0.7249 NDUFB11 Kristin Rigbye changed review comment from: Variable syndromic features have been observed in affected individuals, however anaemia and cardiomyopathy appear to be consistent features in males and females, respectively (PMID: 28050600, PMID: 30423443, PMID: 27488349).

Affected females have previously been reported with inherited pathogenic variants from their unaffected mothers. It has been suggested that this may be due to patterns of somatic X-chromosome inactivation, mosaicism or additional genetic or external factors (PMID: 28050600).

Affected females have been reported with null alleles, whereas affected males have only been identified with missense variants or a recurrent single residue in-frame deletion, suggesting that some residual enzyme activity is required for males to be viable, whereas complete loss of function variants may be lethal when hemizygous (PMID: 30423443).
Note: female carriers of missense variants have not been reported as clinically affected.

Western blots from cells of male patients with the recurrent F93del variant showed reduced protein levels, and recombinant cells demonstrated a proliferation defect, consistent with the anaemia phenotype (PMID: 27488349).; to: Variable syndromic features have been observed in affected individuals, however anaemia and cardiomyopathy appear to be consistent features in males and females, respectively (PMID: 28050600, PMID: 30423443, PMID: 27488349).

It has been suggested that heterozygous females do not display the severe phenotype associated with mitochondrial complex 1 deficiency due to highly skewed XCI favouring expression of the wild type allele, whereas these null variants result in a severe lethal disorder in hemizygous males (PMID: 25772934).

Affected females have previously been reported with inherited pathogenic variants from their unaffected mothers. It has been suggested that this may be due to patterns of somatic X-chromosome inactivation, mosaicism or additional genetic or external factors (PMID: 28050600).

Affected females have been reported with null alleles, whereas affected males have only been identified with missense variants or a recurrent single residue in-frame deletion, suggesting that some residual enzyme activity is required for males to be viable, whereas complete loss of function variants may be lethal when hemizygous (PMID: 30423443).
Note: female carriers of missense variants have not been reported as clinically affected.

Western blots from cells of male patients with the recurrent F93del variant showed reduced protein levels, and recombinant cells demonstrated a proliferation defect, consistent with the anaemia phenotype (PMID: 27488349).
Mendeliome v0.7249 NDUFB11 Kristin Rigbye reviewed gene: NDUFB11: Rating: GREEN; Mode of pathogenicity: None; Publications: 28050600, 27488349, 30423443, 27488349; Phenotypes: Linear skin defects with multiple congenital anomalies 3, XLD (MIM#300952), Mitochondrial complex I deficiency, nuclear type 30, XLR (MIM#301021); Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.7249 FANCC Zornitza Stark Marked gene: FANCC as ready
Mendeliome v0.7242 FANCB Zornitza Stark Marked gene: FANCB as ready
Mendeliome v0.7239 SMG8 Zornitza Stark Phenotypes for gene: SMG8 were changed from Intellectual disability to Alzahrani-Kuwahara syndrome, MIM# 619268; Intellectual disability
Mendeliome v0.7238 SMG8 Zornitza Stark reviewed gene: SMG8: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Alzahrani-Kuwahara syndrome, MIM# 619268; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7238 FANCA Zornitza Stark Marked gene: FANCA as ready
Mendeliome v0.7235 ERCC8 Zornitza Stark Marked gene: ERCC8 as ready
Mendeliome v0.7231 GP1BA Zornitza Stark Marked gene: GP1BA as ready
Mendeliome v0.7231 GP1BA Zornitza Stark Phenotypes for gene: GP1BA were changed from to Bernard-Soulier syndrome, type A1 (recessive), (MIM#231200), AR (AR BSS); von Willebrand disease, platelet-type, (MIM#177820), AD (VWD); MONDO:0008332; Bernard-Soulier syndrome, type A2 (dominant), (MIM#153670) (AD BSS); MONDO:0007930
Mendeliome v0.7229 GP1BA Zornitza Stark reviewed gene: GP1BA: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Bernard-Soulier syndrome, type A1 (recessive), (MIM#231200), AR (AR BSS), von Willebrand disease, platelet-type, (MIM#177820), AD (VWD), MONDO:0008332, Bernard-Soulier syndrome, type A2 (dominant), (MIM#153670) (AD BSS), MONDO:0007930; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7229 GP1BA Ain Roesley reviewed gene: GP1BA: Rating: GREEN; Mode of pathogenicity: None; Publications: 24934643; Phenotypes: Bernard-Soulier syndrome, type A1 (recessive), (MIM#231200), AR (AR BSS), von Willebrand disease, platelet-type, (MIM#177820), AD (VWD), Bernard-Soulier syndrome, type A2 (dominant), (MIM#153670) (AD BSS); Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7227 ERCC4 Zornitza Stark Marked gene: ERCC4 as ready
Mendeliome v0.7224 ERCC3 Zornitza Stark Marked gene: ERCC3 as ready
Mendeliome v0.7220 SDHA Zornitza Stark Phenotypes for gene: SDHA were changed from to Mitochondrial complex II deficiency, nuclear type 1, MIM# 252011; Cardiomyopathy, dilated, 1GG, MIM# 613642; Neurodegeneration with ataxia and late-onset optic atrophy, MIM# 619259; Paragangliomas 5 , MIM#614165
Mendeliome v0.7219 SDHA Zornitza Stark Marked gene: SDHA as ready
Mendeliome v0.7217 SDHA Zornitza Stark reviewed gene: SDHA: Rating: GREEN; Mode of pathogenicity: None; Publications: 10976639, 27683074, 7550341, 22972948, 20551992, 21752896; Phenotypes: Mitochondrial complex II deficiency, nuclear type 1, MIM# 252011, Cardiomyopathy, dilated, 1GG, MIM# 613642, Neurodegeneration with ataxia and late-onset optic atrophy, MIM# 619259, Paragangliomas 5 , MIM#614165; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7217 SLC19A1 Zornitza Stark Marked gene: SLC19A1 as ready
Mendeliome v0.7216 ERCC2 Zornitza Stark Marked gene: ERCC2 as ready
Mendeliome v0.7212 ERCC1 Zornitza Stark changed review comment from: Three unrelated families reported, variable severity reported from a Cockayne phenotype with congenital onset and early mortality, through to adolescent presentation with short stature, photosensitivity and progressive liver and renal dysfunction.; to: More than three unrelated families reported, variable severity reported from a Cockayne phenotype with congenital onset and early mortality, through to adolescent presentation with short stature, photosensitivity and progressive liver and renal dysfunction.
Mendeliome v0.7212 NDUFA8 Zornitza Stark Phenotypes for gene: NDUFA8 were changed from NDUFA8-related mitochondrial disease; Developmental delay; microcehaly; seizures to Mitochondrial complex I deficiency, nuclear type 37, MIM# 619272; Developmental delay; microcehaly; seizures
Mendeliome v0.7209 NDUFA8 Zornitza Stark commented on gene: NDUFA8: Second family reported with pair of affected siblings and homozygous missense variant, some functional data.
Mendeliome v0.7209 NDUFA8 Zornitza Stark edited their review of gene: NDUFA8: Changed rating: AMBER; Changed publications: 32385911, 33153867; Changed phenotypes: Mitochondrial complex I deficiency, nuclear type 37, MIM# 619272, Developmental delay, microcehaly, seizures
Mendeliome v0.7206 KCNH1 Zornitza Stark Marked gene: KCNH1 as ready
Mendeliome v0.7206 KCNH1 Zornitza Stark Phenotypes for gene: KCNH1 were changed from to Temple-Baraitser syndrome, OMIM:611816; Zimmermann-Laband syndrome 1, OMIM:135500; Intellectual disability; Encephalopathy without features of TBS/ZLS
Mendeliome v0.7203 KCNH1 Zornitza Stark reviewed gene: KCNH1: Rating: GREEN; Mode of pathogenicity: None; Publications: 33811134; Phenotypes: Temple-Baraitser syndrome, OMIM:611816, Zimmermann-Laband syndrome 1, OMIM:135500, Intellectual disability, Encephalopathy without features of TBS/ZLS; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7201 GREB1L Zornitza Stark edited their review of gene: GREB1L: Added comment: DFNA80 is characterized by nonsyndromic congenital deafness associated with absent or malformed cochleae and eighth cranial nerves. Four unrelated families reported, no comment on a renal phenotype. Note variants in this gene are also associated with renal agenesis.; Changed publications: 29100091, 29955957, 32585897; Changed phenotypes: Renal hypodysplasia/aplasia 3, OMIM# 617805, Deafness, autosomal dominant 80, MIM# 619274
Mendeliome v0.7201 EMC10 Zornitza Stark Phenotypes for gene: EMC10 were changed from Intellectual disability to Neurodevelopmental disorder with dysmorphic facies and variable seizures, MIM# 619264
Mendeliome v0.7199 EMC10 Zornitza Stark edited their review of gene: EMC10: Added comment: Additional 12 individuals from 7 Middle Eastern families reported. Same variant in all, suggestive of founder effect (but different to the previously reported family).; Changed rating: GREEN; Changed publications: 32869858, 33531666; Changed phenotypes: Neurodevelopmental disorder with dysmorphic facies and variable seizures, MIM# 619264
Mendeliome v0.7199 ITGB3 Zornitza Stark Marked gene: ITGB3 as ready
Mendeliome v0.7194 UNC50 Zornitza Stark Marked gene: UNC50 as ready
Mendeliome v0.7192 ADCY6 Zornitza Stark changed review comment from: Laquerriere et al. (2014): 2 sibs from a consanguineous family with an axoglial form of lethal congenital contracture syndrome, and homozygous missense ADCY6 mutation (R1116C). The parents were heterozygous for the mutation. Knocked down ADCY6 orthologs in zebrafish showed a loss of myelin basic protein expression in the peripheral nervous system but no defects in Schwann cell migration and axonal growth. Gonzaga‐Jauregui et al. (2015): 1 patient with congenital hypotonia, distal joint contractures, hypomyelinating neuropathy, and vocal cord paralysis, and a homozygous missense ADCY6 variant. No functional studies. Deceased sister with a similar phenotype with hypotonia, areflexia, and hypomyelinating neuropathy who died at 18 months of respiratory insufficiency. Agolini et al. (2020): 1 patient with severe form of AMC, with two novel compound heterozygous variants in ADCY6 (parents confirmed carriers), but no functional studies.
Sources: Literature; to: - PMID: 33820833 (2021) - Further 2 sibs reported with a homozygous c.3346C>T:p.Arg1116Cys variant in the ADCY6 gene. The family was identified from a cohort of 315 genetically undiagnosed and unrelated AMC families. Arthrogryposis and IUGR were detected prenatally.

Laquerriere et al. (2014): 2 sibs from a consanguineous family with an axoglial form of lethal congenital contracture syndrome, and homozygous missense ADCY6 mutation (R1116C). The parents were heterozygous for the mutation. Knocked down ADCY6 orthologs in zebrafish showed a loss of myelin basic protein expression in the peripheral nervous system but no defects in Schwann cell migration and axonal growth. Gonzaga‐Jauregui et al. (2015): 1 patient with congenital hypotonia, distal joint contractures, hypomyelinating neuropathy, and vocal cord paralysis, and a homozygous missense ADCY6 variant. No functional studies. Deceased sister with a similar phenotype with hypotonia, areflexia, and hypomyelinating neuropathy who died at 18 months of respiratory insufficiency. Agolini et al. (2020): 1 patient with severe form of AMC, with two novel compound heterozygous variants in ADCY6 (parents confirmed carriers), but no functional studies.
Sources: Literature
Mendeliome v0.7192 PLCH1 Zornitza Stark Marked gene: PLCH1 as ready
Mendeliome v0.7191 UNC50 Arina Puzriakova gene: UNC50 was added
gene: UNC50 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UNC50 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UNC50 were set to 29016857; 33820833
Phenotypes for gene: UNC50 were set to Arthrogryposis multiplex congenita
Review for gene: UNC50 was set to AMBER
Added comment: UNC50 is currently not associated with any phenotype in OMIM (last edited on 02/01/2018) or Gene2Phenotype.

- PMID: 29016857 (2017) - Homozygosity mapping of disease loci combined with WES in a single male from a consanguineous family presenting with lethal AMC revealed a homozygous frameshift deletion in UNC50 gene (c.750_751del:p.Cys251Phefs*4). Functional studies in C. elegans showed the variant caused loss of acetylcholine receptor expression in the muscle.

- PMID: 33820833 (2021) - Single individual reported with the same homozygous c.750_751del:p.Cys251Phefs*4 variant in UNC50 as previously described. The case was identified from a cohort of 315 genetically undiagnosed and unrelated AMC families. Arthrogryposis and tetra ventricular dilation were detected prenatally.

-- Note: it isn't definitively clear whether these are different individuals. Both are singleton males born to consanguineous parents, with the same variant and similar phenotype. Also both infants died at 28 w.g. However, the 2021 paper (PMID:33820833) states their patient was selected from a cohort of cases without a molecular diagnosis and indicate the UNC50 gene had already previously been identified in relation to this phenotype, highlighting the earlier paper (PMID:29016857). There is also no mention of tetra ventricular dilation in the first case, so it is likely that these do represent distinct individuals. Additional cases needed to provide clarity.
Sources: Literature
Mendeliome v0.7191 PLCH1 Arina Puzriakova gene: PLCH1 was added
gene: PLCH1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PLCH1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PLCH1 were set to 33820834
Phenotypes for gene: PLCH1 were set to Holoprosencephaly spectrum; Severe developmental delay; Brain malformations
Review for gene: PLCH1 was set to AMBER
Added comment: PLCH1 is currently not associated with any phenotype in OMIM (last edited on 16/06/2009) or Gene2Phenotype.

- PMID: 33820834 (2021) - Two sibling pairs from two unrelated families with a holoprosencephaly spectrum phenotype and different homozygous PLCH1 variants (c.2065C>T, p.Arg689* and c.4235delA, p.Cys1079ValfsTer16, respectively). One family presented with congenital hydrocephalus, epilepsy, significant developmental delay and a monoventricle or fused thalami; while sibs from the second family had alobar holoprosencephaly and cyclopia. 3/4 individuals also displayed a cleft palate and congenital heart disease.
Human embryo immunohistochemistry showed PLCH1 to be expressed in the notorcord, developing spinal cord (in a ventral to dorsal gradient), dorsal root ganglia, cerebellum and dermatomyosome.
Sources: Literature
Mendeliome v0.7191 DDX11 Zornitza Stark Marked gene: DDX11 as ready
Mendeliome v0.7191 DDX11 Zornitza Stark Phenotypes for gene: DDX11 were changed from to Warsaw breakage syndrome, MIM# 613398; MONDO:0013252
Mendeliome v0.7188 DDX11 Zornitza Stark reviewed gene: DDX11: Rating: GREEN; Mode of pathogenicity: None; Publications: 20137776, 23033317, 30216658; Phenotypes: Warsaw breakage syndrome, MIM# 613398, MONDO:0013252; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7188 PDIA6 Zornitza Stark Marked gene: PDIA6 as ready
Mendeliome v0.7187 PDIA6 Zornitza Stark gene: PDIA6 was added
gene: PDIA6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PDIA6 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: PDIA6 were set to Asphyxiating thoracic dystrophy (ATD) syndrome and infantile‐onset diabetes
Review for gene: PDIA6 was set to AMBER
Added comment: Amber in view of the good quality functional data.

1 case with asphyxiating thoracic dystrophy (ATD) syndrome and infantile‐onset diabetes. Whole exome sequencing revealed a homozygous frameshift variant in the PDIA6 gene. RNA expression was reduced in a gene dosage‐dependent manner, supporting a loss‐of‐function effect of this variant. Phenotypic correlation with the previously reported mouse model recapitulated the growth defect and delay, early lethality, coagulation, diabetes, immunological, and polycystic kidney disease phenotypes. The phenotype of the current patient is consistent with phenotypes associated with the disruption of PDIA6 and the sensors of UPR in mice and humans.
Sources: Literature
Mendeliome v0.7186 EXOSC1 Zornitza Stark Marked gene: EXOSC1 as ready
Mendeliome v0.7186 EXOSC1 Zornitza Stark gene: EXOSC1 was added
gene: EXOSC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EXOSC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EXOSC1 were set to 33463720
Phenotypes for gene: EXOSC1 were set to Pontocerebellar hypoplasia
Review for gene: EXOSC1 was set to RED
Added comment: An 8‐months‐old male with developmental delay, microcephaly, subtle dysmorphism, hypotonia, pontocerebellar hypoplasia and delayed myelination. Similarly affected elder sibling succumbed at the age of 4‐years 6‐months. Exome sequencing revealed a homozygous missense variant (c.104C >T, p.Ser35Leu) in EXOSC1. In silico mutagenesis revealed loss of a polar contact with neighbouring Leu37 residue. Quantitative real‐time PCR indicated no appreciable differences in EXOSC1 transcript levels. Immunoblotting and blue native PAGE revealed reduction in the EXOSC1 protein levels and EXO9 complex in the proband, respectively. Of note, bi‐allelic variants in other exosome subunits EXOSC3, EXOSC8 and EXOSC9 have been reported to cause pontocerebellar hypoplasia type 1B, type 1C and type 1D, respectively.
Sources: Literature
Mendeliome v0.7185 MED12 Zornitza Stark Phenotypes for gene: MED12 were changed from Ohdo syndrome, X-linked MIM#300895; Lujan-Fryns syndrome MIM#309520; Opitz-Kaveggia syndrome MIM#305450 to Ohdo syndrome, X-linked MIM#300895; Lujan-Fryns syndrome MIM#309520; Opitz-Kaveggia syndrome MIM#305450; Hardikar syndrome, OMIM #612726
Mendeliome v0.7183 MED12 Zornitza Stark reviewed gene: MED12: Rating: GREEN; Mode of pathogenicity: None; Publications: 33244166; Phenotypes: Hardikar syndrome, OMIM #612726; Mode of inheritance: Other
Mendeliome v0.7183 UBE4A Zornitza Stark Marked gene: UBE4A as ready
Mendeliome v0.7182 UBE4A Zornitza Stark gene: UBE4A was added
gene: UBE4A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UBE4A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UBE4A were set to 33420346
Phenotypes for gene: UBE4A were set to Intellectual disability and global developmental delay
Review for gene: UBE4A was set to GREEN
Added comment: 8 individuals, from 4 unrelated families, with syndromic intellectual disability and global developmental delay (other clinical features included hypotonia, short stature, seizures, and behaviour disorder. Exome sequencing identified biallelic loss-of-function variants in UBE4A in the 4 families, with variants segregating with disease and parents carriers. They demonstrated that UBE4A loss-of-function variants reduced RNA expression and protein levels in clinical samples. Mice generated to mimic patient-specific Ube4a loss-of-function variant exhibited muscular and neurological/behavioural abnormalities, some of which are suggestive of the clinical abnormalities seen in the affected individuals.
Sources: Literature
Mendeliome v0.7181 MAPKAPK5 Zornitza Stark Marked gene: MAPKAPK5 as ready
Mendeliome v0.7180 MAPKAPK5 Zornitza Stark gene: MAPKAPK5 was added
gene: MAPKAPK5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MAPKAPK5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MAPKAPK5 were set to 3344202
Phenotypes for gene: MAPKAPK5 were set to Developmental delay, variable brain anomalies, congenital heart defects, dysmorphic
Review for gene: MAPKAPK5 was set to GREEN
Added comment: 3 individuals from 2 families with severe developmental delay, variable brain anomalies, congenital heart defects, dysmorphic facial features, and a distinctive type of synpolydactyly with an additional hypoplastic digit between the fourth and fifth digits of hands and/or feet. Exome sequencing identified different homozygous truncating variants in MAPKAPK5 in both families, segregating with disease and unaffected parents as carriers.

Patient-derived cells showed no expression of MAPKAPK5 protein isoforms and reduced levels of the MAPKAPK5-interacting protein ERK3. F-actin recovery after latrunculin B treatment was found to be less efficient in patient-derived fibroblasts than in control cells, supporting a role of MAPKAPK5 in F-actin polymerization.
Sources: Literature
Mendeliome v0.7179 FAR1 Zornitza Stark Phenotypes for gene: FAR1 were changed from Peroxisomal fatty acyl-CoA reductase 1 disorder, MIM#616154 to Peroxisomal fatty acyl-CoA reductase 1 disorder, MIM#616154; spastic paraparesis and bilateral cataracts
Mendeliome v0.7178 FAR1 Zornitza Stark Publications for gene: FAR1 were set to 25439727
Mendeliome v0.7177 FAR1 Zornitza Stark Mode of inheritance for gene: FAR1 was changed from BIALLELIC, autosomal or pseudoautosomal to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7176 FAR1 Zornitza Stark Classified gene: FAR1 as Green List (high evidence)
Mendeliome v0.7176 FAR1 Zornitza Stark Gene: far1 has been classified as Green List (High Evidence).
Mendeliome v0.7175 FAR1 Zornitza Stark edited their review of gene: FAR1: Added comment: PMID33239752: 12 patients with paediatric onset spastic paraparesis and bilateral congenital/juvenile cataracts. Most also had speech and gross motor developmental delay and truncal hypotonia. Exome sequencing identified de novo variants affecting the Arg480 residue in FAR1 (p.Arg480Cys/His/Leu). Further functional studies in fibroblasts showed that these variants cause a disruption of the plasmalogen-dependent feedback regulation of FAR1 protein levels leading to uncontrolled ether lipid production.; Changed rating: GREEN; Changed publications: 25439727, 33239752; Changed phenotypes: Peroxisomal fatty acyl-CoA reductase 1 disorder, MIM#616154, spastic paraparesis and bilateral cataracts; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7175 GRIA3 Zornitza Stark Marked gene: GRIA3 as ready
Mendeliome v0.7172 FAT1 Ee Ming Wong changed review comment from: - 5 consanguineous families with homozygous frameshift mutations in FAN1
- FAN1 KO mice had microphthalmia, with fully penetrant coloboma which was not observed in heterozygous mice
- in human retinal pigment epithelium (RPE) cells, FAN1 knockdown resulted in compromised early cell-cell junction integrity and filament organisation; to: - 5 consanguineous families with homozygous frameshift mutations in FAT1
- FAT1 KO mice had microphthalmia, with fully penetrant coloboma which was not observed in heterozygous mice
- in human retinal pigment epithelium (RPE) cells, FAT1 knockdown resulted in compromised early cell-cell junction integrity and filament organisation
Mendeliome v0.7172 SLC17A5 Zornitza Stark Marked gene: SLC17A5 as ready
Mendeliome v0.7169 SLC17A5 Zornitza Stark edited their review of gene: SLC17A5: Added comment: Sialic acid storage diseases are autosomal recessive neurodegenerative disorders that may present as a severe infantile form or a slowly progressive adult form, which is prevalent in Finland and referred to as Salla disease. p.Arg39Cys is a founder Finnish variant. Multiple families reported.; Changed publications: 10581036, 10947946; Changed phenotypes: Salla disease 604369, MONDO:0011449, Sialic acid storage disorder, infantile 269920, MONDO:0010027
Mendeliome v0.7169 SGSH Zornitza Stark Marked gene: SGSH as ready
Mendeliome v0.7169 SGSH Zornitza Stark Phenotypes for gene: SGSH were changed from to Mucopolysaccharidosis type IIIA (Sanfilippo A), MIM# 252900; MONDO:0009655
Mendeliome v0.7166 SGSH Zornitza Stark reviewed gene: SGSH: Rating: GREEN; Mode of pathogenicity: None; Publications: 7493035, 9158154, 9401012, 9554748; Phenotypes: Mucopolysaccharidosis type IIIA (Sanfilippo A), MIM# 252900, MONDO:0009655; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7166 SMPD1 Zornitza Stark changed review comment from: Well established gene-disease association.; to: Niemann-Pick disease (NPD) refers to a group of disorders that present with varying degrees of lipid storage and foam cell infiltration in tissues, as well as overlapping clinical features including hepatosplenomegaly, pulmonary insufficiency and/or central nervous system (CNS) involvement. Type A NPD patients exhibit hepatosplenomegaly in infancy and profound CNS involvement. They rarely survive beyond 2-3years of age. Type B patients also have hepatosplenomegaly and pathologic alterations of their lungs, but there are usually no CNS signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Intermediate patients also have been reported with mild to moderate neurological findings.

Well established gene-disease association.
Mendeliome v0.7166 SMPD1 Zornitza Stark Marked gene: SMPD1 as ready
Mendeliome v0.7163 TPP1 Zornitza Stark Phenotypes for gene: TPP1 were changed from Ceroid lipofuscinosis, neuronal, 2, MIM# 204500; Spinocerebellar ataxia, autosomal recessive 7, MIM# 609270 to Ceroid lipofuscinosis, neuronal, 2, MIM# 204500; MONDO:0008769; Spinocerebellar ataxia, autosomal recessive 7, MIM# 609270; MONDO:0012235
Mendeliome v0.7161 TPP1 Zornitza Stark reviewed gene: TPP1: Rating: GREEN; Mode of pathogenicity: None; Publications: 9295267, 18684116, 23418007, 26224725, 31283065; Phenotypes: Ceroid lipofuscinosis, neuronal, 2, MIM# 204500, MONDO:0008769, Spinocerebellar ataxia, autosomal recessive 7, MIM# 609270, MONDO:0012235; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7161 PSAP Zornitza Stark changed review comment from: Well established gene-disease association for bi-allelic variants. Early-onset PD reported with mono-allelic variants.; to: Well established gene-disease association for bi-allelic variants. Early-onset PD reported with mono-allelic variants.

The PSAP gene encodes saposins A, B, C and D. Variants resulting in PSAP null allele can be shared in patients with the deficit of other saposins (A-D) or whole prosaposin. The patient's phenotype depends then on the nature of the second allele - atypical Gaucher disease in case of saposin A, MLD in case of saposin B, and Krabbe disease in case of saposin C impairing mutations. The clinically most severe prosaposin deficit is caused by the presence of two PSAP null alleles.
Mendeliome v0.7161 PSAP Zornitza Stark Phenotypes for gene: PSAP were changed from Parkinson disease, AD; Combined SAP deficiency 611721; Gaucher disease, atypical, MIM# 610539; Krabbe disease, atypical, MIM# 611722; Metachromatic leukodystrophy due to SAP-b deficiency, MIM# 249900 to Parkinson disease, AD; Combined SAP deficiency, MIM# 611721; Encephalopathy due to prosaposin deficiency, MONDO:0012719; Krabbe disease, atypical, MIM# 611722; MONDO:0012720; Metachromatic leukodystrophy due to SAP-b deficiency, MIM# 249900; MONDO:0009590; Gaucher disease, atypical, MIM# 610539; MONDO:0012517
Mendeliome v0.7160 PPT1 Zornitza Stark Marked gene: PPT1 as ready
Mendeliome v0.7157 NEU1 Zornitza Stark Marked gene: NEU1 as ready
Mendeliome v0.7154 NAGLU Zornitza Stark Phenotypes for gene: NAGLU were changed from Mucopolysaccharidosis type IIIB (Sanfilippo B), MIM# 252920; Charcot-Marie-Tooth disease, axonal, type 2V MIM#616491 to Mucopolysaccharidosis type IIIB (Sanfilippo B), MIM# 252920; MONDO:0009656; Charcot-Marie-Tooth disease, axonal, type 2V MIM#616491; MONDO:0014665
Mendeliome v0.7153 NAGLU Zornitza Stark Marked gene: NAGLU as ready
Mendeliome v0.7153 NAGLU Zornitza Stark Phenotypes for gene: NAGLU were changed from to Mucopolysaccharidosis type IIIB (Sanfilippo B), MIM# 252920; Charcot-Marie-Tooth disease, axonal, type 2V MIM#616491
Mendeliome v0.7150 NAGLU Zornitza Stark reviewed gene: NAGLU: Rating: GREEN; Mode of pathogenicity: None; Publications: 25818867, 8650226; Phenotypes: Mucopolysaccharidosis type IIIB (Sanfilippo B), MIM# 252920, Charcot-Marie-Tooth disease, axonal, type 2V MIM#616491; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7148 MIA3 Zornitza Stark Marked gene: MIA3 as ready
Mendeliome v0.7147 MIA3 Zornitza Stark changed review comment from: Odontochondrodysplasia-2 with hearing loss and diabetes (ODCD2) is characterized by growth retardation with proportionate short stature, dentinogenesis imperfecta, sensorineural hearing loss, insulin-dependent diabetes, and mild intellectual disability.

Four affected siblings reported. Mouse model has absence of bone mineralization.
Sources: Expert list; to: Odontochondrodysplasia-2 with hearing loss and diabetes (ODCD2) is characterized by growth retardation with proportionate short stature, dentinogenesis imperfecta, sensorineural hearing loss, insulin-dependent diabetes, and mild intellectual disability.

Four affected siblings reported, homozygous variant affecting splicing. Mouse model has absence of bone mineralization.
Sources: Expert list
Mendeliome v0.7147 MIA3 Zornitza Stark gene: MIA3 was added
gene: MIA3 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: MIA3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MIA3 were set to 32101163; 33778321
Phenotypes for gene: MIA3 were set to Ondontochondrodysplasia 2 with hearing loss and diabetes , MIM#619269
Review for gene: MIA3 was set to AMBER
Added comment: Odontochondrodysplasia-2 with hearing loss and diabetes (ODCD2) is characterized by growth retardation with proportionate short stature, dentinogenesis imperfecta, sensorineural hearing loss, insulin-dependent diabetes, and mild intellectual disability.

Four affected siblings reported. Mouse model has absence of bone mineralization.
Sources: Expert list
Mendeliome v0.7146 MFSD8 Zornitza Stark Phenotypes for gene: MFSD8 were changed from Ceroid lipofuscinosis, neuronal, 7 610951; Macular dystrophy with central cone involvement 616170 to Ceroid lipofuscinosis, neuronal, 7, MIM# 610951; MONDO:0012588; Macular dystrophy with central cone involvement, MIM# 616170; MONDO:0014515
Mendeliome v0.7144 MFSD8 Zornitza Stark reviewed gene: MFSD8: Rating: GREEN; Mode of pathogenicity: None; Publications: 17564970, 19201763, 25227500; Phenotypes: Ceroid lipofuscinosis, neuronal, 7, MIM# 610951, MONDO:0012588, Macular dystrophy with central cone involvement, MIM# 616170, MONDO:0014515; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7144 MCOLN1 Zornitza Stark Marked gene: MCOLN1 as ready
Mendeliome v0.7142 MANBA Zornitza Stark Marked gene: MANBA as ready
Mendeliome v0.7140 MAN2B1 Zornitza Stark Marked gene: MAN2B1 as ready
Mendeliome v0.7138 LIPA Zornitza Stark Marked gene: LIPA as ready
Mendeliome v0.7135 LAMP2 Zornitza Stark changed review comment from: XLD. Vacuolar cardiomyopathy and myopathy. Gene encodes lysosome-associated membrane protein-2.; to: XLD. Gene encodes lysosome-associated membrane protein-2.

Danon disease is an X-linked dominant disorder predominantly affecting cardiac muscle. Skeletal muscle involvement and mental retardation are variable features. The accumulation of glycogen in muscle and lysosomes originally led to the classification of Danon disease as a variant of glycogen storage disease II (Pompe disease) with 'normal acid maltase' or alpha-glucosidase, however, it may be more accurately classified as a lysosomal disorder.
Mendeliome v0.7135 LAMP2 Zornitza Stark Marked gene: LAMP2 as ready
Mendeliome v0.7133 IDUA Zornitza Stark Phenotypes for gene: IDUA were changed from Mucopolysaccharidosis Ih (MIM#607014); Mucopolysaccharidosis Ih/s (MIM#607015); Mucopolysaccharidosis Is (MIM#6070) to Mucopolysaccharidosis Ih (MIM#607014); Mucopolysaccharidosis Ih/s (MIM#607015); Mucopolysaccharidosis Is (MIM#6070); Mucopolysaccharidosis type 1, MONDO:0001586
Mendeliome v0.7132 IDUA Zornitza Stark reviewed gene: IDUA: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Mucopolysaccharidosis type 1, MONDO:0001586; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7132 IDS Zornitza Stark Marked gene: IDS as ready
Mendeliome v0.7132 IDS Zornitza Stark Phenotypes for gene: IDS were changed from to Mucopolysaccharidosis II, MIM# 309900; MONDO:0010674; Hunter syndrome
Mendeliome v0.7129 IDS Zornitza Stark reviewed gene: IDS: Rating: GREEN; Mode of pathogenicity: None; Publications: 9921913, 9762601, 8940265, 1901826; Phenotypes: Mucopolysaccharidosis II, MIM# 309900, MONDO:0010674, Hunter syndrome; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7128 VWA1 Alison Yeung Marked gene: VWA1 as ready
Mendeliome v0.7127 VWA1 Melanie Marty gene: VWA1 was added
gene: VWA1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: VWA1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: VWA1 were set to 33459760; 33693694; 33559681
Phenotypes for gene: VWA1 were set to Hereditary motor neuropathy
Review for gene: VWA1 was set to GREEN
Added comment: Six different truncating variants identified in 15 affected individuals from six families (biallelic inheritance). Disease manifested in childhood or adulthood with proximal and distal muscle weakness predominantly of the lower limbs. Myopathological and neurophysiological findings were indicative of combined neurogenic and myopathic pathology. Early childhood foot deformity was frequent, but no sensory signs were observed.

An additional 17 individuals from 15 families with hereditary motor neuropathy were identified. A 10-bp repeat expansion at the end of exon 1 was observed in 14 families and was homozygous in 10 of them. This mutation, c.62_71dup [p.Gly25Argfs*74], leads to a frameshift that results in a reduction in VWA1 transcript levels via nonsense-mediated decay.
Sources: Literature
Mendeliome v0.7126 TSPOAP1 Tiong Tan Marked gene: TSPOAP1 as ready
Mendeliome v0.7125 CLDN11 Alison Yeung Marked gene: CLDN11 as ready
Mendeliome v0.7124 GIPC1 Dean Phelan reviewed gene: GIPC1: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 33374016; Phenotypes: Oculopharyngodistal myopathy 2 (MIM#618940); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7123 SYK Alison Yeung Marked gene: SYK as ready
Mendeliome v0.7122 NCDN Alison Yeung Marked gene: NCDN as ready
Mendeliome v0.7121 TSPOAP1 Ain Roesley gene: TSPOAP1 was added
gene: TSPOAP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TSPOAP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TSPOAP1 were set to 33539324
Phenotypes for gene: TSPOAP1 were set to Dystonia, intellectual disability and cerebellar atrophy
Penetrance for gene: TSPOAP1 were set to unknown
Review for gene: TSPOAP1 was set to GREEN
Added comment: 7 affecteds from 3 families (1 consanguineous)
2x null, 1x missense

Affecteds with the null variants presented with juvenile-onset progressive generalized dystonia, associated with intellectual disability and cerebellar atrophy while those with the missense p.(Gly1808Ser) presented with isolated adult-onset focal dystonia (mild cognitive impairment noted)

mice KO models were investigated
Sources: Literature
Mendeliome v0.7121 CLDN11 Melanie Marty gene: CLDN11 was added
gene: CLDN11 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CLDN11 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CLDN11 were set to 33313762
Phenotypes for gene: CLDN11 were set to Hypomyelinating leukodystrophy
Review for gene: CLDN11 was set to GREEN
Added comment: In three unrelated individuals with early-onset spastic movement disorder, expressive speech disorder and eye abnormalities including hypermetropia, 2 different heterozygous de novo stop-loss variants were identified. One of the variants did not lead to a loss of CLDN11 expression on RNA level in fibroblasts indicating this transcript is not subject to nonsense-mediated decay and most likely translated into an extended protein.
Sources: Literature
Mendeliome v0.7121 SYK Paul De Fazio gene: SYK was added
gene: SYK was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SYK was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: SYK were set to 33782605
Phenotypes for gene: SYK were set to Immune dysregulation and systemic inflammation
Mode of pathogenicity for gene: SYK was set to Other
Review for gene: SYK was set to GREEN
gene: SYK was marked as current diagnostic
Added comment: 5 unrelated patients with monoallelic missense variants in SYK with immune deficiency, multi-organ inflammatory disease such as colitis, arthritis and dermatitis, and diffuse large B cell lymphomas. 2 patients were confirmed de novo, others were undetermined. Variants exhibited a GoF effect in functional studies. A knock-in mouse model of a patient variant recapitulated aspects of the human disease.
Sources: Literature
Mendeliome v0.7121 NCDN Ain Roesley gene: NCDN was added
gene: NCDN was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NCDN was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: NCDN were set to 33711248
Phenotypes for gene: NCDN were set to neurodevelopmental delay, intellectual disability, and epilepsy
Penetrance for gene: NCDN were set to unknown
Review for gene: NCDN was set to GREEN
Added comment: 4x families all missense and de novo except for 1 consag family where 3 affecteds were homozygous and carrier parents unaffected

ID ranged from mild to severe
3/4 probands had seizures
only 3 affecteds had MRI done, with 1 delayed myelination

in vitro studies were done
Sources: Literature
Mendeliome v0.7121 SLC5A5 Zornitza Stark Marked gene: SLC5A5 as ready
Mendeliome v0.7118 SLC45A1 Zornitza Stark Marked gene: SLC45A1 as ready
Mendeliome v0.7114 MESP1 Zornitza Stark Marked gene: MESP1 as ready
Mendeliome v0.7113 MESP1 Zornitza Stark gene: MESP1 was added
gene: MESP1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: MESP1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MESP1 were set to 28677747; 28050627; 27185833; 26694203
Phenotypes for gene: MESP1 were set to Congenital heart disease
Review for gene: MESP1 was set to AMBER
Added comment: Rare/novel variants reported in at least 7 unrelated individuals with congenital heart disease, in-silicos conflicting, familial segregation only available for some (one de novo, three inherited, others unresolved). Functional data implicates gene in cardiac development.
Sources: Expert list
Mendeliome v0.7112 HYAL1 Zornitza Stark Marked gene: HYAL1 as ready
Mendeliome v0.7112 HYAL1 Zornitza Stark Phenotypes for gene: HYAL1 were changed from to Mucopolysaccharidosis type IX, MIM# 601492; MONDO:0011093
Mendeliome v0.7108 HYAL1 Zornitza Stark reviewed gene: HYAL1: Rating: AMBER; Mode of pathogenicity: None; Publications: 10339581, 18344557, 21559944; Phenotypes: Mucopolysaccharidosis type IX, MIM# 601492, MONDO:0011093; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7108 HGSNAT Zornitza Stark Phenotypes for gene: HGSNAT were changed from Mucopolysaccharidosis type IIIC (Sanfilippo C), MIM# 252930 MONDO:0009657 Retinitis pigmentosa 73, MIM# 616544 MONDO:0014687 to Mucopolysaccharidosis type IIIC (Sanfilippo C), MIM# 252930; MONDO:0009657; Retinitis pigmentosa 73, MIM# 616544; MONDO:0014687
Mendeliome v0.7106 HGSNAT Zornitza Stark Phenotypes for gene: HGSNAT were changed from Mucopolysaccharidosis type IIIC (Sanfilippo C) (MIM #252930); Retinitis pigmentosa 73 (MIM # 616544) to Mucopolysaccharidosis type IIIC (Sanfilippo C), MIM# 252930 MONDO:0009657 Retinitis pigmentosa 73, MIM# 616544 MONDO:0014687
Mendeliome v0.7105 HEXB Zornitza Stark Marked gene: HEXB as ready
Mendeliome v0.7102 GUSB Zornitza Stark Marked gene: GUSB as ready
Mendeliome v0.7102 GUSB Zornitza Stark Phenotypes for gene: GUSB were changed from to Mucopolysaccharidosis VII, MIM# 253220; MONDO:0009662
Mendeliome v0.7100 GUSB Zornitza Stark reviewed gene: GUSB: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Mucopolysaccharidosis VII, MIM# 253220, MONDO:0009662; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7100 GNS Zornitza Stark Marked gene: GNS as ready
Mendeliome v0.7100 GNS Zornitza Stark Phenotypes for gene: GNS were changed from to Mucopolysaccharidosis type IIID, MIM# 252940; Sanfilippo syndrome type D, MONDO:0009658
Mendeliome v0.7097 GNS Zornitza Stark reviewed gene: GNS: Rating: GREEN; Mode of pathogenicity: None; Publications: 12573255, 12624138, 31536183, 25851924; Phenotypes: Mucopolysaccharidosis type IIID, MIM# 252940, Sanfilippo syndrome type D, MONDO:0009658; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7097 GNPTG Zornitza Stark Marked gene: GNPTG as ready
Mendeliome v0.7094 CHD7 Zornitza Stark Marked gene: CHD7 as ready
Mendeliome v0.7094 CHD7 Zornitza Stark Phenotypes for gene: CHD7 were changed from to Hypogonadotropic hypogonadism 5 with or without anosmia MIM#612370; CHARGE syndrome MIM#214800
Mendeliome v0.7091 CHD7 Elena Savva reviewed gene: CHD7: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 26411921; Phenotypes: Hypogonadotropic hypogonadism 5 with or without anosmia MIM#612370, CHARGE syndrome MIM#214800; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v0.7091 ALDH1A2 Bryony Thompson Phenotypes for gene: ALDH1A2 were changed from to congenital heart defects; diaphragmatic eventration; pulmonary hypoplasia; dysmorphic features
Mendeliome v0.7088 NDUFA12 Bryony Thompson reviewed gene: NDUFA12: Rating: GREEN; Mode of pathogenicity: None; Publications: 21617257, 33715266; Phenotypes: Mitochondrial complex I deficiency, nuclear type 23 MIM#618244; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7088 ALDH1A2 Bryony Thompson Marked gene: ALDH1A2 as ready
Mendeliome v0.7086 ALDH1A2 Bryony Thompson reviewed gene: ALDH1A2: Rating: GREEN; Mode of pathogenicity: None; Publications: 33565183, 10192400; Phenotypes: congenital heart defects, diaphragmatic eventration, pulmonary hypoplasia, dysmorphic features; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7086 MMP20 Bryony Thompson Marked gene: MMP20 as ready
Mendeliome v0.7084 FBN2 Zornitza Stark edited their review of gene: FBN2: Added comment: The association between mono-allelic variants in FBN2 and CCA is well established. Recent report of bi-allelic variants, Kloth (2021): biallelic FBN2 variants (PTC/missense) in a teenager with severe CCA, including cardiac defects, mild scoliosis and muscular involvement. Carrier parents both "healthy/unaffected". Phenotype matches mouse K/O. Authors performed a lit review and identified an additional 2 homozygous patients (both missense variants) with - fetal akinesia, brain ischemia and neonatal death - severe muscle weakness with bilateral clubfeet, a pronounced gait disturbance, recurrent patellar dislocations, flexion contractures, camptodactyly, widespread striae and an unusual myofibrillar disorganization, variation in fiber size and atrophic fibers in muscle biopsy.

Evidence for association with Macular degeneration, early-onset MIM#616118 is limited. One family reported, plus some rare variants reported in cohort studies. The familial variant p.Glu1144Lys is present in 11 hets in gnomad and has benign in silicos. The second variant reported in the paper, p.Met1247Thr is present in >20 hets.; Changed rating: GREEN; Changed publications: 33571691; Changed phenotypes: Contractural arachnodactyly, congenital MIM#121050, Macular degeneration, early-onset MIM#616118; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7081 NDUFB7 Bryony Thompson Marked gene: NDUFB7 as ready
Mendeliome v0.7080 NDUFB7 Bryony Thompson gene: NDUFB7 was added
gene: NDUFB7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NDUFB7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NDUFB7 were set to 33502047; 27626371
Phenotypes for gene: NDUFB7 were set to Congenital lactic acidosis; hypertrophic cardiomyopathy
Review for gene: NDUFB7 was set to AMBER
Added comment: Single patient with a homozygous variant impacting RNA splicing (c.113-10C>G) with intrauterine growth restriction and anaemia, which displayed postpartum hypertrophic cardiomyopathy, lactic acidosis, encephalopathy, and a severe complex I defect with fatal outcome. Also, a supporting knockout cell line model demonstrating impaired complex I assembly.
Sources: Literature
Mendeliome v0.7079 CELA3B Bryony Thompson Marked gene: CELA3B as ready
Mendeliome v0.7078 CDH11 Zornitza Stark Marked gene: CDH11 as ready
Mendeliome v0.7075 CELA3B Bryony Thompson gene: CELA3B was added
gene: CELA3B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CELA3B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CELA3B were set to 31369399; 33565216
Phenotypes for gene: CELA3B were set to Chronic pancreatitis
Mode of pathogenicity for gene: CELA3B was set to Other
Review for gene: CELA3B was set to AMBER
Added comment: PMID: 33565216 - p.Arg90Cys (c.268C>T) identified in a chronic pancreatitis (also diabetes and pancreatic adenocarcinoma present in some individuals) pedigree. Variant was present in 2 affected individuals and not present in 7 healthy relatives. Also, supporting in vitro functional assays demonstrating gain of function mechanism for R90C and R90L, and supporting mouse model.
PMID: 31369399 - p.Arg90Leu (c.269G>T) identified in 4 French chronic pancreatitis cases and 0 controls. However, there are 229 hets in gnomAD v2.1 with this variant.
Sources: Literature
Mendeliome v0.7074 SLC10A1 Zornitza Stark Marked gene: SLC10A1 as ready
Mendeliome v0.7073 SLC10A1 Zornitza Stark gene: SLC10A1 was added
gene: SLC10A1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: SLC10A1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC10A1 were set to 24867799; 27882152; 28835676; 29290974; 31201272
Phenotypes for gene: SLC10A1 were set to Familial hypercholanemia-2, MIM#619256
Review for gene: SLC10A1 was set to GREEN
Added comment: IEM characterised by persistently increased plasma levels of conjugated bile salts apparent from infancy. Most patients are asymptomatic and have no liver dysfunction, although some neonates may have transient jaundice or transiently elevated liver enzymes. These abnormalities improve with age. The bile acid defect can result in impaired absorption of fat-soluble vitamins, including D and K, causing decreased bone mineral density or prolonged prothrobin time (PT). Some variants are recurrent (founder effect likely) but at least 3 different variants reported, mouse model.
Sources: Expert list
Mendeliome v0.7072 GALNS Zornitza Stark Marked gene: GALNS as ready
Mendeliome v0.7072 GALNS Zornitza Stark Phenotypes for gene: GALNS were changed from to Mucopolysaccharidosis IVA, MIM# 253000; MONDO:0009659
Mendeliome v0.7069 GALNS Zornitza Stark reviewed gene: GALNS: Rating: GREEN; Mode of pathogenicity: None; Publications: 9298823; Phenotypes: Mucopolysaccharidosis IVA, MIM# 253000, MONDO:0009659; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7069 GALC Zornitza Stark Marked gene: GALC as ready
Mendeliome v0.7065 FUCA1 Zornitza Stark Marked gene: FUCA1 as ready
Mendeliome v0.7062 CTSD Zornitza Stark Marked gene: CTSD as ready
Mendeliome v0.7059 CCDC88C Zornitza Stark Phenotypes for gene: CCDC88C were changed from Spinocerebellar ataxia 40, MIM#616053; Hydrocephalus, nonsyndromic, autosomal recessive 236600; Eearly-onset pure hereditary spastic paraplegia to Spinocerebellar ataxia 40, MIM#616053; Hydrocephalus, nonsyndromic, autosomal recessive 236600; Early-onset pure hereditary spastic paraplegia
Mendeliome v0.7058 CCDC88C Zornitza Stark Phenotypes for gene: CCDC88C were changed from Spinocerebellar ataxia 40, MIM#616053; Hydrocephalus, nonsyndromic, autosomal recessive 236600 AR to Spinocerebellar ataxia 40, MIM#616053; Hydrocephalus, nonsyndromic, autosomal recessive 236600; Eearly-onset pure hereditary spastic paraplegia
Mendeliome v0.7056 CCDC88C Paul De Fazio changed review comment from: Heterozygous missense variant (gnomad: 1 het) reported in a 48-year-old Sudanese female presented with pure early onset hereditary spastic paraplegia. In contrast to previous reports, she developed neurological symptoms in early childhood and showed neither features of cerebellar ataxia, extrapyramidal signs, nor evidence of intellectual involvement. Functional studies showed the varaint induced JNK hyper-phosphorylation and enhanced apoptosis. 4 unaffected family members did not have the variant.

This phenotype appears to be sufficiently dissimilar to the 2 previously reported SCA families to not constitute a 3rd supporting report in that context.; to: Heterozygous missense variant (gnomad: 1 het) reported in a 48-year-old Sudanese female presented with pure early onset hereditary spastic paraplegia. In contrast to previous reports, she developed neurological symptoms in early childhood and showed neither features of cerebellar ataxia, extrapyramidal signs, nor evidence of intellectual involvement. Functional studies showed the varaint induced JNK hyper-phosphorylation and enhanced apoptosis. 4 unaffected family members did not have the variant.

NB: Rated Amber as this phenotype appears to be sufficiently dissimilar to the 2 previously reported SCA families to not constitute a 3rd supporting report in that context. Gene remains Green for the AR ID phenotype.
Mendeliome v0.7056 CCDC88C Paul De Fazio reviewed gene: CCDC88C: Rating: GREEN; Mode of pathogenicity: None; Publications: 33602173; Phenotypes: Eearly-onset pure hereditary spastic paraplegia; Mode of inheritance: None; Current diagnostic: yes
Mendeliome v0.7055 NMNAT1 Zornitza Stark Phenotypes for gene: NMNAT1 were changed from to Spondyloepiphyseal dysplasia, sensorineural hearing loss, intellectual disability, and Leber congenital amaurosis (SHILCA), MIM#619260; Leber congenital amaurosis 9, MIM# 608553
Mendeliome v0.7053 NMNAT1 Zornitza Stark Marked gene: NMNAT1 as ready
Mendeliome v0.7053 NMNAT1 Zornitza Stark reviewed gene: NMNAT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 32533184, 33668384, 22842230, 22842229; Phenotypes: Spondyloepiphyseal dysplasia, sensorineural hearing loss, intellectual disability, and Leber congenital amaurosis (SHILCA), MIM#619260, Leber congenital amaurosis 9, MIM# 608553; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7052 ZMPSTE24 Zornitza Stark Marked gene: ZMPSTE24 as ready
Mendeliome v0.7048 EDN1 Zornitza Stark Marked gene: EDN1 as ready
Mendeliome v0.7048 EDN1 Zornitza Stark Phenotypes for gene: EDN1 were changed from to Auriculocondylar syndrome 3, MIM# 615706
Mendeliome v0.7044 EDN1 Zornitza Stark reviewed gene: EDN1: Rating: AMBER; Mode of pathogenicity: None; Publications: 23315542, 23913798, 24268655; Phenotypes: Auriculocondylar syndrome 3, MIM# 615706; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7044 CLN5 Zornitza Stark Marked gene: CLN5 as ready
Mendeliome v0.7041 CLN3 Zornitza Stark Marked gene: CLN3 as ready
Mendeliome v0.7038 ARSB Zornitza Stark Marked gene: ARSB as ready
Mendeliome v0.7038 ARSB Zornitza Stark Gene: arsb has been classified as Green List (High Evidence).
Mendeliome v0.7038 ARSB Zornitza Stark Phenotypes for gene: ARSB were changed from to Mucopolysaccharidosis type VI (Maroteaux-Lamy), MIM# 253200; MONDO:0009661
Mendeliome v0.7037 ARSB Zornitza Stark Publications for gene: ARSB were set to
Mendeliome v0.7036 ARSB Zornitza Stark Mode of inheritance for gene: ARSB was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7035 ARSB Zornitza Stark reviewed gene: ARSB: Rating: GREEN; Mode of pathogenicity: None; Publications: 11668612; Phenotypes: Mucopolysaccharidosis type VI (Maroteaux-Lamy), MIM# 253200, MONDO:0009661; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7035 AGA Zornitza Stark Marked gene: AGA as ready
Mendeliome v0.7035 AGA Zornitza Stark Phenotypes for gene: AGA were changed from to Aspartylglucosaminuria, MIM# 208400; MONDO:0008830
Mendeliome v0.7032 AGA Zornitza Stark edited their review of gene: AGA: Added comment: Aspartylglucosaminuria (AGU) is a severe autosomal recessive lysosomal storage disorder that involves the central nervous system and causes skeletal abnormalities as well as connective tissue lesions. The most characteristic feature is progressive mental retardation. Multiple families and mouse model.; Changed publications: 1703489, 1904874, 8064811, 8946839; Changed phenotypes: Aspartylglucosaminuria, MIM# 208400, MONDO:0008830
Mendeliome v0.7032 ATCAY Zornitza Stark Marked gene: ATCAY as ready
Mendeliome v0.7032 ATCAY Zornitza Stark Phenotypes for gene: ATCAY were changed from to Ataxia, cerebellar, Cayman type, MIM# 601238; MONDO:0011025
Mendeliome v0.7029 ATCAY Zornitza Stark edited their review of gene: ATCAY: Added comment: Report of a variant c.599_605del, p.Pro200Profs*20 (PMID 29449188), which is in addition to the previously reported linked variants in the Cayman population (c.965+3G > T & p.S301R)(PMID 29449188). Mouse and zebra fish models share phenotypic features with humans with Ataxia, cerebellar, Cayman type (OMIM:601238)(PMID 14556008; 26343454).; Changed rating: GREEN; Changed publications: 14556008, 29449188, 23226316, 26343454; Changed phenotypes: Ataxia, cerebellar, Cayman type, MIM# 601238, MONDO:0011025
Mendeliome v0.7029 COPB1 Zornitza Stark Phenotypes for gene: COPB1 were changed from Severe intellectual disability; variable microcephaly; cataracts to Baralle-Macken syndrome, MIM# 619255; Severe intellectual disability; variable microcephaly; cataracts
Mendeliome v0.7028 COPB1 Zornitza Stark edited their review of gene: COPB1: Changed phenotypes: Baralle-Macken syndrome, MIM# 619255, Severe intellectual disability, variable microcephaly, cataracts
Mendeliome v0.7028 ARAP3 Zornitza Stark Marked gene: ARAP3 as ready
Mendeliome v0.7028 ARAP3 Zornitza Stark Gene: arap3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7028 ARAP3 Zornitza Stark Classified gene: ARAP3 as Amber List (moderate evidence)
Mendeliome v0.7028 ARAP3 Zornitza Stark Gene: arap3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7027 ARAP3 Zornitza Stark gene: ARAP3 was added
gene: ARAP3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ARAP3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ARAP3 were set to 32908855
Phenotypes for gene: ARAP3 were set to Lymphoedema
Review for gene: ARAP3 was set to AMBER
Added comment: Three unrelated families reported with rare missense variants in this gene as part of a lymphoedema cohort. However, incomplete information regarding segregation and no supporting functional data.
Sources: Literature
Mendeliome v0.7026 RORC Zornitza Stark changed review comment from: Association with lymphoedema: Two individuals reported with LoF variants as part of a large cohort. Note gene is depleted for LoF in gnomad, and bi-allelic variants have been associated with immunodeficiency.; to: Association with lymphoedema: Two individuals reported with LoF variants as part of a large cohort. Note gene is depleted for LoF in gnomad, and bi-allelic variants have been associated with immunodeficiency. Moderate evidence for gene-disease association.
Mendeliome v0.7026 RORC Zornitza Stark edited their review of gene: RORC: Added comment: Association with lymphoedema: Two individuals reported with LoF variants as part of a large cohort. Note gene is depleted for LoF in gnomad, and bi-allelic variants have been associated with immunodeficiency.; Changed publications: 26160376, 32960152; Changed phenotypes: Immunodeficiency 42, MIM# 616622, Autosomal recessive mendelian susceptibility to mycobacterial diseases due to complete RORgamma receptor deficiency, MONDO:0014710, Lymphoedema; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7026 RORC Zornitza Stark Marked gene: RORC as ready
Mendeliome v0.7023 IL17RC Zornitza Stark Marked gene: IL17RC as ready
Mendeliome v0.7018 IL17RA Zornitza Stark Marked gene: IL17RA as ready
Mendeliome v0.7017 CARD9 Zornitza Stark Marked gene: CARD9 as ready
Mendeliome v0.7017 CARD9 Zornitza Stark Gene: card9 has been classified as Green List (High Evidence).
Mendeliome v0.7017 CARD9 Zornitza Stark Phenotypes for gene: CARD9 were changed from to Candidiasis, familial, 2, autosomal recessive, MIM# 212050; Predisposition to invasive fungal disease, MONDO:0008905
Mendeliome v0.7016 CARD9 Zornitza Stark Publications for gene: CARD9 were set to
Mendeliome v0.7015 CARD9 Zornitza Stark Mode of inheritance for gene: CARD9 was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7014 CARD9 Zornitza Stark reviewed gene: CARD9: Rating: GREEN; Mode of pathogenicity: None; Publications: 19864672, 23335372, 24131138, 33789983, 33558980, 33180249; Phenotypes: Candidiasis, familial, 2, autosomal recessive, MIM# 212050, Predisposition to invasive fungal disease, MONDO:0008905; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7014 CYP24A1 Zornitza Stark Marked gene: CYP24A1 as ready
Mendeliome v0.7009 ABCB7 Zornitza Stark Marked gene: ABCB7 as ready
Mendeliome v0.7006 PORCN Zornitza Stark Marked gene: PORCN as ready
Mendeliome v0.7004 PRIM1 Zornitza Stark changed review comment from: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinaemia, and lymphopaenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature; to: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinaemia, and lymphopaenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature
Mendeliome v0.7004 PRIM1 Zornitza Stark Marked gene: PRIM1 as ready
Mendeliome v0.7003 PRIM1 Zornitza Stark changed review comment from: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature; to: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinaemia, and lymphopaenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature
Mendeliome v0.7003 PRIM1 Zornitza Stark changed review comment from: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature; to: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature
Mendeliome v0.7003 PRIM1 Zornitza Stark gene: PRIM1 was added
gene: PRIM1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRIM1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PRIM1 were set to 33060134
Phenotypes for gene: PRIM1 were set to Microcephalic primordial dwarfism, MONDO:0017950
Review for gene: PRIM1 was set to AMBER
Added comment: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature
Mendeliome v0.7001 TTC5 Zornitza Stark Phenotypes for gene: TTC5 were changed from Central hypotonia; Global developmental delay; Intellectual disability; Abnormality of nervous system morphology; Microcephaly; Abnormality of the face; Behavioral abnormality; Abnormality of the genitourinary system to Neurodevelopmental disorder with cerebral atrophy and variable facial dysmorphism , MIM#619244; Central hypotonia; Global developmental delay; Intellectual disability; Abnormality of nervous system morphology; Microcephaly; Abnormality of the face; Behavioral abnormality; Abnormality of the genitourinary system
Mendeliome v0.7000 TTC5 Zornitza Stark edited their review of gene: TTC5: Changed phenotypes: Neurodevelopmental disorder with cerebral atrophy and variable facial dysmorphism , MIM#619244, Central hypotonia, Global developmental delay, Intellectual disability, Abnormality of nervous system morphology, Microcephaly, Abnormality of the face, Behavioral abnormality, Abnormality of the genitourinary system
Mendeliome v0.7000 MCM10 Zornitza Stark Phenotypes for gene: MCM10 were changed from Susceptibility to CMV to Susceptibility to CMV; Restrictive cardiomyopathy
Mendeliome v0.6998 MCM10 Zornitza Stark edited their review of gene: MCM10: Added comment: PMID 33712616: second family reported, three affected sibs with restrictive cardiomyopathy and hypoplasia of the spleen and thymus. Functional data suggested that MCM10 deficiency causes chronic replication stress that reduces cell viability due to increased genomic instability and telomere erosion.; Changed publications: 32865517, 33712616; Changed phenotypes: Susceptibility to CMV, Restrictive cardiomyopathy
Mendeliome v0.6998 CYBA Zornitza Stark Marked gene: CYBA as ready
Mendeliome v0.6995 NUP37 Zornitza Stark Phenotypes for gene: NUP37 were changed from Nephrotic syndrome to Nephrotic syndrome; Microcephaly 24, primary, autosomal recessive, MIM# 618179
Mendeliome v0.6994 NUP37 Zornitza Stark edited their review of gene: NUP37: Changed phenotypes: Nephrotic syndrome, Microcephaly 24, primary, autosomal recessive, MIM# 618179
Mendeliome v0.6994 COPB2 Zornitza Stark Marked gene: COPB2 as ready
Mendeliome v0.6994 COPB2 Zornitza Stark gene: COPB2 was added
gene: COPB2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: COPB2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: COPB2 were set to 29036432
Phenotypes for gene: COPB2 were set to Microcephaly 19, primary, autosomal recessive, MIM# 617800
Review for gene: COPB2 was set to RED
Added comment: Two sibs with homozygous missense variant in this gene, mice homozygous for this variant had normal brain size however. Mice compound het for null allele and missense variant had some brain features, suggesting the missense variant is hypomorphic.
Sources: Expert list
Mendeliome v0.6993 WDR62 Zornitza Stark Marked gene: WDR62 as ready
Mendeliome v0.6993 WDR62 Zornitza Stark Phenotypes for gene: WDR62 were changed from to Microcephaly 2, primary, autosomal recessive, with or without cortical malformations, MIM# 604317; MONDO:0011435
Mendeliome v0.6990 WDR62 Zornitza Stark reviewed gene: WDR62: Rating: GREEN; Mode of pathogenicity: None; Publications: 20890279, 20729831, 20890278, 21496009, 21834044, 22775483, 32677750, 31788460; Phenotypes: Microcephaly 2, primary, autosomal recessive, with or without cortical malformations, MIM# 604317, MONDO:0011435; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6990 TRMT10A Zornitza Stark Marked gene: TRMT10A as ready
Mendeliome v0.6987 TRAIP Zornitza Stark Marked gene: TRAIP as ready
Mendeliome v0.6983 TOP3A Zornitza Stark Marked gene: TOP3A as ready
Mendeliome v0.6980 STIL Zornitza Stark Marked gene: STIL as ready
Mendeliome v0.6980 STIL Zornitza Stark Phenotypes for gene: STIL were changed from to Microcephaly 7, primary, autosomal recessive, MIM# 612703; MONDO:0012989
Mendeliome v0.6977 STIL Zornitza Stark reviewed gene: STIL: Rating: GREEN; Mode of pathogenicity: None; Publications: 19215732, 22989186, 25218063, 33132204, 32677750, 29230157; Phenotypes: Microcephaly 7, primary, autosomal recessive, MIM# 612703, MONDO:0012989; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6975 STAMBP Zornitza Stark Marked gene: STAMBP as ready
Mendeliome v0.6975 STAMBP Zornitza Stark Phenotypes for gene: STAMBP were changed from to Microcephaly-capillary malformation syndrome, MIM# 614261; MONDO:0013659
Mendeliome v0.6972 STAMBP Zornitza Stark reviewed gene: STAMBP: Rating: GREEN; Mode of pathogenicity: None; Publications: 23542699, 31638258, 29907875, 27531570, 25692795, 25266620; Phenotypes: Microcephaly-capillary malformation syndrome, MIM# 614261, MONDO:0013659; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6972 PCNT Zornitza Stark Marked gene: PCNT as ready
Mendeliome v0.6972 PCNT Zornitza Stark Phenotypes for gene: PCNT were changed from to Microcephalic osteodysplastic primordial dwarfism, type II, MIM# 210720; MONDO:0008872
Mendeliome v0.6969 PCNT Zornitza Stark reviewed gene: PCNT: Rating: GREEN; Mode of pathogenicity: None; Publications: 18174396, 12210304, 30922925, 33460028, 32557621, 32267100; Phenotypes: Microcephalic osteodysplastic primordial dwarfism, type II, MIM# 210720, MONDO:0008872; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6969 NHEJ1 Zornitza Stark Marked gene: NHEJ1 as ready
Mendeliome v0.6969 NHEJ1 Zornitza Stark Phenotypes for gene: NHEJ1 were changed from to Severe combined immunodeficiency with microcephaly, growth retardation, and sensitivity to ionizing radiation, MIM# 611291; Cernunnos-XLF deficiency MONDO:0012650
Mendeliome v0.6966 NHEJ1 Zornitza Stark reviewed gene: NHEJ1: Rating: GREEN; Mode of pathogenicity: None; Publications: 30898087, 30666249, 28741180, 25288157, 24511403, 21721379, 21535335; Phenotypes: Severe combined immunodeficiency with microcephaly, growth retardation, and sensitivity to ionizing radiation, MIM# 611291, Cernunnos-XLF deficiency MONDO:0012650; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6966 NBN Zornitza Stark Marked gene: NBN as ready
Mendeliome v0.6963 MSMO1 Zornitza Stark Marked gene: MSMO1 as ready
Mendeliome v0.6963 MSMO1 Zornitza Stark Phenotypes for gene: MSMO1 were changed from to Microcephaly, congenital cataract, and psoriasiform dermatitis, MIM# 616834; MONDO:0014793; Disorders of the metabolism of sterols
Mendeliome v0.6960 MSMO1 Zornitza Stark reviewed gene: MSMO1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21285510, 24144731, 28673550, 33161406; Phenotypes: Microcephaly, congenital cataract, and psoriasiform dermatitis, MIM# 616834, MONDO:0014793; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6960 MCPH1 Zornitza Stark Marked gene: MCPH1 as ready
Mendeliome v0.6960 MCPH1 Zornitza Stark Phenotypes for gene: MCPH1 were changed from to Microcephaly 1, primary, autosomal recessive, MIM# 251200; MONDO:0009617
Mendeliome v0.6957 MCPH1 Zornitza Stark reviewed gene: MCPH1: Rating: GREEN; Mode of pathogenicity: None; Publications: 12046007, 15199523, 16311745, 20978018, 32294449, 30351297, 29026105; Phenotypes: Microcephaly 1, primary, autosomal recessive, MIM# 251200, MONDO:0009617; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6957 ATP1A3 Zornitza Stark Marked gene: ATP1A3 as ready
Mendeliome v0.6953 LARP7 Zornitza Stark Marked gene: LARP7 as ready
Mendeliome v0.6953 LARP7 Zornitza Stark Gene: larp7 has been classified as Green List (High Evidence).
Mendeliome v0.6953 LARP7 Zornitza Stark Phenotypes for gene: LARP7 were changed from to Alazami syndrome, MIM# 615071; Microcephalic primordial dwarfism, Alazami type MONDO:0014031
Mendeliome v0.6952 LARP7 Zornitza Stark Publications for gene: LARP7 were set to
Mendeliome v0.6951 LARP7 Zornitza Stark Mode of inheritance for gene: LARP7 was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6950 LARP7 Zornitza Stark reviewed gene: LARP7: Rating: GREEN; Mode of pathogenicity: None; Publications: 22865833, 21937992, 30006060, 33569879; Phenotypes: Alazami syndrome, MIM# 615071, Microcephalic primordial dwarfism, Alazami type MONDO:0014031; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6950 KNL1 Zornitza Stark Marked gene: KNL1 as ready
Mendeliome v0.6950 KNL1 Zornitza Stark Phenotypes for gene: KNL1 were changed from to Microcephaly 4, primary, autosomal recessive, MIM# 604321; MONDO:0011437
Mendeliome v0.6947 KNL1 Zornitza Stark reviewed gene: KNL1: Rating: GREEN; Mode of pathogenicity: None; Publications: 22983954, 26626498, 27149178, 30304678, 27784895; Phenotypes: Microcephaly 4, primary, autosomal recessive, MIM# 604321, MONDO:0011437; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6946 BAAT Zornitza Stark Marked gene: BAAT as ready
Mendeliome v0.6943 KIF11 Zornitza Stark Marked gene: KIF11 as ready
Mendeliome v0.6943 KIF11 Zornitza Stark Phenotypes for gene: KIF11 were changed from to Microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation, MIM# 152950; MONDO:0007918
Mendeliome v0.6940 KIF11 Zornitza Stark reviewed gene: KIF11: Rating: GREEN; Mode of pathogenicity: None; Publications: 22284827, 25115524, 25124931, 27212378, 32730767, 31993640, 25996076; Phenotypes: Microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation, MIM# 152950, MONDO:0007918; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6940 IER3IP1 Zornitza Stark Marked gene: IER3IP1 as ready
Mendeliome v0.6940 IER3IP1 Zornitza Stark Phenotypes for gene: IER3IP1 were changed from to Microcephaly, epilepsy, and diabetes syndrome, MIM# 614231; Primary microcephaly-epilepsy-permanent neonatal diabetes syndrome, MONDO:0013647
Mendeliome v0.6937 IER3IP1 Zornitza Stark reviewed gene: IER3IP1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21835305, 22991235, 24138066, 28711742; Phenotypes: Microcephaly, epilepsy, and diabetes syndrome, MIM# 614231, Primary microcephaly-epilepsy-permanent neonatal diabetes syndrome, MONDO:0013647; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6937 EFTUD2 Zornitza Stark Marked gene: EFTUD2 as ready
Mendeliome v0.6934 CEP152 Zornitza Stark Marked gene: CEP152 as ready
Mendeliome v0.6934 CEP152 Zornitza Stark Phenotypes for gene: CEP152 were changed from to Microcephaly 9, primary, autosomal recessive, MIM# 614852; MONDO:0013923; Seckel syndrome 5, MIM# 613823; MONDO:0013443
Mendeliome v0.6931 CEP152 Zornitza Stark reviewed gene: CEP152: Rating: GREEN; Mode of pathogenicity: None; Publications: 20598275, 22775483, 21131973, 23199753; Phenotypes: Microcephaly 9, primary, autosomal recessive, MIM# 614852, MONDO:0013923, Seckel syndrome 5, MIM# 613823, MONDO:0013443; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6931 GNPAT Zornitza Stark Marked gene: GNPAT as ready
Mendeliome v0.6927 CD4 Zornitza Stark Marked gene: CD4 as ready
Mendeliome v0.6927 CD4 Zornitza Stark Phenotypes for gene: CD4 were changed from to Immunodeficiency 79, MIM# 619238; Absence of CD4+ T cells; exuberant, relapsing, treatment-refractory warts
Mendeliome v0.6924 CD4 Zornitza Stark edited their review of gene: CD4: Changed rating: GREEN; Changed publications: 31781092, 33471124; Changed phenotypes: Immunodeficiency 79, MIM# 619238, Absence of CD4+ T cells, exuberant, relapsing, treatment-refractory warts
Mendeliome v0.6924 TMEM231 Zornitza Stark Marked gene: TMEM231 as ready
Mendeliome v0.6921 TMEM216 Zornitza Stark Marked gene: TMEM216 as ready
Mendeliome v0.6918 TMEM216 Zornitza Stark changed review comment from: Ataxia is part of the phenotype.; to: p.Arg73Leu is a founder Jewish variant. Multiple families reported with JBTS and with Meckel syndrome.
Mendeliome v0.6918 TMEM138 Zornitza Stark Marked gene: TMEM138 as ready
Mendeliome v0.6915 TCTN2 Zornitza Stark changed review comment from: Multiple families reported, ataxia is part of the phenotype.; to: At least 5 families reported with JBTS phenotype, and 3 with Meckel phenotype; mouse model.
Mendeliome v0.6915 TCTN2 Zornitza Stark Marked gene: TCTN2 as ready
Mendeliome v0.6912 TCTN1 Zornitza Stark Marked gene: TCTN1 as ready
Mendeliome v0.6909 TCTN1 Zornitza Stark changed review comment from: Rare cause of JBS, ataxia specifically mentioned in at least one individual.; to: Rare cause of JBS, at least 4 families reported, mouse model.
Mendeliome v0.6908 SMCHD1 Zornitza Stark edited their review of gene: SMCHD1: Added comment: Bosma arhinia microphthalmia syndrome (BAMS) is characterized by severe hypoplasia of the nose and eyes, palatal abnormalities, deficient taste and smell, inguinal hernias, hypogonadotropic hypogonadism with cryptorchidism, and normal intelligence. Choanal atresia is a feature. More than 30 unrelated individuals reported. Caused by gain of function missense variants with the extended ATPase domain.; Changed rating: GREEN; Changed mode of pathogenicity: Other; Changed publications: 28067909; Changed phenotypes: Bosma arhinia microphthalmia syndrome, MIM# 603457, Arhinia, choanal atresia, microphthalmia MONDO:0011323; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6908 SMCHD1 Zornitza Stark Phenotypes for gene: SMCHD1 were changed from Bosma arhinia microphthalmia syndrome, MIM 603457; Fascioscapulohumeral muscular dystrophy 2, digenic to Bosma arhinia microphthalmia syndrome, MIM 603457; Arhinia, choanal atresia, microphthalmia MONDO:0011323; Fascioscapulohumeral muscular dystrophy 2, digenic
Mendeliome v0.6906 TXNL4A Zornitza Stark Marked gene: TXNL4A as ready
Mendeliome v0.6906 TXNL4A Zornitza Stark Phenotypes for gene: TXNL4A were changed from to Burn-McKeown syndrome, MIM# 608572; Choanal atresia - deafness - cardiac defects - dysmorphism syndrome, MONDO:0012064
Mendeliome v0.6903 TXNL4A Zornitza Stark reviewed gene: TXNL4A: Rating: GREEN; Mode of pathogenicity: None; Publications: 25434003; Phenotypes: Burn-McKeown syndrome, MIM# 608572, Choanal atresia - deafness - cardiac defects - dysmorphism syndrome, MONDO:0012064; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6903 SPINT2 Zornitza Stark Phenotypes for gene: SPINT2 were changed from Diarrhoea 3, secretory sodium, congenital, syndromic 270420 to Diarrhoea 3, secretory sodium, congenital, syndromic 270420; MONDO:0010036
Mendeliome v0.6901 SPINT2 Zornitza Stark changed review comment from: More than 15 unrelated families reported.; to: Well established gene-disease association. PMID 30445423 reviews 34 patients from 26 families: 13 different variants in SPINT2 were seen, including 3 premature termination codons, 2 start codon removals, and 3 canonical splice site variants, supporting loss of function as the pathogenic mechanism. The most commonly observed variant was Y163C, observed in 40 (59%) of 68 disease alleles. Seven unrelated patients with the Y163C mutation had a shared haplotype, suggesting that it is a founder mutation. Choanal atresia (20/34) and keratitis of infantile onset (26/34) were the most common findings. All patients presented with intractable diarrhoea, with onset typically in the first 2 weeks of life. Episodes of intestinal pseudoobstruction sometimes preceded the onset of diarrhoea. Characteristic epithelial tufts on intestinal histology were seen in 13 of the 34 patients.
Mendeliome v0.6901 SPINT2 Zornitza Stark edited their review of gene: SPINT2: Changed publications: 19185281, 20009592, 24142340, 30445423; Changed phenotypes: Diarrhoea 3, secretory sodium, congenital, syndromic 270420, MONDO:0010036
Mendeliome v0.6901 FOXE1 Zornitza Stark Marked gene: FOXE1 as ready
Mendeliome v0.6901 FOXE1 Zornitza Stark Phenotypes for gene: FOXE1 were changed from to Bamforth-Lazarus syndrome, MIM# 241850; MONDO:0009437
Mendeliome v0.6898 FOXE1 Zornitza Stark reviewed gene: FOXE1: Rating: GREEN; Mode of pathogenicity: None; Publications: 9697705, 12165566, 16882747, 24219130, 20484477; Phenotypes: Bamforth-Lazarus syndrome, MIM# 241850, MONDO:0009437; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6898 MIB1 Zornitza Stark Marked gene: MIB1 as ready
Mendeliome v0.6898 MIB1 Zornitza Stark Added comment: Comment when marking as ready: Amber for LVNC/cardiomyopathy. Green for congenital heart disease.
Mendeliome v0.6898 MIB1 Zornitza Stark Phenotypes for gene: MIB1 were changed from Left ventricular noncompaction 7 MIM#615092 to Left ventricular noncompaction 7 MIM#615092; cardiomyopathy; congenital heart disease
Mendeliome v0.6897 MIB1 Zornitza Stark reviewed gene: MIB1: Rating: AMBER; Mode of pathogenicity: None; Publications: 30322850, 23314057; Phenotypes: Left ventricular noncompaction 7, MIM# 615092, cardiomyopathy; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6897 ANO3 Zornitza Stark Marked gene: ANO3 as ready
Mendeliome v0.6894 IPO8 Zornitza Stark Marked gene: IPO8 as ready
Mendeliome v0.6893 IPO8 Zornitza Stark gene: IPO8 was added
gene: IPO8 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: IPO8 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: IPO8 were set to Loeys-Dietz syndrome-like; cardiovascular, neurologic, skeletal and immunologic abnormalities
Review for gene: IPO8 was set to AMBER
Added comment: 12 individuals from 9 unrelated families in a cohort submitted for publication with bi-allelic IPO8 variants. Variants were nonsense/splice and some missense. Patients displayed a phenotype reminiscent of Loeys Dietz syndrome that variably combined cardiovascular, neurologic, skeletal and immunologic abnormalities along with dysmorphic features. Western blot on patient cells (4 individuals) showed reduced IPO8 expression. Disruption of IPO8 homologue in zebrafish associated with cardiac anomalies. Transcriptome analysis in zebrafish showed that IPO8-deficient zebrafish had abnormal TGFbeta pathway expression.
Sources: Expert Review
Mendeliome v0.6891 DDB1 Zornitza Stark edited their review of gene: DDB1: Added comment: 8 individuals with de novo missense variants and varying degrees of intellectual disability, hypotonia, and some malformations, brachydactyly and syndactyly. Functional evidence of abnormal DNA repair in patient lymphoblasts.; Changed publications: 33743206
Mendeliome v0.6891 FAM20C Zornitza Stark Marked gene: FAM20C as ready
Mendeliome v0.6886 ANKS6 Zornitza Stark Marked gene: ANKS6 as ready
Mendeliome v0.6878 CLDN2 Zornitza Stark changed review comment from: Numerous publications linking common variants at this locus with susceptibility to pancreatitis. KO mice do not have a pancreatic phenotype. Likely polygenic susceptibility rather than Mendelian disorder.; to: Pancreatitis: Numerous publications linking common variants at this locus with susceptibility to pancreatitis. KO mice do not have a pancreatic phenotype. Likely polygenic susceptibility rather than Mendelian disorder.
Mendeliome v0.6878 FLII Zornitza Stark changed review comment from: Two unrelated families reported with homozygous missense variants. Emerging evidence.
Sources: Literature; to: Two unrelated families reported with homozygous missense variants. Emerging evidence: aware of two more families.
Sources: Literature
Mendeliome v0.6876 POLR3A Elena Savva commented on gene: POLR3A: c.1909+22G>A is a recurring variant that results in a leaky splice site

Bi-allelic variants associated with Leukodystrophy and with Wiedemann-Rautenstrauch syndrome; note association between mono-allelic variants and susceptibility to severe VZV infection.

Deep intronic variants commonly pathogenic

No clear gen-phen correlation
Mendeliome v0.6876 FLII Elena Savva reviewed gene: FLII: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 32870709, 11971982, 32980309; Phenotypes: Dilated cardiomyopathy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.6876 HSF2BP Zornitza Stark Marked gene: HSF2BP as ready
Mendeliome v0.6876 HSF2BP Zornitza Stark gene: HSF2BP was added
gene: HSF2BP was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: HSF2BP was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HSF2BP were set to 32845237
Phenotypes for gene: HSF2BP were set to Premature ovarian failure, OMIM#619245
Review for gene: HSF2BP was set to RED
Added comment: Single family reported where homozygous missense variant segregated with POF in three sisters.
Sources: Expert list
Mendeliome v0.6875 COL4A6 Zornitza Stark Marked gene: COL4A6 as ready
Mendeliome v0.6871 RNF6 Zornitza Stark Marked gene: RNF6 as ready
Mendeliome v0.6870 MED12 Zornitza Stark Marked gene: MED12 as ready
Mendeliome v0.6867 BMPR2 Zornitza Stark Marked gene: BMPR2 as ready
Mendeliome v0.6867 BMPR2 Zornitza Stark Phenotypes for gene: BMPR2 were changed from to Pulmonary venoocclusive disease 1 MIM#265450; Pulmonary hypertension, familial primary, 1, with or without HHT MIM#178600; Pulmonary hypertension, primary, fenfluramine or dexfenfluramine-associated MIM#178600
Mendeliome v0.6863 BMPR2 Elena Savva reviewed gene: BMPR2: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 33380512; Phenotypes: Pulmonary venoocclusive disease 1 MIM#265450, Pulmonary hypertension, familial primary, 1, with or without HHT MIM#178600, Pulmonary hypertension, primary, fenfluramine or dexfenfluramine-associated MIM#178600; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.6863 ZNF711 Zornitza Stark Marked gene: ZNF711 as ready
Mendeliome v0.6863 ZNF711 Zornitza Stark Phenotypes for gene: ZNF711 were changed from to Mental retardation, X-linked 97; OMIM #300803
Mendeliome v0.6860 ZNF711 Zornitza Stark reviewed gene: ZNF711: Rating: GREEN; Mode of pathogenicity: None; Publications: 27993705, 19377476; Phenotypes: Mental retardation, X-linked 97, OMIM #300803; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.6860 SLC35A2 Zornitza Stark Marked gene: SLC35A2 as ready
Mendeliome v0.6856 MEF2A Zornitza Stark Marked gene: MEF2A as ready
Mendeliome v0.6856 MEF2A Zornitza Stark Phenotypes for gene: MEF2A were changed from to {Coronary artery disease, autosomal dominant, 1} 608320
Mendeliome v0.6854 MEF2A Zornitza Stark reviewed gene: MEF2A: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: {Coronary artery disease, autosomal dominant, 1} 608320; Mode of inheritance: None
Mendeliome v0.6854 FN1 Zornitza Stark Marked gene: FN1 as ready
Mendeliome v0.6851 IL37 Zornitza Stark Marked gene: IL37 as ready
Mendeliome v0.6851 IL37 Zornitza Stark gene: IL37 was added
gene: IL37 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: IL37 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: IL37 were set to 33674380
Phenotypes for gene: IL37 were set to Infantile inflammatory bowel disease
Review for gene: IL37 was set to RED
Added comment: Single family reported with homozygous truncating variant this gene and infantile-onset of IBD, some functional data.
Sources: Literature
Mendeliome v0.6850 CHRDL1 Zornitza Stark Marked gene: CHRDL1 as ready
Mendeliome v0.6847 HDL2 Bryony Thompson Marked STR: HDL2 as ready
Mendeliome v0.6846 HDL2 Bryony Thompson STR: HDL2 was added
STR: HDL2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for STR: HDL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: HDL2 were set to 20301701
Phenotypes for STR: HDL2 were set to Huntington disease-like 2 MIM#606438
Review for STR: HDL2 was set to GREEN
STR: HDL2 was marked as clinically relevant
Added comment: NM_001271604.2:c.431CTG[X] or NM_020655.4:c.382+760CTG[X]
In an alternatively spliced exon, the repeat can be transcribed in both directions, leading to CUG (more common) or CAG (less common) repeat-containing transcripts. While a dominant RNA toxic effect may occur, the repeat expansion also reduces levels of the Junctophilin-3 protein
Normal: ≤28 repeats
Questionable significance: 29-39 repeats, mutable normal or reduced penetrance included
Full penetrance: ≥40 repeats
Sources: Expert list
Mendeliome v0.6844 DM2 Bryony Thompson Marked STR: DM2 as ready
Mendeliome v0.6843 DM2 Bryony Thompson STR: DM2 was added
STR: DM2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for STR: DM2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: DM2 were set to 20301639; 29325606
Phenotypes for STR: DM2 were set to Myotonic dystrophy 2 MIM#602668
Review for STR: DM2 was set to GREEN
STR: DM2 was marked as clinically relevant
Added comment: HGVS nomenclature: NM_003418.4:c.-14-833_-14-830[X]
Toxic gain of function RNA expected mechanism of disease
Normal: ≤30 uninterrupted CCTG repeats, 11-26 CCTG repeats with any GCTC or TCTG interruptions
Unknown significance (normal vs. mutable): 27-29 CCTG repeats
Mutable normal (premutation) alleles. ~30-~54 CCTG repeats
Unknown significance (premutation vs pathogenic): ~55-74 CCTG repeats
Pathogenic: ~75-11,000 CCTG repeats
Sources: Expert list
Mendeliome v0.6842 CNBP Bryony Thompson Marked gene: CNBP as ready
Mendeliome v0.6841 DM1 Bryony Thompson Marked STR: DM1 as ready
Mendeliome v0.6840 DM1 Bryony Thompson STR: DM1 was added
STR: DM1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for STR: DM1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: DM1 were set to 20301344; 29325606
Phenotypes for STR: DM1 were set to Myotonic dystrophy 1 MIM#160900
Review for STR: DM1 was set to GREEN
STR: DM1 was marked as clinically relevant
Added comment: HGVS nomenclature: NM_001081560.2:c.*224_*226CTG[X]
RNA toxic gain of function is mechanism of disease
Premutation: 35-49 repeats, no clinical signs
Mild: 50-~150 repeats, age of onset 20-70 yrs, clinical signs - cataracts, mild myotonia
Classic: ~100-~1,000 repeats, age of onset 10-30 yrs, clinical signs - weakness, myotonia, cataracts, balding, cardiac arrhythmia
Congenital: >1,000 repeats, age of onset birth-10 yrs , clinical signs - infantile hypotonia, respiratory deficits, intellectual disability, classic signs in adults
Sources: Expert list
Mendeliome v0.6838 SCA17 Bryony Thompson Marked STR: SCA17 as ready
Mendeliome v0.6837 SCA17 Bryony Thompson STR: SCA17 was added
STR: SCA17 was added to Mendeliome. Sources: Expert list
Mode of inheritance for STR: SCA17 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: SCA17 were set to 20301611; 29325606
Phenotypes for STR: SCA17 were set to Spinocerebellar ataxia 17 MIM#607136
Review for STR: SCA17 was set to GREEN
STR: SCA17 was marked as clinically relevant
Added comment: NM_003194.4:c.172_174[X]
Mechanism of disease expected to be gain of function
Normal: ≤ 40 CAG/CAA repeats
Reduced-penetrance: 41-48 CAG/CAA repeats, individual may or may not develop symptoms.
Full-penetrance: ≥49 CAG/CAA repeats
Sources: Expert list
Mendeliome v0.6836 TBP Bryony Thompson Marked gene: TBP as ready
Mendeliome v0.6835 SCA12 Bryony Thompson Marked STR: SCA12 as ready
Mendeliome v0.6834 SCA12 Bryony Thompson STR: SCA12 was added
STR: SCA12 was added to Mendeliome. Sources: Expert list
Mode of inheritance for STR: SCA12 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: SCA12 were set to 29325606; 20301381
Phenotypes for STR: SCA12 were set to Spinocerebellar ataxia 12 MIM#604326
Review for STR: SCA12 was set to GREEN
STR: SCA12 was marked as clinically relevant
Added comment: NM_181675.3:c.27CAG[X]
Uncertain if CAG repeat encodes polyglutamine or instead effects expression of specific splice variants of the encoded phosphatase
Normal: ≤32 repeats
Reduced penetrance: ~40-66 repeats
Full penetrance: ≥66 repeats
Sources: Expert list
Mendeliome v0.6833 PPP2R2B Bryony Thompson Marked gene: PPP2R2B as ready
Mendeliome v0.6832 SCA36 Bryony Thompson Marked STR: SCA36 as ready
Mendeliome v0.6831 SCA36 Bryony Thompson STR: SCA36 was added
STR: SCA36 was added to Mendeliome. Sources: Expert list
Mode of inheritance for STR: SCA36 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: SCA36 were set to 25101480
Phenotypes for STR: SCA36 were set to Spinocerebellar ataxia 36 MIM#614153
Review for STR: SCA36 was set to GREEN
STR: SCA36 was marked as clinically relevant
Added comment: NM_006392​.3:c.3+71GGCCTG[X]
Toxic RNA effect is suggested mechanism of disease
Normal: 3-14 repeats
Uncertain significance: 15-650 repeats
Pathogenic: ≥650 repeats
Sources: Expert list
Mendeliome v0.6829 SCA37 Bryony Thompson Marked STR: SCA37 as ready
Mendeliome v0.6828 SCA37 Bryony Thompson STR: SCA37 was added
STR: SCA37 was added to Mendeliome. Sources: Expert list
Mode of inheritance for STR: SCA37 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: SCA37 were set to 28686858; 31145571
Phenotypes for STR: SCA37 were set to Spinocerebellar ataxia 37 MIM#615945
Review for STR: SCA37 was set to GREEN
STR: SCA37 was marked as clinically relevant
Added comment: NC_000001.10:g.57832716_57832797ins[(ATTTT)60-79(ATTTC)31-75(ATTTT)58-90]
Located in a 5'UTR intron, flanked by (ATTTT)n on both sides
Non-pathogenic allele: (ATTTT)7–400
Pathogenic allele: [(ATTTT)60–79(ATTTC)31–75(ATTTT)58–90]
Sources: Expert list
Mendeliome v0.6827 DAB1 Bryony Thompson Marked gene: DAB1 as ready
Mendeliome v0.6826 SCA31 Bryony Thompson Marked STR: SCA31 as ready
Mendeliome v0.6825 SCA31 Bryony Thompson STR: SCA31 was added
STR: SCA31 was added to Mendeliome. Sources: Expert list
Mode of inheritance for STR: SCA31 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: SCA31 were set to 19878914; 31755042
Phenotypes for STR: SCA31 were set to Spinocerebellar ataxia 31 MIM#117210
Review for STR: SCA31 was set to GREEN
STR: SCA31 was marked as clinically relevant
Added comment: Complex repeat insertion (TGGAA)n, (TAGAA)n, (TAAAA)n, (TAAAATAGAA)n, TGGAA is present only in affected cases. Sequencing showed that the insertion consisted of a preceding TCAC sequence, and 3 pentanucleotide repeat components (TGGAA)n, (TAGAA)n, and (TAAAA)n in all patients tested.
2.5-3.8 KB insertion is associated with disease and RNA toxicity expected to be mechanism of disease
Normal and pathogenic cut-offs are based on animal model experiments (PMID: 31755042)
Sources: Expert list
Mendeliome v0.6824 BEAN1 Bryony Thompson Marked gene: BEAN1 as ready
Mendeliome v0.6823 SCA7 Bryony Thompson Marked STR: SCA7 as ready
Mendeliome v0.6822 SCA7 Bryony Thompson STR: SCA7 was added
STR: SCA7 was added to Mendeliome. Sources: Expert list
Mode of inheritance for STR: SCA7 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: SCA7 were set to 29325606; 20301433
Phenotypes for STR: SCA7 were set to Spinocerebellar ataxia 7 MIM#164500
Review for STR: SCA7 was set to GREEN
STR: SCA7 was marked as clinically relevant
Added comment: NM_000333​.3:c.89_91AGC[X]
Gain of function mechanism of disease
Normal: ≤27 repeats
Mutable normal: 28-33 repeats, meiotically unstable, but not associated with an abnormal phenotype.
Pathogenic reduced penetrance: 34-36 repeats, when manifestations occur, they are more likely to be later onset and milder than average
Pathogenic full penetrance: 37-460 repeats
Sources: Expert list
Mendeliome v0.6821 ATXN7 Bryony Thompson Marked gene: ATXN7 as ready
Mendeliome v0.6820 SCA3 Bryony Thompson Marked STR: SCA3 as ready
Mendeliome v0.6819 SCA3 Bryony Thompson STR: SCA3 was added
STR: SCA3 was added to Mendeliome. Sources: Expert list
Mode of inheritance for STR: SCA3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: SCA3 were set to 20301375; 29325606
Phenotypes for STR: SCA3 were set to Machado-Joseph disease MIM#109150; Spinocerebellar ataxia type 3
Review for STR: SCA3 was set to GREEN
STR: SCA3 was marked as clinically relevant
Added comment: NM_004993​.5:c.886_888CAG[X]
Toxic aggregation and mislocalization in neurons is mechanism of disease
Normal: ≤44 repeats, mostly <31 repeats
Intermediate: 45-59 repeats, some intermediate alleles are not associated with classic clinical features of SCA3
Pathogenic (full penetrance): ≥60 repeats
Sources: Expert list
Mendeliome v0.6817 SCA2 Bryony Thompson Marked STR: SCA2 as ready
Mendeliome v0.6816 SCA2 Bryony Thompson STR: SCA2 was added
STR: SCA2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for STR: SCA2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: SCA2 were set to 29325606; 20301452
Phenotypes for STR: SCA2 were set to Spinocerebellar ataxia 2 MIM#183090
Review for STR: SCA2 was set to GREEN
STR: SCA2 was marked as clinically relevant
Added comment: NM_002973​.3:c.496_498CAG[X]
Toxic protein aggregation is mechanism of disease
Benign: ≤31 repeats (homozygous 31/31 repeats reported for recessive SCA2)
Uncertain: 32 repeats
ALS risk allele: 30-32 repeats
Reduced penetrance: 33-34 repeats, may not develop symptoms or only very late in life
Full penetrance: ≥35 repeats
Interruption of a CAG expanded allele by a CAA repeat does not mitigate the pathogenicity of the repeat size, but may enhance the meiotic stability of the repeat
Sources: Expert list
Mendeliome v0.6814 SCA10 Bryony Thompson Marked STR: SCA10 as ready
Mendeliome v0.6813 SCA10 Bryony Thompson STR: SCA10 was added
STR: SCA10 was added to Mendeliome. Sources: Expert list
Mode of inheritance for STR: SCA10 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: SCA10 were set to 20301354
Phenotypes for STR: SCA10 were set to Spinocerebellar ataxia 10 MIM#603516
Review for STR: SCA10 was set to GREEN
STR: SCA10 was marked as clinically relevant
Added comment: NM_013236​.2:c.1430+54822ATTCT[X]
Toxic RNA gain-of-function mechanism of disease
Normal alleles: 10-32 ATTCT repeats
Alleles of questionable significance: 33-280 ATTCT repeats
Reduced-penetrance alleles: 33-850 repeats
Full-penetrance alleles: 800-4,500 ATTCT repeats
Sources: Expert list
Mendeliome v0.6811 INPP4A Zornitza Stark Marked gene: INPP4A as ready
Mendeliome v0.6810 INPP4A Zornitza Stark gene: INPP4A was added
gene: INPP4A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: INPP4A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: INPP4A were set to 31978615; 31938306; 25338135; 20011524
Phenotypes for gene: INPP4A were set to Intellectual disability
Review for gene: INPP4A was set to AMBER
Added comment: Two families reported with bi-allelic variants and a neurological phenotype. Supportive mouse model and expression data.
Sources: Literature
Mendeliome v0.6808 SATB1 Zornitza Stark edited their review of gene: SATB1: Added comment: Kohlschutter-Tonz syndrome-like (KTZSL) is characterized by global developmental delay with moderately to severely impaired intellectual development, poor or absent speech, and delayed motor skills. Although the severity of the disorder varies, many patients are nonverbal and have hypotonia with inability to sit or walk. Early-onset epilepsy is common and may be refractory to treatment, leading to epileptic encephalopathy and further interruption of developmental progress. Most patients have feeding difficulties with poor overall growth and dysmorphic facial features, as well as significant dental anomalies resembling amelogenesis imperfecta. This phenotype was reported in 28 patients (patients 13 to 40, PMID 33513338), including 9 patients from 3 families. Most variants were de novo, though some were inherited, suggestive of incomplete penetrance and variable expressivity.; Changed phenotypes: Developmental delay with dysmorphic facies and dental anomalies, MIM# 619228, Kohlschutter-Tonz syndrome-like, MIM# 619229
Mendeliome v0.6808 SATB1 Zornitza Stark commented on gene: SATB1: Developmental delay with dysmorphic facies and dental anomalies (DEFDA) is characterized by generally mild global developmental delay with variably impaired intellectual development, walking by 2 to 3 years, and slow language acquisition. The severity of the disorder ranges from moderate cognitive deficits to mild learning difficulties or behavioral abnormalities. Most patients have dysmorphic facial features, often with abnormal dentition and nonspecific visual defects, such as myopia, astigmatism, and strabismus. Although rare, involvement of other systems, such as skeletal, cardiac, and gastrointestinal, may be present. 12 individuals from 11 families reported (one inherited variant, affected parent).
Mendeliome v0.6805 MKS1 Zornitza Stark Marked gene: MKS1 as ready
Mendeliome v0.6805 MKS1 Zornitza Stark Phenotypes for gene: MKS1 were changed from to Joubert syndrome 28, MIM# 617121; MONDO:0014928; Meckel syndrome 1, MIM# 249000; MONDO:0009571; Bardet-Biedl syndrome 13, MIM# 615990; MONDO:0014441
Mendeliome v0.6802 MKS1 Zornitza Stark reviewed gene: MKS1: Rating: GREEN; Mode of pathogenicity: None; Publications: 17377820, 24886560, 19776033, 33193692, 27570071, 27377014, 18327255, 24608809; Phenotypes: Joubert syndrome 28, MIM# 617121, MONDO:0014928, Meckel syndrome 1, MIM# 249000, MONDO:0009571, Bardet-Biedl syndrome 13, MIM# 615990, MONDO:0014441; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6802 FLII Zornitza Stark Marked gene: FLII as ready
Mendeliome v0.6801 FLII Zornitza Stark gene: FLII was added
gene: FLII was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FLII was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FLII were set to 32870709
Phenotypes for gene: FLII were set to Dilated cardiomyopathy
Review for gene: FLII was set to AMBER
Added comment: Two unrelated families reported with homozygous missense variants. Emerging evidence.
Sources: Literature
Mendeliome v0.6800 RHBDF1 Zornitza Stark Marked gene: RHBDF1 as ready
Mendeliome v0.6799 RHBDF1 Zornitza Stark gene: RHBDF1 was added
gene: RHBDF1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RHBDF1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RHBDF1 were set to 32870709
Phenotypes for gene: RHBDF1 were set to Dilated cardiomyopathy
Review for gene: RHBDF1 was set to AMBER
Added comment: Three families reported with homozygous variants in this gene and onset of DCM in infancy/childhood. Two of the families had the same truncating variant, indicative of founder effect, and one family had a homozygous missense variant.
Sources: Literature
Mendeliome v0.6798 MYLK3 Zornitza Stark Marked gene: MYLK3 as ready
Mendeliome v0.6797 MYLK3 Zornitza Stark gene: MYLK3 was added
gene: MYLK3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MYLK3 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: MYLK3 were set to 29235529; 31244672; 32213617; 32870709
Phenotypes for gene: MYLK3 were set to Dilated cardiomyopathy
Review for gene: MYLK3 was set to AMBER
Added comment: Two families reported with mono-allelic variants (one extension, one frameshift), and three consanguineous families reported with bi-allelic variants (two hmz frameshift, one hmz missense). Supportive mouse models.
Sources: Literature
Mendeliome v0.6796 NRAP Zornitza Stark Marked gene: NRAP as ready
Mendeliome v0.6795 NRAP Zornitza Stark gene: NRAP was added
gene: NRAP was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NRAP was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NRAP were set to 33534821; 30384889; 28611399; 32870709
Phenotypes for gene: NRAP were set to Dilated cardiomyopathy
Review for gene: NRAP was set to GREEN
Added comment: Twenty unrelated families reported with childhood onset DCM.
Sources: Literature
Mendeliome v0.6794 MPEG1 Zornitza Stark Marked gene: MPEG1 as ready
Mendeliome v0.6793 MPEG1 Zornitza Stark gene: MPEG1 was added
gene: MPEG1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: MPEG1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MPEG1 were set to 33224153; 33692780; 28422754
Phenotypes for gene: MPEG1 were set to Immunodeficiency 77, MIM# 619223
Review for gene: MPEG1 was set to GREEN
Added comment: Immunodeficiency-77 (IMD77) is an immunologic disorder characterized by recurrent and persistent polymicrobial infections with multiple unusual organisms. Skin and pulmonary infections are the most common, consistent with increased susceptibility to epithelial cell infections. The age at onset is highly variable: some patients have recurrent infections from childhood, whereas others present in late adulthood. The limited number of reported patients are all female, suggesting incomplete penetrance or a possible sex-influenced trait. Patient cells, mainly macrophages, show impaired killing of intracellular bacteria and organisms, including nontubercular mycobacteria, although there is also impaired killing of other organisms, such as Pseudomonas, Candida, and Aspergillus.

Four individuals reported, functional data, including animal model.
Sources: Expert list
Mendeliome v0.6791 INPP5E Zornitza Stark Marked gene: INPP5E as ready
Mendeliome v0.6791 INPP5E Zornitza Stark Phenotypes for gene: INPP5E were changed from to Joubert syndrome 1, MIM# 213300; MONDO:0008944; Mental retardation, truncal obesity, retinal dystrophy, and micropenis, MIM# 610156; MONDO:0012423
Mendeliome v0.6788 INPP5E Zornitza Stark reviewed gene: INPP5E: Rating: GREEN; Mode of pathogenicity: None; Publications: 19668216, 32139166, 29230161, 29052317, 27998989, 27401686; Phenotypes: Joubert syndrome 1, MIM# 213300, MONDO:0008944, Mental retardation, truncal obesity, retinal dystrophy, and micropenis, MIM# 610156, MONDO:0012423; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6788 CSPP1 Zornitza Stark Marked gene: CSPP1 as ready
Mendeliome v0.6785 CSPP1 Zornitza Stark changed review comment from: More than 20 unrelated families reported.; to: More than 20 unrelated families reported. Classically associated with Joubert syndrome; however, note 4 individuals reported with features consistent with Jeune asphyxiating thoracic dystrophy, including short ribs, bell-shaped chest, and pulmonary hypoplasia.
Mendeliome v0.6785 CEP41 Zornitza Stark Marked gene: CEP41 as ready
Mendeliome v0.6782 SCA1 Bryony Thompson Marked STR: SCA1 as ready
Mendeliome v0.6781 SCA1 Bryony Thompson STR: SCA1 was added
STR: SCA1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for STR: SCA1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: SCA1 were set to 29325606; 20301363
Phenotypes for STR: SCA1 were set to Spinocerebellar ataxia 1 MIM#164400
STR: SCA1 was marked as clinically relevant
Added comment: NM_000332.3:c.589_591CAG[X]
Toxic protein aggregation is mechanism of disease
Normal: ≤35 CAG repeats or 36-44 CAG repeats with CAT interruptions
Mutable normal (intermediate): 36-38 CAG repeats without CAT interruptions
Full-penetrance: ≥39 CAG repeats without CAT interruptions or ≥46 uninterrupted CAG repeats with CAT interruptions and additional CAGs
Sources: Expert list
Mendeliome v0.6779 RANBP2 Bryony Thompson Marked gene: RANBP2 as ready
Mendeliome v0.6779 NCSTN Bryony Thompson Marked gene: NCSTN as ready
Mendeliome v0.6779 PSENEN Bryony Thompson Marked gene: PSENEN as ready
Mendeliome v0.6776 ALDH1L2 Zornitza Stark Marked gene: ALDH1L2 as ready
Mendeliome v0.6775 ESCO2 Zornitza Stark Marked gene: ESCO2 as ready
Mendeliome v0.6775 ESCO2 Zornitza Stark Phenotypes for gene: ESCO2 were changed from to Juberg-Hayward syndrome, MIM# 216100; Roberts-SC phocomelia syndrome, MIM#268300
Mendeliome v0.6772 ESCO2 Zornitza Stark reviewed gene: ESCO2: Rating: GREEN; Mode of pathogenicity: None; Publications: 32977150; Phenotypes: Juberg-Hayward syndrome, MIM# 216100, Roberts-SC phocomelia syndrome, MIM#268300; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6769 ALDH1L2 Naomi Baker gene: ALDH1L2 was added
gene: ALDH1L2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ALDH1L2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ALDH1L2 were set to PMID: 31341639; 33168096
Phenotypes for gene: ALDH1L2 were set to pruritic ichthyosis, severe diffuse hypomyelination seen on MRI, and abnormal lipid peaks
Review for gene: ALDH1L2 was set to RED
Added comment: Individual reported with bialleleic ALDH1L2 variants (non-canonical splice and a frameshift mutation), who also has a de novo hemizygous RPS6KA3 frameshift mutation. Authors state that not all features of the individual could be explained by the RPS6KA3 variant, and that consideration of Coffin-Lowry sysndrome was only made after identification of the RPS6KA3 variant. Therefore individual has there is a blended phenotype of Coffin–Lowry syndrome and Sjögren–Larsson syndrome. From functional studies authors propose that the ALDH1L2 loss induces mitochondrial dysfunction due to reduced NADPH and increased oxidative stress (PMID: 31341639). Knockout mouse model was viable and did not show an apparent phenotype, however metabolomic analysis showed vastly changed metabotypes in the liver and plasma in these mice suggesting channeling of fatty acids away from β-oxidation. Authors therefore postulate that the role of ALDH1L2 in the lipid metabolism explains why the loss of this enzyme is associated with neuro-cutaneous disease.
Sources: Literature
Mendeliome v0.6769 FAM57B Zornitza Stark Marked gene: FAM57B as ready
Mendeliome v0.6768 FAM57B Zornitza Stark gene: FAM57B was added
gene: FAM57B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FAM57B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FAM57B were set to 33077892
Phenotypes for gene: FAM57B were set to Cone–rod dystrophy; Maculopathy
Review for gene: FAM57B was set to GREEN
Added comment: 4 patients with cone-rod dystrophy or maculopathy from 3 families, with LOF pathogenic variants in TLCD3B (ceramide synthase gene). Ceramide is a proapoptotic lipid as high levels of ceramides can lead to apoptosis of neuronal cells, including photoreceptors. Variants segregated with disease. TLCD3B showed high expression in the adult retina with higher expression in the macular than in the peripheral region. Tlcd3bKO/KO mice exhibited a significant reduction of the cone photoreceptor light responses, thinning of the outer nuclear layer, and loss of cone photoreceptors across the retina.
Sources: Literature
Mendeliome v0.6767 LRRC8A Bryony Thompson Marked gene: LRRC8A as ready
Mendeliome v0.6766 SIAE Bryony Thompson Marked gene: SIAE as ready
Mendeliome v0.6765 TAOK2 Bryony Thompson Marked gene: TAOK2 as ready
Mendeliome v0.6763 TAOK2 Bryony Thompson gene: TAOK2 was added
gene: TAOK2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TAOK2 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: TAOK2 were set to 28385331; 29467497
Phenotypes for gene: TAOK2 were set to Generalized verrucosis; abnormal T cell activation
Review for gene: TAOK2 was set to AMBER
Added comment: PMID: 28385331 - A single consanguineous family with generalized verrucosis and abnormal T cell activation, and a homozygous missense (p.R700C), with some assays on patient fibroblasts.
PMID: 29467497 - One of the several genes in the 16p11.2 microdeletion region associated with autism. Taok2 heterozygous and knockout mice had gene dosage-dependent impairments in cognition, anxiety, social interaction, brain size, and neural connectivity. 3 de novo variants and 3 predicted loss of function variants identified in 6 unrelated autism cases. 2 of the de novo variants have supporting functional assays, but 1 of them co-occurs in an individual with a CHD8 frameshift. 1 of the predicted loss of function variants was also identified in the unaffected father and sibling.
Sources: Literature
Mendeliome v0.6762 CC2D2A Zornitza Stark Marked gene: CC2D2A as ready
Mendeliome v0.6759 POLR3GL Zornitza Stark Phenotypes for gene: POLR3GL were changed from endosteal hyperostosis; oligodontia; growth retardation; facial dysmorphisms; lipodystrophy to Short stature, oligodontia, dysmorphic facies, and motor delay (SOFM), MIM#619234; endosteal hyperostosis; oligodontia; growth retardation; facial dysmorphisms; lipodystrophy
Mendeliome v0.6758 INVS Zornitza Stark Marked gene: INVS as ready
Mendeliome v0.6755 ZCCHC8 Bryony Thompson Marked gene: ZCCHC8 as ready
Mendeliome v0.6754 ZCCHC8 Bryony Thompson gene: ZCCHC8 was added
gene: ZCCHC8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZCCHC8 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ZCCHC8 were set to 31488579
Phenotypes for gene: ZCCHC8 were set to Pulmonary fibrosis
Review for gene: ZCCHC8 was set to AMBER
Added comment: A missense variant (P186L) segregates over 3 generations in a single family, and supporting in vitro assays and mouse model.
Sources: Literature
Mendeliome v0.6753 KDM5B Zornitza Stark reviewed gene: KDM5B: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Mental retardation, autosomal recessive 65 MIM#618109, Intellectual disability and/or autism, autosomal dominant; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.6753 KDM5B Zornitza Stark Marked gene: KDM5B as ready
Mendeliome v0.6753 KDM5B Zornitza Stark Phenotypes for gene: KDM5B were changed from to Mental retardation, autosomal recessive 65 MIM#618109; Intellectual disability and/or autism, autosomal dominant
Mendeliome v0.6750 TPP2 Zornitza Stark Marked gene: TPP2 as ready
Mendeliome v0.6747 DOCK7 Zornitza Stark Marked gene: DOCK7 as ready
Mendeliome v0.6742 UBAP1 Zornitza Stark changed review comment from: PMID 31696996: Five unrelated families reported with childhood-onset HSP. A recurrent two‐base pair deletion (c.426_427delGA, p.K143Sfs*15) in the UBAP1 gene was found in four families, and a similar variant (c.475_476delTT, p.F159*) was detected in a fifth family. The variant was confirmed to be de novo in two families and inherited from an affected parent in two other families. RNA studies performed in lymphocytes from one patient with the de novo c.426_427delGA variant demonstrated escape of nonsense‐mediated decay of the UBAP1 mutant transcript, suggesting the generation of a truncated protein. Both variants identified are predicted to result in truncated proteins losing the capacity of binding to ubiquitinated proteins, hence appearing to exhibit a dominant‐negative effect on the normal function of the endosome‐specific endosomal sorting complexes required for the transport‐I complex.; to: PMID 31696996: Five unrelated families reported with childhood-onset HSP. A recurrent two‐base pair deletion (c.426_427delGA, p.K143Sfs*15) in the UBAP1 gene was found in four families, and a similar variant (c.475_476delTT, p.F159*) was detected in a fifth family. The variant was confirmed to be de novo in two families and inherited from an affected parent in two other families. RNA studies performed in lymphocytes from one patient with the de novo c.426_427delGA variant demonstrated escape of nonsense‐mediated decay of the UBAP1 mutant transcript, suggesting the generation of a truncated protein. Both variants identified are predicted to result in truncated proteins losing the capacity of binding to ubiquitinated proteins, hence appearing to exhibit a dominant‐negative effect on the normal function of the endosome‐specific endosomal sorting complexes required for the transport‐I complex.

PMID 32934340: additional 7 families. Median age of onset 10yrs.
Mendeliome v0.6742 RTN2 Zornitza Stark Marked gene: RTN2 as ready
Mendeliome v0.6742 RTN2 Zornitza Stark Phenotypes for gene: RTN2 were changed from to Spastic paraplegia 12, autosomal dominant, 604805; MONDO:0011489
Mendeliome v0.6739 RTN2 Zornitza Stark reviewed gene: RTN2: Rating: GREEN; Mode of pathogenicity: None; Publications: 22232211, 27165006; Phenotypes: Spastic paraplegia 12, autosomal dominant, 604805, MONDO:0011489; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6739 KDM5B Elena Savva reviewed gene: KDM5B: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 29276005, 30217758, 30409806; Phenotypes: Mental retardation, autosomal recessive 65 MIM#618109, autosomal dominant autism spectrum disorder or intellectual disability; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.6739 NIPA1 Zornitza Stark Marked gene: NIPA1 as ready
Mendeliome v0.6739 NIPA1 Zornitza Stark Phenotypes for gene: NIPA1 were changed from to Spastic paraplegia 6, autosomal dominant, MIM# 600363; MONDO:0010878
Mendeliome v0.6736 NIPA1 Zornitza Stark reviewed gene: NIPA1: Rating: GREEN; Mode of pathogenicity: None; Publications: 14508710, 15711826, 32500351, 25133278; Phenotypes: Spastic paraplegia 6, autosomal dominant, MIM# 600363, MONDO:0010878; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6736 DDHD1 Zornitza Stark Marked gene: DDHD1 as ready
Mendeliome v0.6736 DDHD1 Zornitza Stark Phenotypes for gene: DDHD1 were changed from to Spastic paraplegia 28, autosomal recessive, 609340; MONDO:0012256
Mendeliome v0.6733 DDHD1 Zornitza Stark reviewed gene: DDHD1: Rating: GREEN; Mode of pathogenicity: None; Publications: 23176821; Phenotypes: Spastic paraplegia 28, autosomal recessive, 609340, MONDO:0012256; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6732 CPT1C Zornitza Stark reviewed gene: CPT1C: Rating: GREEN; Mode of pathogenicity: None; Publications: 30564185; Phenotypes: Spastic paraplegia 73, autosomal dominant MIM#616282; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6732 CPT1C Zornitza Stark Phenotypes for gene: CPT1C were changed from Spastic paraplegia 73, autosomal dominant MIM#616282 to Spastic paraplegia 73, autosomal dominant MIM#616282; MONDO:0014568
Mendeliome v0.6730 CAPN1 Zornitza Stark Phenotypes for gene: CAPN1 were changed from Spastic paraplegia 76, autosomal recessive, MIM#616907 to Spastic paraplegia 76, autosomal recessive, MIM#616907; MONDO:0014827
Mendeliome v0.6729 AP5Z1 Zornitza Stark Marked gene: AP5Z1 as ready
Mendeliome v0.6729 AP5Z1 Zornitza Stark Phenotypes for gene: AP5Z1 were changed from to Spastic paraplegia 48, autosomal recessive, MIM# 613647; MONDO:0013342
Mendeliome v0.6726 AP5Z1 Zornitza Stark reviewed gene: AP5Z1: Rating: GREEN; Mode of pathogenicity: None; Publications: 26085577, 33543803, 27606357; Phenotypes: Spastic paraplegia 48, autosomal recessive, MIM# 613647, MONDO:0013342; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6726 COPB1 Zornitza Stark Marked gene: COPB1 as ready
Mendeliome v0.6725 COPB1 Zornitza Stark gene: COPB1 was added
gene: COPB1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: COPB1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: COPB1 were set to 33632302
Phenotypes for gene: COPB1 were set to Severe intellectual disability; variable microcephaly; cataracts
Review for gene: COPB1 was set to AMBER
Added comment: Two unrelated families, some supportive functional data.
Sources: Literature
Mendeliome v0.6723 SLC1A4 Zornitza Stark Marked gene: SLC1A4 as ready
Mendeliome v0.6720 TFG Zornitza Stark Marked gene: TFG as ready
Mendeliome v0.6720 TFG Zornitza Stark Phenotypes for gene: TFG were changed from to Hereditary motor and sensory neuropathy, Okinawa type, MIM# 604484; Spastic paraplegia 57, autosomal recessive, MIM# 615658
Mendeliome v0.6718 TFG Zornitza Stark reviewed gene: TFG: Rating: GREEN; Mode of pathogenicity: None; Publications: 30467354, 30157421, 28124177, 27601211, 27492651, 23479643, 25098539, 23553329, 22883144, 31449671, 31111683; Phenotypes: Hereditary motor and sensory neuropathy, Okinawa type, MIM# 604484, Spastic paraplegia 57, autosomal recessive, MIM# 615658; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6718 WDR45B Zornitza Stark Marked gene: WDR45B as ready
Mendeliome v0.6715 REEP2 Zornitza Stark Marked gene: REEP2 as ready
Mendeliome v0.6715 REEP2 Zornitza Stark Phenotypes for gene: REEP2 were changed from to Spastic paraplegia 72, dominant and recessive, MIM# 615625; MONDO:0014282
Mendeliome v0.6712 REEP2 Zornitza Stark reviewed gene: REEP2: Rating: GREEN; Mode of pathogenicity: None; Publications: 33526816, 28491902, 24388663; Phenotypes: Spastic paraplegia 72, dominant and recessive, MIM# 615625, MONDO:0014282; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6712 NT5C2 Zornitza Stark Marked gene: NT5C2 as ready
Mendeliome v0.6712 NT5C2 Zornitza Stark Phenotypes for gene: NT5C2 were changed from to Spastic paraplegia 45, autosomal recessive, MIM# 613162; MONDO:0013165
Mendeliome v0.6709 NT5C2 Zornitza Stark reviewed gene: NT5C2: Rating: GREEN; Mode of pathogenicity: None; Publications: 24482476, 32153630, 29123918, 28884889, 28327087; Phenotypes: Spastic paraplegia 45, autosomal recessive, MIM# 613162, MONDO:0013165; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6709 HACE1 Zornitza Stark Marked gene: HACE1 as ready
Mendeliome v0.6709 HACE1 Zornitza Stark Phenotypes for gene: HACE1 were changed from to Spastic paraplegia and psychomotor retardation with or without seizures, 616756; MONDO:0014764
Mendeliome v0.6706 HACE1 Zornitza Stark reviewed gene: HACE1: Rating: GREEN; Mode of pathogenicity: None; Publications: 26424145, 26437029, 31321300; Phenotypes: Spastic paraplegia and psychomotor retardation with or without seizures, 616756, MONDO:0014764; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6706 NKX6-2 Zornitza Stark Marked gene: NKX6-2 as ready
Mendeliome v0.6703 ARPC1B Zornitza Stark Marked gene: ARPC1B as ready
Mendeliome v0.6703 ARPC1B Zornitza Stark Gene: arpc1b has been classified as Green List (High Evidence).
Mendeliome v0.6703 ARPC1B Zornitza Stark Phenotypes for gene: ARPC1B were changed from to Platelet abnormalities with eosinophilia and immune-mediated inflammatory disease 617718
Mendeliome v0.6702 ARPC1B Zornitza Stark Publications for gene: ARPC1B were set to
Mendeliome v0.6701 ARPC1B Zornitza Stark Mode of inheritance for gene: ARPC1B was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6700 ARPC1B Zornitza Stark reviewed gene: ARPC1B: Rating: GREEN; Mode of pathogenicity: None; Publications: 28368018, 33679784; Phenotypes: Platelet abnormalities with eosinophilia and immune-mediated inflammatory disease 617718; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6699 KIDINS220 Zornitza Stark edited their review of gene: KIDINS220: Added comment: Note additional family with severe prenatal phenotype and bi-allelic variants reported in PMID 32909676, so total of 3 unrelated families for bi-allelic fetal phenotype.; Changed publications: 27005418, 32909676
Mendeliome v0.6699 KDM5C Zornitza Stark changed review comment from: Progressive lower limb spasticity is a feature of this ID syndrome. More than 5 unrelated families reported.; to: Intellectual disability, progressive lower limb spasticity, epilepsy and a number of other more variable features. Affected females reported PMID 32279304.
Mendeliome v0.6699 KDM5C Zornitza Stark Marked gene: KDM5C as ready
Mendeliome v0.6699 KDM5C Zornitza Stark Phenotypes for gene: KDM5C were changed from to Mental retardation, X-linked, syndromic, Claes-Jensen type, MIM# 300534; MONDO:0010355
Mendeliome v0.6696 KDM5C Zornitza Stark reviewed gene: KDM5C: Rating: GREEN; Mode of pathogenicity: None; Publications: 15586325, 32279304; Phenotypes: Mental retardation, X-linked, syndromic, Claes-Jensen type, MIM# 300534, MONDO:0010355; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.6696 ENTPD1 Zornitza Stark Marked gene: ENTPD1 as ready
Mendeliome v0.6696 ENTPD1 Zornitza Stark Phenotypes for gene: ENTPD1 were changed from to Spastic paraplegia 64, autosomal recessive MIM#615683
Mendeliome v0.6693 ENTPD1 Zornitza Stark reviewed gene: ENTPD1: Rating: GREEN; Mode of pathogenicity: None; Publications: 24482476, 30652007; Phenotypes: Spastic paraplegia 64, autosomal recessive MIM#615683; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6693 C12orf65 Zornitza Stark Marked gene: C12orf65 as ready
Mendeliome v0.6693 C12orf65 Zornitza Stark Phenotypes for gene: C12orf65 were changed from to Spastic paraplegia 55, autosomal recessive, MIM#615035; Combined oxidative phosphorylation deficiency 7, MIM# 613559
Mendeliome v0.6690 C12orf65 Zornitza Stark reviewed gene: C12orf65: Rating: GREEN; Mode of pathogenicity: None; Publications: 23188110, 24080142, 24198383, 20598281, 32808965, 32478789, 28804760; Phenotypes: Spastic paraplegia 55, autosomal recessive, MIM#615035, Combined oxidative phosphorylation deficiency 7, MIM# 613559; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6690 C19orf12 Zornitza Stark Marked gene: C19orf12 as ready
Mendeliome v0.6690 C19orf12 Zornitza Stark Phenotypes for gene: C19orf12 were changed from to Neurodegeneration with brain iron accumulation 4, MIM# 614298; Spastic paraplegia 43, autosomal recessive, MIM# 615043
Mendeliome v0.6687 C19orf12 Zornitza Stark reviewed gene: C19orf12: Rating: GREEN; Mode of pathogenicity: None; Publications: 33688131, 21981780, 22508347, 23269600, 31804703, 30088953, 20039086; Phenotypes: Neurodegeneration with brain iron accumulation 4, MIM# 614298, Spastic paraplegia 43, autosomal recessive, MIM# 615043; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6687 CYP2U1 Zornitza Stark Marked gene: CYP2U1 as ready
Mendeliome v0.6687 CYP2U1 Zornitza Stark Phenotypes for gene: CYP2U1 were changed from to Spastic paraplegia 56, autosomal recessive, MIM#615030
Mendeliome v0.6684 CYP2U1 Zornitza Stark edited their review of gene: CYP2U1: Added comment: SPG56 is an autosomal recessive neurodegenerative disorder characterized by early-onset progressive lower-limb spasticity resulting in walking difficulties. Upper limbs are often also affected, and some patients may have a subclinical axonal neuropathy. Onset is typically in the first decade. More than 5 unrelated families reported.; Changed rating: GREEN; Changed publications: 23176821, 32006740, 29034544
Mendeliome v0.6684 IFRD1 Zornitza Stark Marked gene: IFRD1 as ready
Mendeliome v0.6684 IFRD1 Zornitza Stark gene: IFRD1 was added
gene: IFRD1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: IFRD1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: IFRD1 were set to 29362493
Phenotypes for gene: IFRD1 were set to Hereditary spastic paraplegia; peripheral neuropathy; ataxia
Review for gene: IFRD1 was set to RED
Added comment: A variant segregated with slowly progressing gait ataxia, pyramidal tract signs and peripheral neuropathy in three siblings from a single Chinese family. No functional analyses of the variant has been conducted. The variant (c.514 A>G, p.I172V) is too common (0.3%) for a dominant condition in the African population in gnomAD.
Sources: Expert Review
Mendeliome v0.6684 IFRD1 Zornitza Stark gene: IFRD1 was added
gene: IFRD1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: IFRD1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: IFRD1 were set to 29362493
Phenotypes for gene: IFRD1 were set to Hereditary spastic paraplegia; peripheral neuropathy; ataxia
Review for gene: IFRD1 was set to RED
Added comment: A variant segregated with slowly progressing gait ataxia, pyramidal tract signs and peripheral neuropathy in three siblings from a single Chinese family. No functional analyses of the variant has been conducted. The variant (c.514 A>G, p.I172V) is too common (0.3%) for a dominant condition in the African population in gnomAD.
Sources: Expert Review
Mendeliome v0.6683 KLC4 Zornitza Stark Marked gene: KLC4 as ready
Mendeliome v0.6683 KLC4 Zornitza Stark gene: KLC4 was added
gene: KLC4 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: KLC4 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: KLC4 were set to 26423925
Phenotypes for gene: KLC4 were set to Complicated hereditary spastic paraplegia
Review for gene: KLC4 was set to RED
Added comment: Single family reported.
Sources: Expert Review
Mendeliome v0.6682 AP4M1 Zornitza Stark Marked gene: AP4M1 as ready
Mendeliome v0.6682 AP4M1 Zornitza Stark Phenotypes for gene: AP4M1 were changed from to Spastic paraplegia 50, autosomal recessive, MIM# 612936
Mendeliome v0.6679 AP4M1 Zornitza Stark reviewed gene: AP4M1: Rating: GREEN; Mode of pathogenicity: None; Publications: 19559397, 21937992, 21937992, 32979048, 31915823, 29096665, 28464862, 25496299; Phenotypes: Spastic paraplegia 50, autosomal recessive, MIM# 612936; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6679 ADAMTS13 Zornitza Stark Marked gene: ADAMTS13 as ready
Mendeliome v0.6679 ADAMTS13 Zornitza Stark Phenotypes for gene: ADAMTS13 were changed from to Thrombotic thrombocytopenic purpura, hereditary, MIM# 274150
Mendeliome v0.6676 ADAMTS13 Zornitza Stark reviewed gene: ADAMTS13: Rating: GREEN; Mode of pathogenicity: None; Publications: 11586351, 30312976; Phenotypes: Thrombotic thrombocytopenic purpura, hereditary, MIM# 274150; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6676 AP4S1 Zornitza Stark Marked gene: AP4S1 as ready
Mendeliome v0.6676 AP4S1 Zornitza Stark Phenotypes for gene: AP4S1 were changed from to Spastic paraplegia 52, autosomal recessive, MIM# 614067
Mendeliome v0.6673 AP4S1 Zornitza Stark reviewed gene: AP4S1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21620353, 25552650, 32979048, 32216065, 31915823, 30283821, 27444738; Phenotypes: Spastic paraplegia 52, autosomal recessive, MIM# 614067; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6673 AIMP1 Zornitza Stark Marked gene: AIMP1 as ready
Mendeliome v0.6669 DSG3 Zornitza Stark Phenotypes for gene: DSG3 were changed from Mucosal blistering to Blistering, acantholytic, of oral and laryngeal mucosa, MIM# 619226
Mendeliome v0.6668 DSG3 Zornitza Stark edited their review of gene: DSG3: Changed phenotypes: Blistering, acantholytic, of oral and laryngeal mucosa, MIM# 619226
Mendeliome v0.6668 WBP11 Zornitza Stark Phenotypes for gene: WBP11 were changed from malformation syndrome affecting the cardiac, skeletal, gastrointestinal and renal systems to Vertebral, cardiac, tracheoesophageal, renal, and limb defects, MIM# 619227; malformation syndrome affecting the cardiac, skeletal, gastrointestinal and renal systems
Mendeliome v0.6667 WBP11 Zornitza Stark reviewed gene: WBP11: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Vertebral, cardiac, tracheoesophageal, renal, and limb defects, MIM# 619227; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6667 CC2D1A Zornitza Stark Marked gene: CC2D1A as ready
Mendeliome v0.6667 CC2D1A Zornitza Stark Phenotypes for gene: CC2D1A were changed from to Autosomal recessive mental retardation, (MIM#608443)
Mendeliome v0.6664 CC2D1A Zornitza Stark reviewed gene: CC2D1A: Rating: GREEN; Mode of pathogenicity: None; Publications: 25066123; Phenotypes: Autosomal recessive mental retardation, (MIM#608443); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6664 ZAP70 Zornitza Stark Marked gene: ZAP70 as ready
Mendeliome v0.6660 GDF5 Michelle Torres reviewed gene: GDF5: Rating: RED; Mode of pathogenicity: None; Publications: 8589725, 33333243; Phenotypes: ? Hunter-Thompson type acromesomelic dysplasia (MIM#201250) AR; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6660 CST3 Zornitza Stark Marked gene: CST3 as ready
Mendeliome v0.6656 NR3C1 Zornitza Stark Marked gene: NR3C1 as ready
Mendeliome v0.6652 YY1AP1 Zornitza Stark commented on gene: YY1AP1: Grange syndrome: multiple arterial stenoses, severe early onset hypertension, fibromuscular dysplasia, variable penetrance of brachydactyly, syndactyly, bone fragility, and learning disabilities. Missense variant reported PMID: 31633303 with moyamoya like phenotype in adult case; fibroblasts suggest that the p.Pro360Leu variant decreases the stability of the YY1AP1 protein but most LOF. PMID: 30556293 non coding variants reported (intronic variants leading to aberrant splicing)
Mendeliome v0.6652 NOS3 Zornitza Stark Marked gene: NOS3 as ready
Mendeliome v0.6649 CDT1 Zornitza Stark Marked gene: CDT1 as ready
Mendeliome v0.6646 CDK5RAP2 Zornitza Stark Marked gene: CDK5RAP2 as ready
Mendeliome v0.6646 CDK5RAP2 Zornitza Stark Phenotypes for gene: CDK5RAP2 were changed from to Microcephaly 3, primary, autosomal recessive, MIM# 604804; MONDO:0011488
Mendeliome v0.6643 CDK5RAP2 Zornitza Stark reviewed gene: CDK5RAP2: Rating: GREEN; Mode of pathogenicity: None; Publications: 15793586, 22887808, 23995685, 23726037, 27761245, 20460369, 32677750, 32015000; Phenotypes: Microcephaly 3, primary, autosomal recessive, MIM# 604804, MONDO:0011488; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6643 UGT2B17 Zornitza Stark Marked gene: UGT2B17 as ready
Mendeliome v0.6642 PLD1 Zornitza Stark changed review comment from: Cardiac valvular defect, developmental, MIM# 212093; neonatal cardiomyopathy; to: PMID 33645542: 31 individuals from 20 families reported, presenting predominantly with congenital cardiac valve defects and some with neonatal cardiomyopathy. p.I668F is a founder variant among Ashkenazi Jews (allele frequency of ~2%).
Mendeliome v0.6642 PLD1 Zornitza Stark Phenotypes for gene: PLD1 were changed from Cardiac valvular defect, developmental, MIM# 212093 to Cardiac valvular defect, developmental, MIM# 212093; neonatal cardiomyopathy
Mendeliome v0.6639 DONSON Zornitza Stark Marked gene: DONSON as ready
Mendeliome v0.6636 SQOR Zornitza Stark Marked gene: SQOR as ready
Mendeliome v0.6633 PGK1 Zornitza Stark Marked gene: PGK1 as ready
Mendeliome v0.6630 PGM1 Zornitza Stark Marked gene: PGM1 as ready
Mendeliome v0.6626 PHKA1 Zornitza Stark Marked gene: PHKA1 as ready
Mendeliome v0.6623 PHKB Zornitza Stark Marked gene: PHKB as ready
Mendeliome v0.6620 PHKG2 Zornitza Stark Marked gene: PHKG2 as ready
Mendeliome v0.6617 PYGL Zornitza Stark Marked gene: PYGL as ready
Mendeliome v0.6614 NHLRC1 Zornitza Stark Marked gene: NHLRC1 as ready
Mendeliome v0.6611 LDHA Zornitza Stark Marked gene: LDHA as ready
Mendeliome v0.6608 SIAH1 Zornitza Stark Marked gene: SIAH1 as ready
Mendeliome v0.6607 RPL18 Zornitza Stark Marked gene: RPL18 as ready
Mendeliome v0.6605 RPS15A Zornitza Stark Marked gene: RPS15A as ready
Mendeliome v0.6604 RPL35 Zornitza Stark Marked gene: RPL35 as ready
Mendeliome v0.6603 RPS7 Zornitza Stark Marked gene: RPS7 as ready
Mendeliome v0.6600 RPS26 Zornitza Stark Marked gene: RPS26 as ready
Mendeliome v0.6597 RPS24 Zornitza Stark Marked gene: RPS24 as ready
Mendeliome v0.6593 RPS19 Zornitza Stark Marked gene: RPS19 as ready
Mendeliome v0.6589 SIAH1 Arina Puzriakova gene: SIAH1 was added
gene: SIAH1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SIAH1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: SIAH1 were set to 32430360
Phenotypes for gene: SIAH1 were set to Developmental delay; Infantile hypotonia; Dysmorphic features; Laryngomalacia
Review for gene: SIAH1 was set to GREEN
Added comment: - PMID: 32430360 (2021) - Five unrelated individuals with shared features of developmental delay, infantile hypotonia, dysmorphic features and laryngomalacia. All had speech delay and where cognitive assessment was age appropriate individuals exhibited learning difficulties. Trio WES revealed distinct de novo variants in SIAH1. In vitro assays demonstrated that SIAH1 mutants induce loss of Wnt stimulatory activity.
Sources: Literature
Mendeliome v0.6589 SYCP2L Zornitza Stark Marked gene: SYCP2L as ready
Mendeliome v0.6588 RPL5 Zornitza Stark Marked gene: RPL5 as ready
Mendeliome v0.6585 RPL35A Zornitza Stark Marked gene: RPL35A as ready
Mendeliome v0.6582 SYCP2L Arina Puzriakova gene: SYCP2L was added
gene: SYCP2L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SYCP2L was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SYCP2L were set to 32303603
Phenotypes for gene: SYCP2L were set to Premature ovarian insufficiency
Review for gene: SYCP2L was set to AMBER
Added comment: - PMID: 32303603 (2021) - Two unrelated individuals with premature ovarian insufficiency and homozygous variants (c.150_151del (p.Ser52Profs*7), c.999A>G (p.Ile333Met)) in SYCP2L.
In vitro assays revealed that mutant SYCP2L proteins induced mislocalisation and reduced expression. Sycp2l knockout mice exhibit accelerated reproductive ageing.
Sources: Literature
Mendeliome v0.6582 RPL27 Zornitza Stark Marked gene: RPL27 as ready
Mendeliome v0.6578 RPL11 Zornitza Stark Marked gene: RPL11 as ready
Mendeliome v0.6574 TTC7A Zornitza Stark Phenotypes for gene: TTC7A were changed from Gastrointestinal defects and immunodeficiency syndrome, 243150 to Gastrointestinal defects and immunodeficiency syndrome, 243150; Very Early Onset Inflammatory Bowel Disease (VEOIBD)
Mendeliome v0.6572 TTC7A Zornitza Stark reviewed gene: TTC7A: Rating: GREEN; Mode of pathogenicity: None; Publications: 24417819, 24292712, 23830146, 29174094, 31743734; Phenotypes: Very Early Onset Inflammatory Bowel Disease (VEOIBD); Mode of inheritance: None
Mendeliome v0.6572 CLCN4 Zornitza Stark Marked gene: CLCN4 as ready
Mendeliome v0.6572 CLCN4 Zornitza Stark Phenotypes for gene: CLCN4 were changed from to Raynaud-Claes syndrome, MIM#300114; intellectual disability; epilepsy; autistic features; mood disorders; cerebral white matter changes; progressive appendicular spasticity
Mendeliome v0.6569 CLCN4 Zornitza Stark reviewed gene: CLCN4: Rating: GREEN; Mode of pathogenicity: None; Publications: 27550844; Phenotypes: Raynaud-Claes syndrome, MIM#300114, intellectual disability, epilepsy, autistic features, mood disorders, cerebral white matter changes, progressive appendicular spasticity; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.6567 EN1 Zornitza Stark changed review comment from: Three unrelated families reported (though two shown to be related by descent) with predominantly a skeletal phenotype comprising mesomelic shortening and deformation of the lower limbs due to severe hypoplasia of the tibia and fibula. This was accompanied by abnormalities of the digits of the hands and feet, with cutaneous and osseous syndactyly as well as dysplastic, missing, and/or volar nails. In addition, genitourinary anomalies were observed in some. Homozygous deletions identified in all, with the minimal deleted region being a 27-kb interval (chr2: 118,561,492-118,589,320) located approximately 300 kb upstream of the EN1 gene. Mouse model recapitulated the phenotype.
Sources: Literature; to: Three unrelated families reported (though two shown to be related by descent) with predominantly a skeletal phenotype comprising mesomelic shortening and deformation of the lower limbs due to severe hypoplasia of the tibia and fibula. This was accompanied by abnormalities of the digits of the hands and feet, with cutaneous and osseous syndactyly as well as dysplastic, missing, and/or volar nails. In addition, genitourinary anomalies were observed in some. Homozygous deletions identified in all, with the minimal deleted region being a 27-kb interval (chr2: 118,561,492-118,589,320) located approximately 300 kb upstream of the EN1 gene. Mouse model recapitulated the phenotype.

An additional fourth individual had cerebellar hypoplasia in addition to the skeletal phenotype, and a bi-allelic LoF variant.
Sources: Literature
Mendeliome v0.6567 EN1 Zornitza Stark Marked gene: EN1 as ready
Mendeliome v0.6566 EN1 Zornitza Stark gene: EN1 was added
gene: EN1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EN1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EN1 were set to 33568816
Phenotypes for gene: EN1 were set to ENDOVE syndrome, limb-only type, MIM# 619217
Review for gene: EN1 was set to GREEN
Added comment: Three unrelated families reported (though two shown to be related by descent) with predominantly a skeletal phenotype comprising mesomelic shortening and deformation of the lower limbs due to severe hypoplasia of the tibia and fibula. This was accompanied by abnormalities of the digits of the hands and feet, with cutaneous and osseous syndactyly as well as dysplastic, missing, and/or volar nails. In addition, genitourinary anomalies were observed in some. Homozygous deletions identified in all, with the minimal deleted region being a 27-kb interval (chr2: 118,561,492-118,589,320) located approximately 300 kb upstream of the EN1 gene. Mouse model recapitulated the phenotype.
Sources: Literature
Mendeliome v0.6565 EEF2 Zornitza Stark Phenotypes for gene: EEF2 were changed from Neurodevelopmental disorder; macrocephaly; hydrocephalus; Spinocerebellar ataxia 26, MIM#609306 to Neurodevelopmental disorder, macrocephaly, hydrocephalus; Spinocerebellar ataxia 26, MIM#609306
Mendeliome v0.6564 EEF2 Zornitza Stark Phenotypes for gene: EEF2 were changed from Neurodevelopmental disorder, hydrocephalus; Spinocerebellar ataxia 26, MIM#609306 to Neurodevelopmental disorder; macrocephaly; hydrocephalus; Spinocerebellar ataxia 26, MIM#609306
Mendeliome v0.6563 EEF2 Zornitza Stark Phenotypes for gene: EEF2 were changed from Spinocerebellar ataxia 26, MIM#609306 to Neurodevelopmental disorder, hydrocephalus; Spinocerebellar ataxia 26, MIM#609306
Mendeliome v0.6562 EEF2 Zornitza Stark Phenotypes for gene: EEF2 were changed from Spinocerebellar ataxia 26 to Spinocerebellar ataxia 26, MIM#609306
Mendeliome v0.6559 MKRN3 Zornitza Stark Marked gene: MKRN3 as ready
Mendeliome v0.6556 ACSL5 Zornitza Stark Marked gene: ACSL5 as ready
Mendeliome v0.6556 ACSL5 Zornitza Stark gene: ACSL5 was added
gene: ACSL5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ACSL5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ACSL5 were set to 33191500
Phenotypes for gene: ACSL5 were set to severe FTT (no OMIM #)
Review for gene: ACSL5 was set to RED
Added comment: 6 individuals of a large consanguineous family presented in the neonatal period with recurrent vomiting and diarrhea, leading to severe FTT. Autozygosity mapping and WES identified homozygous variant (c.1358C>A:p.(Thr453Lys) in ACSL5. Segregated with affected individuals. Functional in vitro analysis of the ACSL5 variant by immunofluorescence, western blotting and enzyme assay suggested that Thr453Lys is a loss‐of‐function mutation without any remaining activity. Affected individuals were treated with total parenteral nutrition or medium‐chain triglyceride‐based formula restricted in long‐chain triglycerides. They responded well and follow up suggests that treatment is only required during early life.
Sources: Literature
Mendeliome v0.6555 GDF5 Zornitza Stark Marked gene: GDF5 as ready
Mendeliome v0.6552 EEF2 Eleanor Williams reviewed gene: EEF2: Rating: GREEN; Mode of pathogenicity: None; Publications: 23001565, 33355653; Phenotypes: Spinocerebellar ataxia 26 MIM#609306; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.6552 KIDINS220 Zornitza Stark Marked gene: KIDINS220 as ready
Mendeliome v0.6552 KIDINS220 Zornitza Stark Phenotypes for gene: KIDINS220 were changed from to Spastic paraplegia, intellectual disability, nystagmus, and obesity, MIM# 617296; cerebral ventriculomegaly; limb contractures
Mendeliome v0.6549 KIDINS220 Zornitza Stark reviewed gene: KIDINS220: Rating: GREEN; Mode of pathogenicity: None; Publications: 27005418; Phenotypes: Spastic paraplegia, intellectual disability, nystagmus, and obesity, MIM# 617296; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6544 COL9A3 Zornitza Stark Marked gene: COL9A3 as ready
Mendeliome v0.6541 DLK1 Zornitza Stark Marked gene: DLK1 as ready
Mendeliome v0.6540 DLK1 Zornitza Stark gene: DLK1 was added
gene: DLK1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: DLK1 was set to MONOALLELIC, autosomal or pseudoautosomal, maternally imprinted (paternal allele expressed)
Publications for gene: DLK1 were set to 28324015; 30462238
Phenotypes for gene: DLK1 were set to central precocious puberty
Review for gene: DLK1 was set to GREEN
Added comment: PMID: 30462238 "three frameshift mutations of DLK1 (p.Gly199Alafs*11, p.Val271Cysfs*14, and p.Pro160Leufs*50) in five women from three families with CPP. Segregation analysis was consistent with the maternal imprinting of DLK1". PMID: 28324015 single large family, only affected females, central precocious puberty all carrying paternally inherited LOF variant (del/dup of 5'UTR and exon 1) absent DLK1 expression in all affected. Unclear if males affected as none reported to date.
Sources: Expert Review
Mendeliome v0.6539 COL9A3 Eleanor Williams reviewed gene: COL9A3: Rating: GREEN; Mode of pathogenicity: None; Publications: 33078831, 15917166; Phenotypes: autosomal recessive non-syndromic hearing impairment; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6539 EIF5A Zornitza Stark Marked gene: EIF5A as ready
Mendeliome v0.6538 EIF5A Zornitza Stark gene: EIF5A was added
gene: EIF5A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EIF5A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: EIF5A were set to 33547280
Phenotypes for gene: EIF5A were set to Intellectual disability; microcephaly; dysmorphism
Review for gene: EIF5A was set to GREEN
Added comment: 7 unrelated individuals reported with de novo variants in this gene and variable combinations of developmental delay, microcephaly, micrognathia and dysmorphism.
Sources: Literature
Mendeliome v0.6537 POLRMT Zornitza Stark Marked gene: POLRMT as ready
Mendeliome v0.6536 POLRMT Zornitza Stark gene: POLRMT was added
gene: POLRMT was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: POLRMT was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: POLRMT were set to 33602924
Phenotypes for gene: POLRMT were set to Mitochondrial disorder; intellectual disability; hypotonia
Review for gene: POLRMT was set to GREEN
Added comment: 8 individuals from 7 families reported. 5 families with bi-allelic variants and 2 with heterozygous variants. Affected individuals presented with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype.
Sources: Literature
Mendeliome v0.6535 PERP Zornitza Stark Phenotypes for gene: PERP were changed from Erythrokeratoderma, no OMIM # yet to Olmsted syndrome 2, MIM# 619208; Erythrokeratodermia variabilis et progressiva 7, MIM# 619209
Mendeliome v0.6531 PERP Zornitza Stark edited their review of gene: PERP: Added comment: Four families reported with heterozygous variants and Olmsted syndrome-2 (OLMS2), which is characterised by mutilating hyperkeratotic skin lesions, primarily on the palms and soles, but also extending onto dorsal surfaces of the hands and feet and distal extremities. The lesions are progressive, becoming thicker with verrucous fissures on the palms and soles over time. In addition, affected individuals exhibit perioral hyperkeratosis, and may have lesions around other orifices as well, such as the nostrils, perineum, and anus. Most patients also have hyperkeratotic nails and light-colored woolly hair.

Two families reported with bi-allelic variants and Erythrokeratodermia variabilis et progressiva-7 (EKVP7), which is characterised by palmoplantar keratoderma that extends to the dorsal surface of the hands and feet (transgrediens), as well as erythematous annular skin lesions. Pruritis, woolly hair, and dystrophic nails may also be present.; Changed rating: GREEN; Changed publications: 31898316, 30321533, 31361044; Changed phenotypes: Olmsted syndrome 2, MIM# 619208, Erythrokeratodermia variabilis et progressiva 7, MIM# 619209; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6531 KARS Zornitza Stark edited their review of gene: KARS: Changed phenotypes: Leukoencephalopathy with or without deafness (LEPID), MIM#619147, Deafness, autosomal recessive 89, MIM# 613916, Congenital deafness and adult-onset progressive leukoencephalopathy (DEAPLE), MIM#619196
Mendeliome v0.6531 KARS Zornitza Stark Phenotypes for gene: KARS were changed from Leukoencephalopathy with or without deafness (LEPID), MIM#619147; Deafness, autosomal recessive 89, MIM# 613916 to Leukoencephalopathy with or without deafness (LEPID), MIM#619147; Deafness, autosomal recessive 89, MIM# 613916; Congenital deafness and adult-onset progressive leukoencephalopathy (DEAPLE), MIM#619196
Mendeliome v0.6530 KARS Zornitza Stark Marked gene: KARS as ready
Mendeliome v0.6530 KARS Zornitza Stark Gene: kars has been classified as Green List (High Evidence).
Mendeliome v0.6530 KARS Zornitza Stark Phenotypes for gene: KARS were changed from to Leukoencephalopathy with or without deafness (LEPID), MIM#619147; Deafness, autosomal recessive 89, MIM# 613916
Mendeliome v0.6529 KARS Zornitza Stark Publications for gene: KARS were set to
Mendeliome v0.6528 KARS Zornitza Stark Mode of inheritance for gene: KARS was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6527 KARS Zornitza Stark reviewed gene: KARS: Rating: GREEN; Mode of pathogenicity: None; Publications: 26741492, 31618474, 28887846, 25330800, 29615062, 30252186, 28496994, 23768514, 14975237; Phenotypes: Leukoencephalopathy with or without deafness (LEPID), MIM#619147, Deafness, autosomal recessive 89, MIM# 613916; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6527 APOO Zornitza Stark Marked gene: APOO as ready
Mendeliome v0.6526 APOO Arina Puzriakova gene: APOO was added
gene: APOO was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: APOO was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: APOO were set to 32439808
Phenotypes for gene: APOO were set to Developmental delay; Lactic acidosis; Muscle weakness; Hypotonia; Repetitive infections; Cognitive impairment; Autistic behaviour
Review for gene: APOO was set to RED
Added comment: - PMID: 32439808 (2021) - Three generation family with c.350T>C variant in APOO, encoding a component of the MICOS complex which plays a role in maintaining inner mitochondrial membrane architecture.
Phenotypes include fatigue and muscle weakness (6/8), learning difficulties and cognitive impairment (4/8), and increased blood lactate (2/8). Four individuals were asymptomatic carriers, including one male (authors indicate variability in female carriers was due to skewed X-inactivation, although skewing studies were inconclusive in some cases). Variability in clinical presentation suggests reduced penetrance or possible contribution of additional factors.
Functional studies showed altered MICOS assembly and abnormalities in mitochondria ultrastructure in patient-derived fibroblasts. Knockdown studies in Drosophila and yeast demonstrated mitochondrial structural and functional deficiencies.
Sources: Literature
Mendeliome v0.6526 ECE1 Zornitza Stark Marked gene: ECE1 as ready
Mendeliome v0.6526 ECE1 Zornitza Stark Phenotypes for gene: ECE1 were changed from to Hirschsprung disease, cardiac defects, and autonomic dysfunction, OMIM # 613870
Mendeliome v0.6522 ECE1 Zornitza Stark reviewed gene: ECE1: Rating: RED; Mode of pathogenicity: None; Publications: 9915973, 9449665, 9449664; Phenotypes: Hirschsprung disease, cardiac defects, and autonomic dysfunction, OMIM # 613870; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6522 AMH Seb Lunke Marked gene: AMH as ready
Mendeliome v0.6519 PAX4 Zornitza Stark Marked gene: PAX4 as ready
Mendeliome v0.6516 PCBD1 Zornitza Stark Marked gene: PCBD1 as ready
Mendeliome v0.6513 SPTAN1 Zornitza Stark Marked gene: SPTAN1 as ready
Mendeliome v0.6513 SPTAN1 Zornitza Stark Phenotypes for gene: SPTAN1 were changed from to Developmental and epileptic encephalopathy 5, MIM# 613477; hereditary motor neuropathy
Mendeliome v0.6510 PSAP Zornitza Stark changed review comment from: Well established gene-disease association. Phenotype expansion with early-onset PD reported.; to: Well established gene-disease association for bi-allelic variants. Early-onset PD reported with mono-allelic variants.
Mendeliome v0.6509 PSAP Zornitza Stark Phenotypes for gene: PSAP were changed from Parkinson disease, AD to Parkinson disease, AD; Combined SAP deficiency 611721; Gaucher disease, atypical, MIM# 610539; Krabbe disease, atypical, MIM# 611722; Metachromatic leukodystrophy due to SAP-b deficiency, MIM# 249900
Mendeliome v0.6508 PSAP Zornitza Stark changed review comment from: Well established gene-disease association. Phenotype expansion reported with early-onset PD reported.; to: Well established gene-disease association. Phenotype expansion with early-onset PD reported.
Mendeliome v0.6508 ACTL9 Zornitza Stark Marked gene: ACTL9 as ready
Mendeliome v0.6507 NLRP3 Zornitza Stark Phenotypes for gene: NLRP3 were changed from to Familial cold inflammatory syndrome 1, MIM#120100; Muckle-Wells syndrome, MIM#191900; CINCA syndrome, MIM#607115; Deafness, autosomal dominant 34, with or without inflammation, MIM#617772; Keratoendothelitis fugax hereditaria, MIM#148200
Mendeliome v0.6505 IRF4 Bryony Thompson Marked gene: IRF4 as ready
Mendeliome v0.6505 IRF4 Bryony Thompson Phenotypes for gene: IRF4 were changed from Whipple's disease; [Skin/hair/eye pigmentation, variation in, 8] 611724 to Whipple's disease; [Skin/hair/eye pigmentation, variation in, 8] 611724; Combined immunodeficiency
Mendeliome v0.6501 PCBD1 Michelle Torres edited their review of gene: PCBD1: Added comment: PMID: 24848070: one consanguineous family with early-onset nonautoimmune diabetes. The individual with early onset is biallelic, and 3 other carriers had later onset diabetes. In addition, 3 other patients with mild neonatal hyperphenylalaninemia with features similar to dominantly inherited HNF1A-diabetes.

PMID: 24204001: 2 out 3 patients with hypomagnesemia and renal magnesium wasting associated to biallelic PCBD1 variants developed MODY; Changed phenotypes: MODY, Hyperphenylalaninemia, BH4-deficient, D 264070
Mendeliome v0.6499 PSAP Seb Lunke Marked gene: PSAP as ready
Mendeliome v0.6499 PSAP Seb Lunke Phenotypes for gene: PSAP were changed from to Parkinson disease, AD
Mendeliome v0.6496 MAST2 Seb Lunke Marked gene: MAST2 as ready
Mendeliome v0.6495 SPEN Chern Lim reviewed gene: SPEN: Rating: GREEN; Mode of pathogenicity: None; Publications: 33596411; Phenotypes: Developmental delay/intellectual disability, autism spectrum disorder, anxiety, aggressive behavior, attention deficit disorder, hypotonia, brain and spine anomalies, congenital heart defects, high/narrow palate, facial dysmorphisms, and obesity/increased BMI; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v0.6494 SPTAN1 Melanie Marty changed review comment from: 13 affected individuals from 4 families reported (nonsense variants) with AD distal hereditary motor neuropathy. Variable penetrance was noted and phenotype severity differs greatly between patients; to: 13 affected individuals from 4 families reported (nonsense variants) with AD distal hereditary motor neuropathy. Variable penetrance was noted and phenotype severity differs greatly between patients. Functional studies show NMD and reduced protein levels in patient cells.
Mendeliome v0.6494 PCBD1 Michelle Torres changed review comment from: PMID: 24848070: one consanguineous family with early-onset nonautoimmune diabetes. The individual with early onset is biallelic, and 3 other carriers had later onset diabetes. In addition, 3 other patients with mild neonatal hyperphenylalaninemia with features similar to dominantly inherited HNF1A-diabetes.

PMID: 24204001: 2 out 3 patients with hypomagnesemia and renal magnesium wasting associated to biallelic PCBD1 variants developed MODY; to: PMID: 24848070: one consanguineous family with early-onset nonautoimmune diabetes. The individual with early onset is biallelic, and 3 other carriers had later onset diabetes. In addition, 3 other patients with mild neonatal hyperphenylalaninemia with features similar to dominantly inherited HNF1A-diabetes.

PMID: 24204001: 2 out 3 patients with hypomagnesemia and renal magnesium wasting associated to biallelic PCBD1 variants developed MODY
Mendeliome v0.6494 EPAS1 Seb Lunke Marked gene: EPAS1 as ready
Mendeliome v0.6490 PCBD1 Michelle Torres changed review comment from: PMID: 24848070: one consanguineous family with early-onset nonautoimmune diabetes with features similar to dominantly inherited HNF1A-diabetes. The individual with early onset is biallelic, and 3 other carriers had later onset diabetes.

PMID: 24204001: 2 out 3 patients with hypomagnesemia and renal magnesium wasting associated to biallelic PCBD1 variants developed MODY; to: PMID: 24848070: one consanguineous family with early-onset nonautoimmune diabetes. The individual with early onset is biallelic, and 3 other carriers had later onset diabetes. In addition, 3 other patients with mild neonatal hyperphenylalaninemia with features similar to dominantly inherited HNF1A-diabetes.

PMID: 24204001: 2 out 3 patients with hypomagnesemia and renal magnesium wasting associated to biallelic PCBD1 variants developed MODY
Mendeliome v0.6487 NLRP3 Alison Yeung Marked gene: NLRP3 as ready
Mendeliome v0.6487 SPTAN1 Melanie Marty reviewed gene: SPTAN1: Rating: GREEN; Mode of pathogenicity: None; Publications: 33578420, 31332438; Phenotypes: hereditary motor neuropathy; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6487 MED27 Alison Yeung Marked gene: MED27 as ready
Mendeliome v0.6486 PSAP Ain Roesley reviewed gene: PSAP: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 32201884; Phenotypes: parkinson's disease; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6486 MED27 Alison Yeung gene: MED27 was added
gene: MED27 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MED27 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MED27 were set to 33443317
Phenotypes for gene: MED27 were set to Intellectual disability; cerebellar hypoplasia; dystonia
Review for gene: MED27 was set to GREEN
gene: MED27 was marked as current diagnostic
Added comment: 16 patients from 11 families with balletic variants
Sources: Literature
Mendeliome v0.6485 ACTL9 Elena Savva gene: ACTL9 was added
gene: ACTL9 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ACTL9 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ACTL9 were set to PMID: 33626338
Phenotypes for gene: ACTL9 were set to Fertilization failure; male infertility
Review for gene: ACTL9 was set to GREEN
Added comment: Three families with homozygous pathogenic variants (two missense, one PTC). Single affected in each family. Functional analysis from patients shows all sperm had morphological defects, protein had reduced binding to ACTL7A
All variants very rare in gnomAD.
Sources: Literature
Mendeliome v0.6485 MAST2 Elena Savva gene: MAST2 was added
gene: MAST2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MAST2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: MAST2 were set to PMID: 33465109
Phenotypes for gene: MAST2 were set to Thrombophilia; venous thrombosis
Review for gene: MAST2 was set to RED
Added comment: Single missense identified in a family with venous thrombosis and thrombophilia. Missense variant reviewed by in silicos only. Shown to affect regulation of TFP1 and SERPINE1 gene expression.

RNAi of MAST2 followed by RNAseq showed expression changes in many downstream targets
Sources: Literature
Mendeliome v0.6485 NLRP3 Elena Savva reviewed gene: NLRP3: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 25038238; Phenotypes: Familial cold inflammatory syndrome 1, MIM#120100, Muckle-Wells syndrome, MIM#191900, CINCA syndrome, MIM#607115, Deafness, autosomal dominant 34, with or without inflammation, MIM#617772, Keratoendothelitis fugax hereditaria, MIM#148200; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.6485 AGPS Zornitza Stark Marked gene: AGPS as ready
Mendeliome v0.6482 BANF1 Zornitza Stark Marked gene: BANF1 as ready
Mendeliome v0.6478 FOXP2 Zornitza Stark Marked gene: FOXP2 as ready
Mendeliome v0.6475 GLI3 Zornitza Stark Marked gene: GLI3 as ready
Mendeliome v0.6472 KIF22 Zornitza Stark Marked gene: KIF22 as ready
Mendeliome v0.6468 ANKZF1 Bryony Thompson Marked gene: ANKZF1 as ready
Mendeliome v0.6465 ANGPT1 Bryony Thompson gene: ANGPT1 was added
gene: ANGPT1 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: ANGPT1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ANGPT1 were set to 28601681; 24852101; 30689269; 10617467; 8980224
Phenotypes for gene: ANGPT1 were set to Hereditary angioedema
Review for gene: ANGPT1 was set to AMBER
Added comment: A missense variant (A119S) identified in 4 affected individuals in a single family. Supportive data in patient cells, functional assays of the variant, and animal models (both overexpression and null) for the gene.
Sources: Other
Mendeliome v0.6464 CLTCL1 Bryony Thompson Marked gene: CLTCL1 as ready
Mendeliome v0.6463 CLTCL1 Bryony Thompson changed review comment from: PMID: 26068709 - Three siblings in a single consanguineous family with congenital insensitivity to pain, inability to feel touch, and cognitive delay and a homozygous rare missense variant (Glu330Lys - no homozygotes in gnomAD v2.1). In vitro functional assays of the variant suggested a deleterious effect on the protein. Additionally cellular assays suggested a role for the gene in neural crest development and in the genesis of pain and touch sensing neurons.

PMID: 29402896 - more in depth functional assays and proteomic analyses suggesting a role for the protein in regulating sensory neuron differentiation in the human peripheral system

Other reports of associations with limited evidence:
PMID: 22511880 - Identified as a candidate gene in an autism study, but the homozygous variant (reported as R125C, but actually R1165C) has 40 homozygotes in gnomAD v2.1. And many of the other compound heterozygous candidate variants in the study are too common in gnomAD v2.1, with many homozygotes present. The missense reported in the pain insensitivity family Glu330Lys was reported with another rare missense variant (Glu1310Lys) in one of the autism cases, but no other phenotype information was provided.

PMID: 31354784 - a single case with infantile spasm reported with compound het missense (Met1316Val & Arg1165Cys), but both are very common in gnomAD v2.1 with 33,000 and 40 homozygotes, respectively.
Sources: Literature; to: PMID: 26068709 - Three siblings in a single consanguineous family with congenital insensitivity to pain, inability to feel touch, and cognitive delay and a homozygous rare missense variant (Glu330Lys - no homozygotes in gnomAD v2.1). In vitro functional assays of the variant suggested a deleterious effect on the protein. Additionally cellular assays suggested a role for the gene in neural crest development and in the genesis of pain and touch sensing neurons.

PMID: 29402896 - more in depth functional assays and proteomic analyses suggesting a role for the protein in regulating sensory neuron differentiation in the human peripheral system.

Other reports of associations with limited evidence:
PMID: 22511880 - Identified as a candidate gene in an autism study, but the homozygous variant (reported as R125C, but actually R1165C) has 40 homozygotes in gnomAD v2.1. And many of the other compound heterozygous candidate variants in the study are too common in gnomAD v2.1, with many homozygotes present. The missense reported in the pain insensitivity family Glu330Lys was reported with another rare missense variant (Glu1310Lys) in one of the autism cases, but no other phenotype information was provided.

PMID: 31354784 - a single case with infantile spasm reported with compound het missense (Met1316Val & Arg1165Cys), but both are very common in gnomAD v2.1 with 33,000 and 40 homozygotes, respectively.
Sources: Literature
Mendeliome v0.6463 CLTCL1 Bryony Thompson gene: CLTCL1 was added
gene: CLTCL1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CLTCL1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CLTCL1 were set to 26068709; 29402896; 22511880; 31354784
Phenotypes for gene: CLTCL1 were set to Congenital insensitivity to pain
Review for gene: CLTCL1 was set to AMBER
Added comment: PMID: 26068709 - Three siblings in a single consanguineous family with congenital insensitivity to pain, inability to feel touch, and cognitive delay and a homozygous rare missense variant (Glu330Lys - no homozygotes in gnomAD v2.1). In vitro functional assays of the variant suggested a deleterious effect on the protein. Additionally cellular assays suggested a role for the gene in neural crest development and in the genesis of pain and touch sensing neurons.

PMID: 29402896 - more in depth functional assays and proteomic analyses suggesting a role for the protein in regulating sensory neuron differentiation in the human peripheral system

Other reports of associations with limited evidence:
PMID: 22511880 - Identified as a candidate gene in an autism study, but the homozygous variant (reported as R125C, but actually R1165C) has 40 homozygotes in gnomAD v2.1. And many of the other compound heterozygous candidate variants in the study are too common in gnomAD v2.1, with many homozygotes present. The missense reported in the pain insensitivity family Glu330Lys was reported with another rare missense variant (Glu1310Lys) in one of the autism cases, but no other phenotype information was provided.

PMID: 31354784 - a single case with infantile spasm reported with compound het missense (Met1316Val & Arg1165Cys), but both are very common in gnomAD v2.1 with 33,000 and 40 homozygotes, respectively.
Sources: Literature
Mendeliome v0.6462 C14orf39 Zornitza Stark Phenotypes for gene: C14orf39 were changed from Azoospermia; Premature ovarian insufficiency to Spermatogenic failure 52, MIM# 619202; Premature ovarian failure 18 619203
Mendeliome v0.6461 C14orf39 Zornitza Stark reviewed gene: C14orf39: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Spermatogenic failure 52, MIM# 619202, Premature ovarian failure 18 619203; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6460 G6PC Zornitza Stark Marked gene: G6PC as ready
Mendeliome v0.6456 NMNAT2 Bryony Thompson Marked gene: NMNAT2 as ready
Mendeliome v0.6456 NMNAT2 Bryony Thompson Marked gene: NMNAT2 as ready
Mendeliome v0.6455 NMNAT2 Bryony Thompson gene: NMNAT2 was added
gene: NMNAT2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NMNAT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NMNAT2 were set to 31132363; 25271157; 20126265
Phenotypes for gene: NMNAT2 were set to polyneuropathy; erythromelalgia
Review for gene: NMNAT2 was set to AMBER
Added comment: A single family with siblings with a homozygous variant that confers a partial loss of function. Strong supporting functional evidence that the gene plays a key role in axonal survival.
Sources: Literature
Mendeliome v0.6454 CCT5 Bryony Thompson Phenotypes for gene: CCT5 were changed from to Neuropathy, hereditary sensory, with spastic paraplegia MIM#256840
Mendeliome v0.6451 USF1 Bryony Thompson Marked gene: USF1 as ready
Mendeliome v0.6447 LIPI Bryony Thompson Marked gene: LIPI as ready
Mendeliome v0.6446 GALNT12 Bryony Thompson Marked gene: GALNT12 as ready
Mendeliome v0.6445 ABCG2 Bryony Thompson Marked gene: ABCG2 as ready
Mendeliome v0.6444 SAT1 Bryony Thompson Marked gene: SAT1 as ready
Mendeliome v0.6443 SAT1 Bryony Thompson reviewed gene: SAT1: Rating: RED; Mode of pathogenicity: None; Publications: 12215835, 20672378, 9228047; Phenotypes: Keratosis follicularis spinulosa decalvans; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.6441 MIR5004 Bryony Thompson Marked gene: MIR5004 as ready
Mendeliome v0.6440 TOGARAM1 Zornitza Stark Phenotypes for gene: TOGARAM1 were changed from Cleft of the lip and palate; Microphthalmia; Cerebral dysgenesis; Hydrocephalus to Joubert syndrome 37, MIM# 619185
Mendeliome v0.6439 TOGARAM1 Zornitza Stark Publications for gene: TOGARAM1 were set to 32747439
Mendeliome v0.6438 TOGARAM1 Zornitza Stark Classified gene: TOGARAM1 as Green List (high evidence)
Mendeliome v0.6438 TOGARAM1 Zornitza Stark Gene: togaram1 has been classified as Green List (High Evidence).
Mendeliome v0.6437 TOGARAM1 Zornitza Stark reviewed gene: TOGARAM1: Rating: GREEN; Mode of pathogenicity: None; Publications: 32453716; Phenotypes: Joubert syndrome 37, MIM# 619185; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6437 ALDOA Zornitza Stark Marked gene: ALDOA as ready
Mendeliome v0.6434 RDH5 Zornitza Stark Marked gene: RDH5 as ready
Mendeliome v0.6431 RPGRIP1 Zornitza Stark Marked gene: RPGRIP1 as ready
Mendeliome v0.6428 IRX4 Zornitza Stark Marked gene: IRX4 as ready
Mendeliome v0.6428 IRX4 Zornitza Stark Phenotypes for gene: IRX4 were changed from to Ventricular septal defect
Mendeliome v0.6424 IRX4 Zornitza Stark reviewed gene: IRX4: Rating: RED; Mode of pathogenicity: None; Publications: 21544582; Phenotypes: Ventricular septal defect; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6424 AKAP6 Zornitza Stark Marked gene: AKAP6 as ready
Mendeliome v0.6420 ASCC3 Bryony Thompson Marked gene: ASCC3 as ready
Mendeliome v0.6419 ASCC3 Bryony Thompson gene: ASCC3 was added
gene: ASCC3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ASCC3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ASCC3 were set to 21937992; https://doi.org/10.1016/j.xhgg.2021.100024
Phenotypes for gene: ASCC3 were set to Neuromuscular syndrome; congenital myopathy
Review for gene: ASCC3 was set to GREEN
Added comment: 11 individuals from 7 unrelated families with homozygous (missense) or compound heterozygous variants (missense with a presumed LoF variant or 2 missense, no biallelic LoF) with a neurologic phenotype that ranges from severe developmental delay to muscle fatigue.
Sources: Literature
Mendeliome v0.6415 ARSG Bryony Thompson Publications for gene: ARSG were set to 29300381; 20679209; 25452429; 26975023; 32455177
Mendeliome v0.6414 ARSG Bryony Thompson Classified gene: ARSG as Green List (high evidence)
Mendeliome v0.6414 ARSG Bryony Thompson Gene: arsg has been classified as Green List (High Evidence).
Mendeliome v0.6413 ARSG Bryony Thompson reviewed gene: ARSG: Rating: GREEN; Mode of pathogenicity: None; Publications: 33300174, 29300381, 32455177, 26975023; Phenotypes: Usher syndrome, type IV MIM#618144; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6413 LMNB2 Zornitza Stark Phenotypes for gene: LMNB2 were changed from {Lipodystrophy, partial, acquired, susceptibility to} 608709; Congenital microcephaly, Intellectual disability to {Lipodystrophy, partial, acquired, susceptibility to} 608709; Microcephaly 27, primary, autosomal dominant, MIM# 619180; Congenital microcephaly, Intellectual disability
Mendeliome v0.6412 LMNB2 Zornitza Stark edited their review of gene: LMNB2: Changed phenotypes: {Lipodystrophy, partial, acquired, susceptibility to} 608709, Microcephaly 27, primary, autosomal dominant, MIM# 619180, Congenital microcephaly, Intellectual disability
Mendeliome v0.6412 LMNB1 Zornitza Stark Phenotypes for gene: LMNB1 were changed from Global developmental delay, Intellectual disability, Microcephaly, Short stature, Seizures, Abnormality of the corpus callosum, Cortical gyral simplification, Feeding difficulties, Scoliosis; Leukodystrophy, adult-onset, autosomal dominant, MIM#169500 to Microcephaly 26, primary, autosomal dominant, MIM# 619179; Global developmental delay, Intellectual disability, Microcephaly, Short stature, Seizures, Abnormality of the corpus callosum, Cortical gyral simplification, Feeding difficulties, Scoliosis; Leukodystrophy, adult-onset, autosomal dominant, MIM#169500
Mendeliome v0.6411 LMNB1 Zornitza Stark edited their review of gene: LMNB1: Changed phenotypes: Microcephaly 26, primary, autosomal dominant, MIM# 619179, Global developmental delay, Intellectual disability, Microcephaly, Short stature, Seizures, Abnormality of the corpus callosum, Cortical gyral simplification, Feeding difficulties, Scoliosis, Leukodystrophy, adult-onset, autosomal dominant, MIM#169500
Mendeliome v0.6410 CRYM Zornitza Stark Marked gene: CRYM as ready
Mendeliome v0.6407 HARS Zornitza Stark Marked gene: HARS as ready
Mendeliome v0.6407 HARS Zornitza Stark Gene: hars has been classified as Green List (High Evidence).
Mendeliome v0.6407 HARS Zornitza Stark Phenotypes for gene: HARS were changed from Charcot-Marie-Tooth disease, axonal, type 2W, MIM# 616625 to Charcot-Marie-Tooth disease, axonal, type 2W MIM#616625; Usher syndrome type 3B MIM#614504; Multisystemic ataxic syndrome
Mendeliome v0.6406 HARS Zornitza Stark Publications for gene: HARS were set to 26072516
Mendeliome v0.6405 HARS Zornitza Stark Mode of inheritance for gene: HARS was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.6404 HARS Elena Savva reviewed gene: HARS: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 32333447, 32940403, 26072516; Phenotypes: Charcot-Marie-Tooth disease, axonal, type 2W MIM#616625, Usher syndrome type 3B MIM#614504, Multisystemic ataxic syndrome; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.6401 PMVK Zornitza Stark Marked gene: PMVK as ready
Mendeliome v0.6399 MVD Zornitza Stark Marked gene: MVD as ready
Mendeliome v0.6398 MVD Zornitza Stark gene: MVD was added
gene: MVD was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: MVD was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MVD were set to 30942823; 33491095
Phenotypes for gene: MVD were set to Porokeratosis 7, multiple types, MIM# 614714
Review for gene: MVD was set to GREEN
Added comment: Porokeratoses are a heterogeneous group of keratinization disorders. For linear porokeratosis and disseminated superficial actinic porokeratosis, a heterozygous pathogenic germline variant in a mevalonate pathway gene and a postzygotic second hit mutation present in affected skin have been shown to be the patho-genetic mechanism for the development of the lesions. At least 5 individuals reported.
Sources: Expert list
Mendeliome v0.6397 SCUBE3 Zornitza Stark Phenotypes for gene: SCUBE3 were changed from Short stature; skeletal abnormalities; craniofacial abnormalities; dental anomalies to Short stature, facial dysmorphism, and skeletal anomalies with or without cardiac anomalies, MIM# 619184; Short stature; skeletal abnormalities; craniofacial abnormalities; dental anomalies
Mendeliome v0.6396 SCUBE3 Zornitza Stark edited their review of gene: SCUBE3: Changed phenotypes: Short stature, facial dysmorphism, and skeletal anomalies with or without cardiac anomalies, MIM# 619184, Short stature, skeletal abnormalities, craniofacial abnormalities, dental anomalies
Mendeliome v0.6396 UNC45B Zornitza Stark Phenotypes for gene: UNC45B were changed from Progressive Myopathy with Eccentric Cores to Myofibrillar myopathy 11, MIM# 619178; Progressive Myopathy with Eccentric Cores
Mendeliome v0.6395 UNC45B Zornitza Stark reviewed gene: UNC45B: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Myofibrillar myopathy 11, MIM# 619178; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6395 SHROOM3 Zornitza Stark Marked gene: SHROOM3 as ready
Mendeliome v0.6393 FLT3 Zornitza Stark Marked gene: FLT3 as ready
Mendeliome v0.6392 MSL3 Zornitza Stark Marked gene: MSL3 as ready
Mendeliome v0.6392 MSL3 Zornitza Stark Phenotypes for gene: MSL3 were changed from to Basilicata-Akhtar syndrome, OMIM # 301032
Mendeliome v0.6389 MSL3 Zornitza Stark reviewed gene: MSL3: Rating: GREEN; Mode of pathogenicity: None; Publications: 33173220; Phenotypes: Basilicata-Akhtar syndrome, OMIM # 301032; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.6389 TOE1 Zornitza Stark Marked gene: TOE1 as ready
Mendeliome v0.6389 TOE1 Zornitza Stark Phenotypes for gene: TOE1 were changed from to Pontocerebellar hypoplasia, type 7, MIM# 614969
Mendeliome v0.6386 TOE1 Zornitza Stark reviewed gene: TOE1: Rating: GREEN; Mode of pathogenicity: None; Publications: 28092684; Phenotypes: Pontocerebellar hypoplasia, type 7, MIM# 614969; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6386 VRK1 Zornitza Stark Marked gene: VRK1 as ready
Mendeliome v0.6386 VRK1 Zornitza Stark Phenotypes for gene: VRK1 were changed from to Pontocerebellar hypoplasia type 1A, MIM# 607596; SMA
Mendeliome v0.6383 VRK1 Zornitza Stark edited their review of gene: VRK1: Changed rating: GREEN; Changed phenotypes: Pontocerebellar hypoplasia type 1A, MIM# 607596, SMA
Mendeliome v0.6383 SPTBN2 Zornitza Stark Marked gene: SPTBN2 as ready
Mendeliome v0.6383 SPTBN2 Zornitza Stark Phenotypes for gene: SPTBN2 were changed from to Spinocerebellar ataxia, autosomal recessive 14, MIM# 615386; Spinocerebellar ataxia 5, MIM# 600224
Mendeliome v0.6380 SEPSECS Zornitza Stark Marked gene: SEPSECS as ready
Mendeliome v0.6380 SEPSECS Zornitza Stark Phenotypes for gene: SEPSECS were changed from to Pontocerebellar hypoplasia type 2D, 613811; cerebellar ataxia and cognitive impairment
Mendeliome v0.6377 SEPSECS Zornitza Stark reviewed gene: SEPSECS: Rating: GREEN; Mode of pathogenicity: None; Publications: 20920667, 25044680, 31748115, 29464431; Phenotypes: Pontocerebellar hypoplasia type 2D, MIM# 613811; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6377 ITPR1 Zornitza Stark changed review comment from: Gillespie syndrome is usually diagnosed in the first year of life by the presence of fixed dilated pupils in a hypotonic infant. Affected individuals have a characteristic form of iris hypoplasia in which the pupillary border of the iris exhibits a scalloped or 'festooned' edge, with iris strands extending onto the anterior lens surface at regular intervals. The key extraocular features of Gillespie syndrome are congenital hypotonia, progressive cerebellar hypoplasia, and ataxia, as well as variable cognitive impairment that is usually mild. Multiple families reported with bi-allelic or de novo heterozygous variants.; to: Gillespie syndrome: usually diagnosed in the first year of life by the presence of fixed dilated pupils in a hypotonic infant. Affected individuals have a characteristic form of iris hypoplasia in which the pupillary border of the iris exhibits a scalloped or 'festooned' edge, with iris strands extending onto the anterior lens surface at regular intervals. The key extraocular features of Gillespie syndrome are congenital hypotonia, progressive cerebellar hypoplasia, and ataxia, as well as variable cognitive impairment that is usually mild. Multiple families reported with bi-allelic or de novo heterozygous variants.
Mendeliome v0.6377 ITPR1 Zornitza Stark Marked gene: ITPR1 as ready
Mendeliome v0.6377 ITPR1 Zornitza Stark Phenotypes for gene: ITPR1 were changed from to Gillespie syndrome, MIM# 206700; Spinocerebellar ataxia 15 MIM#606658; Spinocerebellar ataxia 29, congenital nonprogressive MIM#117360
Mendeliome v0.6374 EXOSC8 Zornitza Stark Marked gene: EXOSC8 as ready
Mendeliome v0.6374 EXOSC8 Zornitza Stark Phenotypes for gene: EXOSC8 were changed from to Pontocerebellar hypoplasia, type 1C, MIM# 616081
Mendeliome v0.6371 EXOSC8 Zornitza Stark reviewed gene: EXOSC8: Rating: GREEN; Mode of pathogenicity: None; Publications: 24989451; Phenotypes: Pontocerebellar hypoplasia, type 1C, MIM# 616081; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6371 EXOSC3 Zornitza Stark Marked gene: EXOSC3 as ready
Mendeliome v0.6371 EXOSC3 Zornitza Stark Phenotypes for gene: EXOSC3 were changed from to Pontocerebellar hypoplasia, type 1B, MIM# 614678
Mendeliome v0.6368 EXOSC3 Zornitza Stark reviewed gene: EXOSC3: Rating: GREEN; Mode of pathogenicity: None; Publications: 22544365, 23284067, 24524299; Phenotypes: Pontocerebellar hypoplasia, type 1B, MIM# 614678; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6368 CLP1 Zornitza Stark Marked gene: CLP1 as ready
Mendeliome v0.6368 CLP1 Zornitza Stark Phenotypes for gene: CLP1 were changed from to Pontocerebellar hypoplasia type 10, MIM# 615803
Mendeliome v0.6365 CLP1 Zornitza Stark reviewed gene: CLP1: Rating: GREEN; Mode of pathogenicity: None; Publications: 24766809, 29307788; Phenotypes: Pontocerebellar hypoplasia type 10, MIM# 615803; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6365 CHMP1A Zornitza Stark Marked gene: CHMP1A as ready
Mendeliome v0.6365 CHMP1A Zornitza Stark Phenotypes for gene: CHMP1A were changed from to Pontocerebellar hypoplasia, type 8, MIM# 614961
Mendeliome v0.6362 CHMP1A Zornitza Stark reviewed gene: CHMP1A: Rating: GREEN; Mode of pathogenicity: None; Publications: 23023333; Phenotypes: Pontocerebellar hypoplasia, type 8, MIM# 614961; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6362 BRF1 Zornitza Stark Marked gene: BRF1 as ready
Mendeliome v0.6359 DHODH Zornitza Stark Marked gene: DHODH as ready
Mendeliome v0.6356 ITGB4 Zornitza Stark Marked gene: ITGB4 as ready
Mendeliome v0.6353 LAMA3 Zornitza Stark Marked gene: LAMA3 as ready
Mendeliome v0.6350 LAMB3 Zornitza Stark Marked gene: LAMB3 as ready
Mendeliome v0.6347 LAMC2 Zornitza Stark Marked gene: LAMC2 as ready
Mendeliome v0.6344 KRT5 Zornitza Stark Marked gene: KRT5 as ready
Mendeliome v0.6344 KRT5 Zornitza Stark Phenotypes for gene: KRT5 were changed from to Dowling-Degos disease 1, MIM# 179850; Epidermolysis bullosa simplex-MCR, MIM# 609352; Epidermolysis bullosa simplex-MP 131960; Epidermolysis bullosa simplex, Dowling-Meara type, MIM# 131760; Epidermolysis bullosa simplex, Koebner type, MIM# 131900; Epidermolysis bullosa simplex, recessive 1, MIM# 601001; Epidermolysis bullosa simplex, Weber-Cockayne type, MIM# 131800
Mendeliome v0.6342 KRT5 Zornitza Stark reviewed gene: KRT5: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Dowling-Degos disease 1, MIM# 179850, Epidermolysis bullosa simplex-MCR, MIM# 609352, Epidermolysis bullosa simplex-MP 131960, Epidermolysis bullosa simplex, Dowling-Meara type, MIM# 131760, Epidermolysis bullosa simplex, Koebner type, MIM# 131900, Epidermolysis bullosa simplex, recessive 1, MIM# 601001, Epidermolysis bullosa simplex, Weber-Cockayne type, MIM# 131800; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6342 CLCN6 Zornitza Stark Phenotypes for gene: CLCN6 were changed from Benign partial epilepsy; febrile seizures; NCL to Neurodegeneration, childhood-onset, hypotonia, respiratory insufficiency and brain imaging abnormalities, MIM# 619173; Neurodegeneration; Benign partial epilepsy; febrile seizures; NCL
Mendeliome v0.6340 CLCN6 Zornitza Stark edited their review of gene: CLCN6: Changed phenotypes: Neurodegeneration, childhood-onset, hypotonia, respiratory insufficiency and brain imaging abnormalities, MIM# 619173, Neurodegeneration, Benign partial epilepsy, febrile seizures, NCL
Mendeliome v0.6340 ITGA6 Zornitza Stark Marked gene: ITGA6 as ready
Mendeliome v0.6337 ITGA3 Zornitza Stark Marked gene: ITGA3 as ready
Mendeliome v0.6334 FERMT1 Zornitza Stark Marked gene: FERMT1 as ready
Mendeliome v0.6331 EXPH5 Zornitza Stark Marked gene: EXPH5 as ready
Mendeliome v0.6328 COL7A1 Zornitza Stark Marked gene: COL7A1 as ready
Mendeliome v0.6328 COL7A1 Zornitza Stark Phenotypes for gene: COL7A1 were changed from to EBD inversa, MIM# 226600; EBD, Bart type MIM# 132000; EBD, localisata variant; Epidermolysis bullosa dystrophica, MIM# 131750; Epidermolysis bullosa dystrophica, 226600; Epidermolysis bullosa pruriginosa 604129; Epidermolysis bullosa, pretibial, MIM# 131850; Transient bullous of the newborn 131705
Mendeliome v0.6326 COL7A1 Zornitza Stark reviewed gene: COL7A1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: EBD inversa, MIM# 226600, EBD, Bart type MIM# 132000, EBD, localisata variant, Epidermolysis bullosa dystrophica, MIM# 131750, Epidermolysis bullosa dystrophica, 226600, Epidermolysis bullosa pruriginosa 604129, Epidermolysis bullosa, pretibial, MIM# 131850, Transient bullous of the newborn 131705; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6326 IGSF1 Zornitza Stark Marked gene: IGSF1 as ready
Mendeliome v0.6326 IGSF1 Zornitza Stark Phenotypes for gene: IGSF1 were changed from to Hypothyroidism, central, and testicular enlargement, MIM# 300888
Mendeliome v0.6323 IGSF1 Zornitza Stark reviewed gene: IGSF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 27310681, 30086211, 24108313, 26840047, 27762734, 23143598; Phenotypes: Hypothyroidism, central, and testicular enlargement, MIM# 300888; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.6323 FSTL5 Zornitza Stark Marked gene: FSTL5 as ready
Mendeliome v0.6322 NCOA3 Zornitza Stark Marked gene: NCOA3 as ready
Mendeliome v0.6320 FSTL5 Eleanor Williams gene: FSTL5 was added
gene: FSTL5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FSTL5 was set to Unknown
Publications for gene: FSTL5 were set to 33105483
Phenotypes for gene: FSTL5 were set to isolated club-foot; iTEV; Talipes equinovarus
Review for gene: FSTL5 was set to RED
Added comment: PMID: 33105483 - Khanshour et al 20201 - GWAS study of isolated Talipes equinovarus (clubfoot, iTEV) identified an associated locus within FSTL5. They show that Fstl5 is expressed in the embryonic hindlimb in bats, chicks and mice. However, Fstl5 was expressed more highly in neural tissues in mice, and rats lacking Fstl5 showed no gross developmental malformations. Conditional overexpression of Fstl5 in osteochondroprogenitors resulted in sexually dimorphic differences in skeletal development in mice.
Sources: Literature
Mendeliome v0.6320 NCOA3 Eleanor Williams gene: NCOA3 was added
gene: NCOA3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NCOA3 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: NCOA3 were set to 33326993
Phenotypes for gene: NCOA3 were set to non-syndromic hearing loss
Review for gene: NCOA3 was set to RED
Added comment: PMID: 33326993 - Salazar da Silva et al 2020 - report a 5 generation Brazilian family with 15 individuals with non-syndromic, bilateral and progressive hearing loss. Using linkage analysis and then exome sequencing they identified a heterozygous variant in NCOA3 (NM_181659, c.2810C > G; p.Ser937Cys) that was found in the 7 analysed affected individuals. It was also found in 4 unaffected individuals but they are within the range of onset of hearing loss observed in the family. Expression of nco3 was found in the inner ear of mice and zebrafish. ncoa3-/- zebrafish showed subtle alterations in cartilage, mineral density and abnormal adult swimming behaviour, which may suggest the mechanism of pathogenicity.
Sources: Literature
Mendeliome v0.6320 CFHR3 Zornitza Stark Marked gene: CFHR3 as ready
Mendeliome v0.6317 CFHR1 Zornitza Stark Marked gene: CFHR1 as ready
Mendeliome v0.6314 CFHR3 Elena Savva reviewed gene: CFHR3: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID:32424742; Phenotypes: {Hemolytic uremic syndrome, atypical, susceptibility to} MIM#235400, {Macular degeneration, age-related, reduced risk of} MIM#603075; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6314 CFHR1 Elena Savva reviewed gene: CFHR1: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID:32424742; Phenotypes: {Hemolytic uremic syndrome, atypical, susceptibility to} MIM#235400, {Macular degeneration, age-related, reduced risk of} MIM#603075; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6314 OTUD5 Zornitza Stark Phenotypes for gene: OTUD5 were changed from X-linked severe neurodevelopmental delay, hydrocephalus, and early lethality to Multiple congenital anomalies-neurodevelopmental syndrome, X-linked, MIM# 301056
Mendeliome v0.6311 OTUD5 Zornitza Stark edited their review of gene: OTUD5: Added comment: PMID 33523931: Another 10 individuals from 7 families reported, promote to Green. X-linked multiple congenital anomalies-neurodevelopmental syndrome (MCAND) is an X-linked recessive congenital multisystemic disorder characterized by poor growth, global developmental delay with impaired intellectual development, and variable abnormalities of the cardiac, skeletal, and genitourinary systems. Most affected individuals also have hypotonia and dysmorphic craniofacial features. Brain imaging typically shows enlarged ventricles and thin corpus callosum; some have microcephaly, whereas others have hydrocephalus. The severity of the disorder is highly variable, ranging from death in early infancy to survival into the second or third decade.; Changed rating: GREEN; Changed publications: 33131077, 33523931; Changed phenotypes: Multiple congenital anomalies-neurodevelopmental syndrome, X-linked, MIM# 301056
Mendeliome v0.6311 SCARB1 Bryony Thompson Marked gene: SCARB1 as ready
Mendeliome v0.6311 SCARB1 Bryony Thompson Gene: scarb1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6311 SCARB1 Bryony Thompson Phenotypes for gene: SCARB1 were changed from to High density lipoprotein cholesterol level QTL6 MIM#610762; Scavenger receptor class B type I deficiency; Inherited hypolipidaemias
Mendeliome v0.6310 SCARB1 Bryony Thompson Publications for gene: SCARB1 were set to
Mendeliome v0.6309 SCARB1 Bryony Thompson Mode of inheritance for gene: SCARB1 was changed from Unknown to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6308 SCARB1 Bryony Thompson Classified gene: SCARB1 as Amber List (moderate evidence)
Mendeliome v0.6308 SCARB1 Bryony Thompson Gene: scarb1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6307 SCARB1 Bryony Thompson reviewed gene: SCARB1: Rating: ; Mode of pathogenicity: None; Publications: 21226579, 30720493, 21480869, 26965621, 27604308; Phenotypes: High density lipoprotein cholesterol level QTL6 MIM#610762, Scavenger receptor class B type I deficiency, Inherited hypolipidaemias; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6307 CETP Bryony Thompson Marked gene: CETP as ready
Mendeliome v0.6301 DMGDH Bryony Thompson reviewed gene: DMGDH: Rating: ; Mode of pathogenicity: None; Publications: 11231903, 18937046, 28881522, 27604308; Phenotypes: Dimethylglycine dehydrogenase deficiency MIM#605850, Disorders and variants of other enzymes that oxidise xenobiotics; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6301 CD320 Bryony Thompson Marked gene: CD320 as ready
Mendeliome v0.6298 SHPK Bryony Thompson Marked gene: SHPK as ready
Mendeliome v0.6297 SHPK Bryony Thompson gene: SHPK was added
gene: SHPK was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SHPK was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SHPK were set to 25647543; 27604308
Phenotypes for gene: SHPK were set to Sedoheptulokinase deficiency MIM#617213
Review for gene: SHPK was set to AMBER
Added comment: 2 unrelated cases reported, with elevated excretion of erythritol and sedoheptulose, and each had a homozygous nonsense variant. The first patient presented with neonatal cholestasis, hypoglycemia, and anemia, while the second patient presented with congenital arthrogryposis multiplex, multiple contractures, and dysmorphisms. Due to inconsistency in phenotypes, likely SHPK deficiency is a benign disorder.
Sources: Literature
Mendeliome v0.6296 PNLIP Bryony Thompson Marked gene: PNLIP as ready
Mendeliome v0.6296 PNLIP Bryony Thompson Added comment: Comment on list classification: Appears to be a clinically benign metabolic condition
Mendeliome v0.6295 PNLIP Bryony Thompson gene: PNLIP was added
gene: PNLIP was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PNLIP was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PNLIP were set to 31977950; 25862608; 24262094; 27604308
Phenotypes for gene: PNLIP were set to Pancreatic lipase deficiency MIM#614338; disorders of lipid and lipoprotein metabolism
Review for gene: PNLIP was set to GREEN
Added comment: 4 cases from 2 unrelated families, with supporting biochemical assays in patient cells and cellular-based assays. The cases have decreased absorption of dietary fat and greasy voluminous stools, but apparent normal development and an overall good state of health.
Sources: Literature
Mendeliome v0.6294 TDO2 Zornitza Stark Marked gene: TDO2 as ready
Mendeliome v0.6294 TDO2 Zornitza Stark gene: TDO2 was added
gene: TDO2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: TDO2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TDO2 were set to 28285122; 27604308
Phenotypes for gene: TDO2 were set to Hypertryptophanemia MIM#600627; Disorders of histidine, tryptophan or lysine metabolism
Review for gene: TDO2 was set to RED
Added comment: Single case reported, biochemical phenotype of hypertryptophanemia and hyperserotoninemia does not appear to have significant clinical consequences
Sources: Expert list
Mendeliome v0.6293 SUGCT Zornitza Stark Marked gene: SUGCT as ready
Mendeliome v0.6293 SUGCT Zornitza Stark Phenotypes for gene: SUGCT were changed from to Glutaric aciduria III MIM#231690; Organic acidurias
Mendeliome v0.6289 SUGCT Zornitza Stark reviewed gene: SUGCT: Rating: AMBER; Mode of pathogenicity: None; Publications: 28766179, 18926513, 33483254, 32779420, 27604308; Phenotypes: Glutaric aciduria III MIM#231690, Organic acidurias; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6289 SLC36A2 Zornitza Stark Marked gene: SLC36A2 as ready
Mendeliome v0.6285 SARDH Zornitza Stark Marked gene: SARDH as ready
Mendeliome v0.6285 SARDH Zornitza Stark Gene: sardh has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6285 SARDH Zornitza Stark Phenotypes for gene: SARDH were changed from to Sarcosinemia MIM#268900; Disorders of serine, glycine or glycerate metabolism
Mendeliome v0.6284 SARDH Zornitza Stark Publications for gene: SARDH were set to
Mendeliome v0.6283 SARDH Zornitza Stark Mode of inheritance for gene: SARDH was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6282 SARDH Zornitza Stark Classified gene: SARDH as Amber List (moderate evidence)
Mendeliome v0.6282 SARDH Zornitza Stark Gene: sardh has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6281 SARDH Zornitza Stark reviewed gene: SARDH: Rating: AMBER; Mode of pathogenicity: None; Publications: 22825317, 27604308; Phenotypes: Sarcosinemia MIM#268900, Disorders of serine, glycine or glycerate metabolism; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6281 OPLAH Zornitza Stark Marked gene: OPLAH as ready
Mendeliome v0.6277 KHK Zornitza Stark Marked gene: KHK as ready
Mendeliome v0.6273 HAL Zornitza Stark Marked gene: HAL as ready
Mendeliome v0.6267 DCXR Zornitza Stark Marked gene: DCXR as ready
Mendeliome v0.6265 CTH Zornitza Stark Marked gene: CTH as ready
Mendeliome v0.6261 ACSF3 Zornitza Stark Marked gene: ACSF3 as ready
Mendeliome v0.6257 PHGDH Zornitza Stark Marked gene: PHGDH as ready
Mendeliome v0.6253 PNP Zornitza Stark Marked gene: PNP as ready
Mendeliome v0.6250 PNPLA2 Zornitza Stark Marked gene: PNPLA2 as ready
Mendeliome v0.6247 ESRP2 Zornitza Stark Marked gene: ESRP2 as ready
Mendeliome v0.6243 ACBD5 Zornitza Stark Marked gene: ACBD5 as ready
Mendeliome v0.6240 SAR1B Zornitza Stark Marked gene: SAR1B as ready
Mendeliome v0.6240 SAR1B Zornitza Stark Gene: sar1b has been classified as Green List (High Evidence).
Mendeliome v0.6240 SAR1B Zornitza Stark Phenotypes for gene: SAR1B were changed from to Chylomicron retention disease, MIM# 246700
Mendeliome v0.6239 SAR1B Zornitza Stark Publications for gene: SAR1B were set to
Mendeliome v0.6238 SAR1B Zornitza Stark Mode of inheritance for gene: SAR1B was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6237 SAR1B Zornitza Stark reviewed gene: SAR1B: Rating: GREEN; Mode of pathogenicity: None; Publications: 12692552; Phenotypes: Chylomicron retention disease, MIM# 246700; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6237 SC5D Zornitza Stark Marked gene: SC5D as ready
Mendeliome v0.6234 SLC39A14 Zornitza Stark Marked gene: SLC39A14 as ready
Mendeliome v0.6231 SLC46A1 Zornitza Stark Marked gene: SLC46A1 as ready
Mendeliome v0.6231 SLC46A1 Zornitza Stark Phenotypes for gene: SLC46A1 were changed from to Folate malabsorption, hereditary, MIM# 229050
Mendeliome v0.6228 SLC46A1 Zornitza Stark changed review comment from: Hereditary folate malabsorption is an autosomal recessive disorder characterized by signs and symptoms of folate deficiency that appear within a few months after birth. Infants exhibit low blood and cerebrospinal fluid folate levels with megaloblastic anemia, diarrhea, immune deficiency, infections, and neurologic deficits. Treatment with folate supplementation results in resolution of the signs and symptoms. The disorder is caused by impaired intestinal folate absorption and impaired transport of folate into the central nervous system. More than 5 unrelated families reported.; to: Hereditary folate malabsorption is an autosomal recessive disorder characterized by signs and symptoms of folate deficiency that appear within a few months after birth. Infants exhibit low blood and cerebrospinal fluid folate levels with megaloblastic anemia, diarrhoea, immune deficiency, infections, and neurologic deficits. Treatment with folate supplementation results in resolution of the signs and symptoms. The disorder is caused by impaired intestinal folate absorption and impaired transport of folate into the central nervous system. More than 5 unrelated families reported.
Mendeliome v0.6228 SLC46A1 Zornitza Stark reviewed gene: SLC46A1: Rating: GREEN; Mode of pathogenicity: None; Publications: 17446347, 17129779, 21333572; Phenotypes: Folate malabsorption, hereditary, MIM# 229050; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6228 ST3GAL3 Zornitza Stark Marked gene: ST3GAL3 as ready
Mendeliome v0.6228 ST3GAL3 Zornitza Stark Phenotypes for gene: ST3GAL3 were changed from to Mental retardation, autosomal recessive 12 MIM# 611090
Mendeliome v0.6225 ST3GAL3 Zornitza Stark reviewed gene: ST3GAL3: Rating: GREEN; Mode of pathogenicity: None; Publications: 23252400, 21907012, 31584066; Phenotypes: Mental retardation, autosomal recessive 12 MIM# 611090; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6225 DDX58 Zornitza Stark edited their review of gene: DDX58: Changed mode of pathogenicity: Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Mendeliome v0.6224 DDX58 Zornitza Stark Mode of pathogenicity for gene: DDX58 was changed from Other to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Mendeliome v0.6221 DDX58 Zornitza Stark edited their review of gene: DDX58: Added comment: Prasov et al. 2021 (PMID: 33495304) - A heterozygous DDX58 variant (c.1529A>T) was identified in 5 individuals from 2 unrelated families from different ethnic backgrounds. Phenotypes varied with some being severely affected by systemic features and others solely with glaucoma.Functional analysis demonstrated the variant confers a dominant gain-of-function effect on interferon activity.; Changed mode of pathogenicity: Other; Changed publications: 25620203, 33495304
Mendeliome v0.6221 KL Bryony Thompson Marked gene: KL as ready
Mendeliome v0.6218 GLRX2 Bryony Thompson Marked gene: GLRX2 as ready
Mendeliome v0.6216 GSTO2 Bryony Thompson Marked gene: GSTO2 as ready
Mendeliome v0.6215 SIX1 Zornitza Stark changed review comment from: DEFINITIVE by ClinGen. Variable expressivity, some families reported with isolated deafness, however this likely represents a spectrum rather than a separate disorder.; to: Deafness/BOS: DEFINITIVE by ClinGen. Variable expressivity, some families reported with isolated deafness, however this likely represents a spectrum rather than a separate disorder.
Mendeliome v0.6213 BMP7 Zornitza Stark Phenotypes for gene: BMP7 were changed from Non-syndromic metopic craniosynostosis; Congenital abnormalities of the kidneys and urinary tract to Non-syndromic metopic craniosynostosis; Congenital abnormalities of the kidneys and urinary tract; Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS)
Mendeliome v0.6211 BMP7 Zornitza Stark changed review comment from: Non-syndromic metopic craniosynostosis: PMID 32266521 reports rs6127972 as a susceptibility SNP for non-syndromic metopic craniosynostosis

CAKUT: PMID 24429398 1 family with mouse model in large cohort of CAKUT.
Sources: Literature; to: Non-syndromic metopic craniosynostosis: PMID 32266521 reports rs6127972 as a susceptibility SNP for non-syndromic metopic craniosynostosis

CAKUT: PMID 24429398 1 family with mouse model in large cohort of CAKUT.
Sources: Literature

PMID 33434492: Two individuals with likely deleterious variants identified in a cohort of individuals with MRKHS.
Mendeliome v0.6211 BMP7 Zornitza Stark edited their review of gene: BMP7: Changed phenotypes: Non-syndromic metopic craniosynostosis, Congenital abnormalities of the kidneys and urinary tract, Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS)
Mendeliome v0.6211 BMP7 Zornitza Stark Phenotypes for gene: BMP7 were changed from Non-syndromic metopic craniosynostosis to Non-syndromic metopic craniosynostosis; Congenital abnormalities of the kidneys and urinary tract
Mendeliome v0.6210 BMP7 Zornitza Stark edited their review of gene: BMP7: Changed phenotypes: Non-syndromic metopic craniosynostosis, Congenital abnormalities of the kidneys and urinary tract
Mendeliome v0.6210 WBP11 Zornitza Stark Marked gene: WBP11 as ready
Mendeliome v0.6208 CLRN2 Zornitza Stark Marked gene: CLRN2 as ready
Mendeliome v0.6208 CLRN2 Zornitza Stark Phenotypes for gene: CLRN2 were changed from Non-syndromic hearing loss to Non-syndromic hearing loss; Deafness, autosomal recessive 117, MIM# 619174
Mendeliome v0.6207 EGFR Eleanor Williams changed review comment from: PMID: 33326033 - Akhavanfard et al 2020 - identified a heterozygous germline variant in EGFR (c.3238 G>A, p.Asp1080Asn) in a 21 year old female with metastatic bilateral Adrenocortical carcinoma (ACC). Then they analyzed germline exome data from 21 children, 32 adolescents and young adults (15-39y), and 60 adult participants with ACC. 3.5% of all 113 ACC cases had at least a highly prioritized VUS germline EGFR variant, compared to only 0.3% in a non-TCGA (The Cancer Genome Atlas) ExAC control group (P < 0.0001). No segregation data.; to: PMID: 33326033 - Akhavanfard et al 2020 - identified a heterozygous germline variant in EGFR (c.3238 G>A, p.Asp1080Asn) in a 21 year old female with metastatic bilateral Adrenocortical carcinoma (ACC). Then they analyzed germline exome data from 21 children, 32 adolescents and young adults (15-39y), and 60 adult participants with ACC. 3.5% of all 113 ACC cases had at least a highly prioritized VUS germline EGFR variant, compared to only 0.3% in a non-TCGA (The Cancer Genome Atlas) ExAC control group (P < 0.0001). In the adolescents and young adults group 6.2% had ECGR variants. No segregation data.
Mendeliome v0.6207 EGFR Eleanor Williams reviewed gene: EGFR: Rating: AMBER; Mode of pathogenicity: None; Publications: 33326033; Phenotypes: Adrenocortical carcinoma; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.6207 WBP11 Eleanor Williams gene: WBP11 was added
gene: WBP11 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: WBP11 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: WBP11 were set to 33276377
Phenotypes for gene: WBP11 were set to malformation syndrome affecting the cardiac, skeletal, gastrointestinal and renal systems
Review for gene: WBP11 was set to GREEN
Added comment: PMID: 33276377 - Martin et al 2020 - report 13 affected individuals from 7 unrelated families identified through various different cohort analysis (vertebral malformation, renal hypodysplasia, syndromic esophageal atresia, multiple congenital anomalies) in whom a WBP11 heterozygous variant is considered the top causative candidate. 5 identified variants were predicted to be protein truncating whilst the 6th was a missense variant. All variants are absent from population databases. In family 1, the variant was inherited from the apparently unaffected mother, indicating reduced penetrance, and phenotypic variance within families was observed. Phenotypes covered cardiac, vertebral, renal, craniofacial and gastrointestinal systems. At least at least 5 of the patients affected had features in three component organs so can be considered a VACTERL association. Wbp11 heterozygous null mice had vertebral and renal anomalies.
Sources: Literature
Mendeliome v0.6207 PRUNE1 Eleanor Williams reviewed gene: PRUNE1: Rating: GREEN; Mode of pathogenicity: None; Publications: 33105479; Phenotypes: Neurodevelopmental disorder with microcephaly, hypotonia, and variable brain anomalies , MIM#617481; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6207 TTF2 Zornitza Stark Marked gene: TTF2 as ready
Mendeliome v0.6206 DUOXA1 Zornitza Stark Marked gene: DUOXA1 as ready
Mendeliome v0.6205 DUOXA1 Zornitza Stark gene: DUOXA1 was added
gene: DUOXA1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: DUOXA1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: DUOXA1 were set to 29650690
Phenotypes for gene: DUOXA1 were set to congenital hypothyroidism, No OMIM #
Review for gene: DUOXA1 was set to AMBER
Added comment: 12 cases, but digenic model with variants in other genes
Sources: Expert Review
Mendeliome v0.6204 DUOX1 Zornitza Stark Marked gene: DUOX1 as ready
Mendeliome v0.6203 DUOX1 Zornitza Stark gene: DUOX1 was added
gene: DUOX1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: DUOX1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: DUOX1 were set to 29650690
Phenotypes for gene: DUOX1 were set to congenital hypothyroidism, No OMIM #
Review for gene: DUOX1 was set to AMBER
Added comment: 11 cases, but digenic model, with variants in other genes.
Sources: Expert Review
Mendeliome v0.6202 TTF1 Zornitza Stark Marked gene: TTF1 as ready
Mendeliome v0.6198 CDCA8 Zornitza Stark Marked gene: CDCA8 as ready
Mendeliome v0.6197 CDCA8 Zornitza Stark gene: CDCA8 was added
gene: CDCA8 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: CDCA8 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: CDCA8 were set to 28025328; 29546359
Phenotypes for gene: CDCA8 were set to Congenital hypothyroidism, thyroid dysgenesis, no OMIM #
Mode of pathogenicity for gene: CDCA8 was set to Other
Review for gene: CDCA8 was set to GREEN
Added comment: 4 families (1 with bilallelic variants [parent affected as HTZ], 3 with monoallelic variants) with functional evidence of variants. GREEN for mono allelic, RED for biallelic.
Sources: Expert Review
Mendeliome v0.6196 DNAJC30 Zornitza Stark Marked gene: DNAJC30 as ready
Mendeliome v0.6195 DNAJC30 Zornitza Stark gene: DNAJC30 was added
gene: DNAJC30 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DNAJC30 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DNAJC30 were set to 33465056
Phenotypes for gene: DNAJC30 were set to Leber Hereditary Optic Neuropathy
Review for gene: DNAJC30 was set to GREEN
Added comment: 33 individuals from 29 families had homozygous DNAJC30 missense variants. Three different variants identified (one responsible for most cases). All three variants absent from gnomAD. Incomplete penetrance and male predominance in affected individuals both typical of LHON due to mtDNA mutations. All 3 variants in the J domain of the protein. Functional evidence.
Sources: Literature
Mendeliome v0.6193 NFS1 Zornitza Stark edited their review of gene: NFS1: Added comment: Second paper reporting another family (consanguineous) with three affected children and supportive functional data. Homozygous for the same missense variant as reported in the 2014 paper - this family of Christian Arab descent; the family in the previous report of Mennonite background. Suggests this is a mutation hotspot.; Changed rating: GREEN; Changed publications: 24498631, 33457206
Mendeliome v0.6192 SLC7A6OS Zornitza Stark Marked gene: SLC7A6OS as ready
Mendeliome v0.6192 SLC7A6OS Zornitza Stark gene: SLC7A6OS was added
gene: SLC7A6OS was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC7A6OS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC7A6OS were set to 33085104
Phenotypes for gene: SLC7A6OS were set to Progressive myoclonus epilepsy
Review for gene: SLC7A6OS was set to RED
Added comment: Two unrelated families reported with same homozygous splice site variant, shared haplotype (founder effect). Limited functional data.
Sources: Literature
Mendeliome v0.6191 TLR8 Zornitza Stark Marked gene: TLR8 as ready
Mendeliome v0.6190 TLR8 Zornitza Stark gene: TLR8 was added
gene: TLR8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TLR8 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: TLR8 were set to 33512449
Phenotypes for gene: TLR8 were set to Immunodeficiency; bone marrow failure
Mode of pathogenicity for gene: TLR8 was set to Other
Review for gene: TLR8 was set to GREEN
Added comment: Six unrelated males reported with a phenotype comprising neutropaenia, infections, lymphoproliferation, humoral immune defects, and in some cases bone marrow failure. Three different variants reported, the variant was somatic in 5/6 individuals. GoF mechanism demonstrated.
Sources: Literature
Mendeliome v0.6189 PIGF Zornitza Stark Marked gene: PIGF as ready
Mendeliome v0.6188 BRWD1 Zornitza Stark Marked gene: BRWD1 as ready
Mendeliome v0.6187 PIGF Paul De Fazio changed review comment from: The same homozygous missense variant identified in 2 individuals from different families from the same region of India. Individuals had a phenotype similar to DOORS syndrome without deafness. Impaired glycosylphosphatidylinositol (GPI) biosynthesis was demonstrated.

Rated Red as the two families are likely to be related (founder mutation?).
Sources: Literature; to: The same homozygous missense variant identified in 2 individuals from different families from the same region of India. Individuals had a phenotype similar to DOORS syndrome without deafness - only one of the two had seizures (GTCS), the other was 14mo and noted to have tonic posturing.

Impaired glycosylphosphatidylinositol (GPI) biosynthesis was demonstrated by flow cytometry and a rescue assay. Alkaline phosphatase in both individuals was normal.

Rated Red as the two families are likely to be related (founder mutation?).
Sources: Literature
Mendeliome v0.6187 PIGF Paul De Fazio changed review comment from: The same missense variant identified in 2 individuals from different families from the same region of India. Individuals had a phenotype similar to DOORS syndrome without deafness. Impaired glycosylphosphatidylinositol (GPI) biosynthesis was demonstrated.

Rated Red as the two families are likely to be related (founder mutation?).
Sources: Literature; to: The same homozygous missense variant identified in 2 individuals from different families from the same region of India. Individuals had a phenotype similar to DOORS syndrome without deafness. Impaired glycosylphosphatidylinositol (GPI) biosynthesis was demonstrated.

Rated Red as the two families are likely to be related (founder mutation?).
Sources: Literature
Mendeliome v0.6187 PIGF Paul De Fazio changed review comment from: Identified in 2 individuals with a phenotype similar to DOORS (syndrome
Sources: Literature; to: The same missense variant identified in 2 individuals from different families from the same region of India. Individuals had a phenotype similar to DOORS syndrome without deafness. Impaired glycosylphosphatidylinositol (GPI) biosynthesis was demonstrated.

Rated Red as the two families are likely to be related (founder mutation?).
Sources: Literature
Mendeliome v0.6187 PIGF Paul De Fazio gene: PIGF was added
gene: PIGF was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PIGF was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PIGF were set to 33386993
Phenotypes for gene: PIGF were set to Glycosylphosphatidylinositol\ deficiency, onychodystrophy, osteodystrophy, intellectual disability, and seizures
Review for gene: PIGF was set to RED
gene: PIGF was marked as current diagnostic
Added comment: Identified in 2 individuals with a phenotype similar to DOORS (syndrome
Sources: Literature
Mendeliome v0.6187 BRWD1 Paul De Fazio gene: BRWD1 was added
gene: BRWD1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: BRWD1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BRWD1 were set to 33389130
Phenotypes for gene: BRWD1 were set to Asthenoteratozoospermia, likely primary ciliary dyskinesia
Review for gene: BRWD1 was set to GREEN
gene: BRWD1 was marked as current diagnostic
Added comment: Biallelic missense variants reported in 3 unrelated individuals. Apart from asthenoteratozoospermia, all 3 had PCD or "PCD-likely" symptoms of re-occurring airway infections, bronchiectasis, and rhinosinusitis. One individual had situs inversus. Studies on cells from one indivdidual showed abnormal respiratory cilia structure. BRWD1 staining was absent from respiratory cilia in this individual (present in controls).

Rated Green as there are three unrelated individuals reported.
Sources: Literature
Mendeliome v0.6187 HIRA Zornitza Stark Marked gene: HIRA as ready
Mendeliome v0.6186 EYA3 Zornitza Stark Marked gene: EYA3 as ready
Mendeliome v0.6184 HIRA Paul De Fazio gene: HIRA was added
gene: HIRA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HIRA was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: HIRA were set to 33417013; 28135719; 25363760
Phenotypes for gene: HIRA were set to Neurodevelopmental disorder
Review for gene: HIRA was set to GREEN
gene: HIRA was marked as current diagnostic
Added comment: Two unrelated patients with different de novo loss of function variants identified in PMID 33417013:

Individual 1: intragenic deletion, phenotype included psychomotor retardation, ID, growth retardation, microcephaly, and facial features reminiscent of 22q deletion syndrome.
Individual 2: canonical splice variant, phenotype mostly confined to ASD

Another two de novo variants were identified in the literature by the authors of that paper, one stop-gain (DDD study, PMID 28135719) and one missense (large autism cohort, PMID 25363760).

PMID 33417013 also showed that HIRA knockdown in mice results in neurodevelopmental abnormalities.

Rated Green due to 4 unrelated individuals (albeit 2 in large cohort studies) and a mouse model. NB: HIRA is within the common 22q deletion region.
Sources: Literature
Mendeliome v0.6184 POLR3B Zornitza Stark changed review comment from: Ataxia is a presenting feature.; to: Bi-allelic variants are associated with leukodystrophy.
Mendeliome v0.6184 POLR3B Zornitza Stark Marked gene: POLR3B as ready
Mendeliome v0.6181 CFAP47 Zornitza Stark Marked gene: CFAP47 as ready
Mendeliome v0.6181 CFAP47 Zornitza Stark Added comment: Comment when marking as ready: 3-4 unrelated individuals and animal model.
Mendeliome v0.6180 C14orf39 Zornitza Stark Marked gene: C14orf39 as ready
Mendeliome v0.6179 EYA3 Paul De Fazio gene: EYA3 was added
gene: EYA3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EYA3 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: EYA3 were set to 33475861
Phenotypes for gene: EYA3 were set to Oculo-auriculo-vertebral spectrum (OAVS)
Review for gene: EYA3 was set to RED
gene: EYA3 was marked as current diagnostic
Added comment: 3 individuals with OAVS from two unrelated families with the same missense variant, p.(Asn358Ser). Variant has 20 heterozygotes in gnomAD. Unaffected carriers in both families were also identified - unknown if incomplete penetrance or nonsegregation.

Functional studies indicate the variant increases protein half life, and gene knockdown in zebrafish had an effect on craniofacial development.

Rated Red due to both families sharing the variant and uncertainty about incomplete penetrance versus nonsegregation.
Sources: Literature
Mendeliome v0.6179 ENO1 Zornitza Stark Marked gene: ENO1 as ready
Mendeliome v0.6178 HEY2 Zornitza Stark gene: HEY2 was added
gene: HEY2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HEY2 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Publications for gene: HEY2 were set to 32820247
Phenotypes for gene: HEY2 were set to congenital heart defects and thoracic aortic aneurysms
Review for gene: HEY2 was set to RED
Added comment: A very large family affected by CHD and familial thoracic aortic aneurysms. Trio genome sequencing was carried out in an index patient with critical CHD, and family members had either exome or Sanger sequencing. Identified homozygous loss-of-function variant (c.318_319delAG, p.G108*) in HEY2 in 3 individuals in family with critical CHD, whereas the 20 heterozygous carriers show a spectrum of CVDs (CHD and FTAA, but varying expressivity and incomplete penetrance). Other studies show that knockout of HEY2 in mice results in cardiovascular defects (CVDs), including septal defects, cardiomyopathy, a thin-walled aorta, and valve anomalies.
Sources: Literature
Mendeliome v0.6177 FGF9 Zornitza Stark Marked gene: FGF9 as ready
Mendeliome v0.6174 OTUD5 Zornitza Stark Marked gene: OTUD5 as ready
Mendeliome v0.6174 OTUD5 Zornitza Stark gene: OTUD5 was added
gene: OTUD5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: OTUD5 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: OTUD5 were set to 33131077
Phenotypes for gene: OTUD5 were set to X-linked severe neurodevelopmental delay, hydrocephalus, and early lethality
Review for gene: OTUD5 was set to RED
Added comment: 13 male patients from a single family with three generations affected. Patients presented prenatally or during the neonatal period with IUGR, ventriculomegaly, hydrocephalus, hypotonia, congenital heart defects, hypospadias, and severe neurodevelopmental delay. The disease is typically fatal during infancy, mainly due to sepsis (pneumonias). Female carriers are asymptomatic. WGS in four individuals identified a unique candidate variant in the OTUD5 gene (NM_017602.3:c.598G > A, p.Glu200Lys). The variant cosegregated with the disease in 10 tested individuals. No functional studies.
Sources: Literature
Mendeliome v0.6173 BCAT2 Bryony Thompson Marked gene: BCAT2 as ready
Mendeliome v0.6172 BCAT2 Bryony Thompson changed review comment from: A single case reported with compound heterozygous variants with functional studies demonstrating that the two variants resulted in decreased BCAT2 enzyme activity. Also, a null mouse model has a phenotype similar to human maple syrup urine disease.
Sources: NHS GMS; to: 6 cases from 5 unrelated families with homozygous or compound heterozygous variant, and supporting functional studies demonstrating decreased BCAT2 enzyme activity for some of the variants. Also, a null mouse model has a phenotype similar to human maple syrup urine disease.
Sources: NHS GMS
Mendeliome v0.6172 BCAT2 Bryony Thompson gene: BCAT2 was added
gene: BCAT2 was added to Mendeliome. Sources: NHS GMS
Mode of inheritance for gene: BCAT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BCAT2 were set to 14755340; 25653144
Phenotypes for gene: BCAT2 were set to Hypervalinemia or hyperleucine-isoleucinemia MIM#618850; disorder of branched-chain amino acid metabolism
Review for gene: BCAT2 was set to AMBER
Added comment: A single case reported with compound heterozygous variants with functional studies demonstrating that the two variants resulted in decreased BCAT2 enzyme activity. Also, a null mouse model has a phenotype similar to human maple syrup urine disease.
Sources: NHS GMS
Mendeliome v0.6171 CLRN2 Paul De Fazio gene: CLRN2 was added
gene: CLRN2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CLRN2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CLRN2 were set to 33496845
Phenotypes for gene: CLRN2 were set to Non-syndromic hearing loss
Review for gene: CLRN2 was set to AMBER
gene: CLRN2 was marked as current diagnostic
Added comment: Missense variant segregates with non-syndromic hearing loss in 3 members of a consanguineous family, two from one nuclear family and one from another. The variant was also shown to result in some transcripts being abnormally spliced, resulting in a premature stop codon.

Functional studies in zebrafish and mice show the gene plays an essential role in normal organization and maintenance of the auditory hair bundles, and for hearing function.

Rated Amber due to supporting functional studies in mice.
Sources: Literature
Mendeliome v0.6171 CFAP47 Hazel Phillimore gene: CFAP47 was added
gene: CFAP47 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CFAP47 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: CFAP47 were set to PMID: 33472045
Phenotypes for gene: CFAP47 were set to asthenoteratozoospermia; morphological abnormalities of the flagella (MMAF)
Review for gene: CFAP47 was set to AMBER
Added comment: CFAP47 also known as CXorf22. 3 different missense variants in 3 unrelated Chinese individuals with asthenoteratozoospermia associated with morphological abnormalities of the flagella (MMAF). Immunoblotting and immunofluorescence showed reduced levels of CFAP47 in spermatozoa in all 3 men. A separate asthenoteratozoospermia cohort showed 1 individual with CNV including whole gene deletion of CFAP47.
Mouse model (with frameshift variants generated (via CRISPR-Cas9 technology) were sterile and presented with reduced sperm motility and abnormal flagellar morphology.
Sources: Literature
Mendeliome v0.6171 C14orf39 Elena Savva gene: C14orf39 was added
gene: C14orf39 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: C14orf39 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: C14orf39 were set to PMID: 33508233; 27796301
Phenotypes for gene: C14orf39 were set to Azoospermia; Premature ovarian insufficiency
Review for gene: C14orf39 was set to GREEN
Added comment: PMID: 33508233
- 1 family with two males (azoospermia) and 1 female (premature ovarian insufficiency)
- 2 unrelated Chinese males with azoospermia
All patients had either homozygous PTCs or splice

PMID: 27796301
Mouse K/O had azoospermia and ovarian failure
Sources: Literature
Mendeliome v0.6170 KCNN2 Sebastian Lunke Marked gene: KCNN2 as ready
Mendeliome v0.6167 METAP1 Zornitza Stark Marked gene: METAP1 as ready
Mendeliome v0.6166 METAP1 Paul De Fazio gene: METAP1 was added
gene: METAP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: METAP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: METAP1 were set to PMID: 32764695
Phenotypes for gene: METAP1 were set to Intellectual disability, aggression, neurodevelopmental delay
Review for gene: METAP1 was set to RED
gene: METAP1 was marked as current diagnostic
Added comment: Biallelic nonsense (NMD-predicted) variant identified in 4 sibs in a consanguineous family with dev delay. One sib had bilateral clinodactyly of her toes and her left 3rd finger, other sibs were not dysmorphic. Rated red due to single consanguineous family.
Sources: Literature
Mendeliome v0.6166 MYADML2 Zornitza Stark Marked gene: MYADML2 as ready
Mendeliome v0.6165 CCDC186 Zornitza Stark Marked gene: CCDC186 as ready
Mendeliome v0.6165 CCDC186 Zornitza Stark gene: CCDC186 was added
gene: CCDC186 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CCDC186 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CCDC186 were set to 33259146
Phenotypes for gene: CCDC186 were set to Epileptic encephalopathy
Review for gene: CCDC186 was set to RED
Added comment: One individual reported with bi-allelic truncating variant and EE.
Sources: Literature
Mendeliome v0.6164 KCNN2 Ain Roesley gene: KCNN2 was added
gene: KCNN2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KCNN2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: KCNN2 were set to 33242881
Phenotypes for gene: KCNN2 were set to neurodevelopmental movement disorders
Penetrance for gene: KCNN2 were set to unknown
Review for gene: KCNN2 was set to GREEN
Added comment: - 11 probands all de novo except for 1 mother-daughter pair.
- a mix of null and missense variants
- 2/11 with microcephaly, 10/11 motor delay, 7/11 language delay (excluding 2 with regression), all with varying degrees of ID, 3/11 seizures, 7/11 movement disorder, 4/11 cerebellar ataxia, 6/11 MRI anomalies

additional variants were noted in 2 patients: 1x cHet for variants in MED12L and 1x de novo TNK2 variant

patch clamp functional studies were also done
Sources: Literature
Mendeliome v0.6164 MYADML2 Paul De Fazio gene: MYADML2 was added
gene: MYADML2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MYADML2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MYADML2 were set to 32778762
Phenotypes for gene: MYADML2 were set to Cranial asymmetry, reduced bone maturation, multiple dislocations, lumbar lordosis, and prominent clavicles
Review for gene: MYADML2 was set to RED
gene: MYADML2 was marked as current diagnostic
Added comment: 5 sibs from a consanguineous family identified to have biallelic deletion encompassing part of the PYCR1 gene and the coding region of the MYADML2 gene.

According to the authors: "All five affected sibs had the most common features of ARCL (autosomal recessive cutis laxa) but not many of the less common ones. We attributed the anomalies not typical for ARCL to MYADML2 deficit, because no other genetic defect possibly a candidate to underlie the skeletal phenotype was found."

Phenotype may still be explained by the PYCR1 deletion alone.
Sources: Literature
Mendeliome v0.6163 HYAL2 Zornitza Stark Marked gene: HYAL2 as ready
Mendeliome v0.6162 HYAL2 Zornitza Stark gene: HYAL2 was added
gene: HYAL2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HYAL2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HYAL2 were set to 28081210; 23172227; 26515055
Phenotypes for gene: HYAL2 were set to Cleft lip and palate; cor triatriatum; congenital cardiac malformations
Review for gene: HYAL2 was set to AMBER
Added comment: 2 unrelated consanguineous extended families (Amish and Arab) with an orofacial clefting phenotype with cardiac anomalies.
Sources: Literature
Mendeliome v0.6161 SLC6A20 Zornitza Stark Marked gene: SLC6A20 as ready
Mendeliome v0.6158 SUOX Zornitza Stark Marked gene: SUOX as ready
Mendeliome v0.6155 PDE2A Zornitza Stark Phenotypes for gene: PDE2A were changed from Paroxysmal dyskinesia to Paroxysmal dyskinesia; Intellectual developmental disorder with paroxysmal dyskinesia or seizures, MIM# 619150Intellectual developmental disorder with paroxysmal dyskinesia or seizures, MIM# 619150
Mendeliome v0.6153 PDE2A Zornitza Stark edited their review of gene: PDE2A: Changed phenotypes: Paroxysmal dyskinesia, Intellectual developmental disorder with paroxysmal dyskinesia or seizures, MIM# 619150Intellectual developmental disorder with paroxysmal dyskinesia or seizures, MIM# 619150
Mendeliome v0.6149 NOS1AP Zornitza Stark edited their review of gene: NOS1AP: Added comment: Nephrotic syndrome type 22 (NPHS22) is an autosomal recessive renal disease characterized by onset of progressive kidney dysfunction in infancy. Affected individuals usually present with edema associated with hypoproteinemia, proteinuria, and microscopic hematuria. Renal biopsy shows effacement of the podocyte foot processes, glomerulosclerosis, and thickening of the glomerular basement membrane. The disease is steroid-resistant and progressive, resulting in end-stage renal disease usually necessitating kidney transplant.

Two unrelated families and animal model.

No PMID yet: https://advances.sciencemag.org/content/7/1/eabe1386; Changed rating: GREEN; Changed phenotypes: Nephrotic syndrome, type 22, MIM# 619155; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6149 NBEA Zornitza Stark Phenotypes for gene: NBEA were changed from Intellectual disability; Seizures to Neurodevelopmental disorder with or without early-onset generalized epilepsy, MIM# 619157; Intellectual disability; Seizures
Mendeliome v0.6148 NBEA Zornitza Stark edited their review of gene: NBEA: Changed phenotypes: Neurodevelopmental disorder with or without early-onset generalized epilepsy, MIM# 619157, Intellectual disability, Seizures
Mendeliome v0.6148 DCT Zornitza Stark Marked gene: DCT as ready
Mendeliome v0.6146 SDHAF1 Zornitza Stark Marked gene: SDHAF1 as ready
Mendeliome v0.6146 SDHAF1 Zornitza Stark Phenotypes for gene: SDHAF1 were changed from to Mitochondrial complex II deficiency, nuclear type 2, MIM# 619166
Mendeliome v0.6143 SDHAF1 Zornitza Stark reviewed gene: SDHAF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 19465911, 26749241, 22995659; Phenotypes: Mitochondrial complex II deficiency, nuclear type 2, MIM# 619166; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6142 NDUFC2 Zornitza Stark Marked gene: NDUFC2 as ready
Mendeliome v0.6141 NDUFC2 Zornitza Stark gene: NDUFC2 was added
gene: NDUFC2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: NDUFC2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NDUFC2 were set to 32969598
Phenotypes for gene: NDUFC2 were set to Mitochondrial complex I deficiency, nuclear type 36, MIM# 619170
Review for gene: NDUFC2 was set to AMBER
Added comment: Mitochondrial complex I deficiency nuclear type 36 (MC1DN36) is an autosomal recessive metabolic disorder characterized by global developmental delay, hypotonia, and failure to thrive apparent from infancy or early childhood. Affected individuals usually do not acquire ambulation, show progressive spasticity, and have impaired intellectual development with absent speech. More variable features may include pale optic discs, poor eye contact, seizures, and congenital heart defects. Laboratory studies show increased serum lactate; metabolic acidosis may occur during stress or infection. Brain imaging shows T2-weighted abnormalities in the basal ganglia and brainstem, consistent with a clinical diagnosis of Leigh syndrome. Two unrelated families reported, some functional data.
Sources: Expert list
Mendeliome v0.6140 UPB1 Zornitza Stark Marked gene: UPB1 as ready
Mendeliome v0.6137 UROC1 Zornitza Stark Marked gene: UROC1 as ready
Mendeliome v0.6133 DLX4 Zornitza Stark Marked gene: DLX4 as ready
Mendeliome v0.6132 DLG1 Zornitza Stark Marked gene: DLG1 as ready
Mendeliome v0.6131 PLEKHA7 Zornitza Stark Marked gene: PLEKHA7 as ready
Mendeliome v0.6127 GYS2 Zornitza Stark Marked gene: GYS2 as ready
Mendeliome v0.6124 HNRNPU Zornitza Stark Phenotypes for gene: HNRNPU were changed from Epileptic encephalopathy, early infantile, 54, MIM#617391 to Developmental and epileptic encephalopathy 54 MIM# 617391
Mendeliome v0.6123 OPA3 Zornitza Stark Marked gene: OPA3 as ready
Mendeliome v0.6123 OPA3 Zornitza Stark Phenotypes for gene: OPA3 were changed from to 3-methylglutaconic aciduria, type III (MGA3) (MIM#258501), AR; Optic atrophy 3 with cataract (MIM#165300), AD
Mendeliome v0.6119 OPA3 Zornitza Stark reviewed gene: OPA3: Rating: GREEN; Mode of pathogenicity: Other; Publications: 25159689, 31119193, 31928268; Phenotypes: 3-methylglutaconic aciduria, type III (MGA3) (MIM#258501), AR, Optic atrophy 3 with cataract (MIM#165300), AD; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.6119 FOXF1 Zornitza Stark changed review comment from: Congenital alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is characterized histologically by failure of formation and ingrowth of alveolar capillaries that then do not make contact with alveolar epithelium, medial muscular thickening of small pulmonary arterioles with muscularization of the intraacinar arterioles, thickened alveolar walls, and anomalously situated pulmonary veins running alongside pulmonary arterioles and sharing the same adventitial sheath. Less common features include a reduced number of alveoli and a patchy distribution of the histopathologic changes. The disorder is associated with persistent pulmonary hypertension of the neonate and shows varying degrees of lability and severity. Affected infants present with respiratory distress resulting from pulmonary hypertension in the early postnatal period, and the disease is uniformly fatal within the newborn period. Additional features of ACDMPV include multiple congenital anomalies affecting the cardiovascular, gastrointestinal, genitourinary, and musculoskeletal systems, as well as disruption of the normal right-left asymmetry of intrathoracic or intraabdominal organs.; to: Congenital alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is characterized histologically by failure of formation and ingrowth of alveolar capillaries that then do not make contact with alveolar epithelium, medial muscular thickening of small pulmonary arterioles with muscularization of the intraacinar arterioles, thickened alveolar walls, and anomalously situated pulmonary veins running alongside pulmonary arterioles and sharing the same adventitial sheath. Less common features include a reduced number of alveoli and a patchy distribution of the histopathologic changes. The disorder is associated with persistent pulmonary hypertension of the neonate and shows varying degrees of lability and severity. Affected infants present with respiratory distress resulting from pulmonary hypertension in the early postnatal period, and the disease is uniformly fatal within the newborn period. Additional features of ACDMPV include multiple congenital anomalies affecting the cardiovascular, gastrointestinal, genitourinary, and musculoskeletal systems, as well as disruption of the normal right-left asymmetry of intrathoracic or intraabdominal organs.

Over 50 families reported.
Mendeliome v0.6119 FOXF1 Zornitza Stark Marked gene: FOXF1 as ready
Mendeliome v0.6119 FOXF1 Zornitza Stark Phenotypes for gene: FOXF1 were changed from to Alveolar capillary dysplasia with misalignment of pulmonary veins, MIM# 265380
Mendeliome v0.6116 FOXF1 Zornitza Stark reviewed gene: FOXF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 19500772, 23505205; Phenotypes: Alveolar capillary dysplasia with misalignment of pulmonary veins, MIM# 265380; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6116 FOXF1 Kristin Rigbye reviewed gene: FOXF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 23505205, 27071622, 27855150; Phenotypes: Alveolar capillary dysplasia with misalignment of pulmonary veins (MIM#265380), AD; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.6116 STEAP3 Zornitza Stark Marked gene: STEAP3 as ready
Mendeliome v0.6112 FTH1 Zornitza Stark Marked gene: FTH1 as ready
Mendeliome v0.6112 FTH1 Zornitza Stark gene: FTH1 was added
gene: FTH1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: FTH1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FTH1 were set to 11389486
Phenotypes for gene: FTH1 were set to Hemochromatosis, type 5, MIM# 615517
Review for gene: FTH1 was set to RED
Added comment: One multi-generational family with 5' UTR variant.
Sources: Expert list
Mendeliome v0.6111 CYBRD1 Zornitza Stark Marked gene: CYBRD1 as ready
Mendeliome v0.6111 CYBRD1 Zornitza Stark gene: CYBRD1 was added
gene: CYBRD1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: CYBRD1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CYBRD1 were set to 15338274
Phenotypes for gene: CYBRD1 were set to Iron overload
Review for gene: CYBRD1 was set to RED
Added comment: Paucity of publications. One of the variants reported in PMID 15338274, p.Arg226His is present in over 1,000 hets in gnomad.
Sources: Expert list
Mendeliome v0.6110 BMP6 Zornitza Stark Marked gene: BMP6 as ready
Mendeliome v0.6109 BMP6 Zornitza Stark gene: BMP6 was added
gene: BMP6 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: BMP6 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: BMP6 were set to 26582087; 32464486
Phenotypes for gene: BMP6 were set to Iron overload, mild to moderate
Review for gene: BMP6 was set to GREEN
Added comment: More than 9 individuals reported with iron overload and variants in this gene.
Sources: Expert list
Mendeliome v0.6107 CREB3L3 Bryony Thompson gene: CREB3L3 was added
gene: CREB3L3 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: CREB3L3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CREB3L3 were set to 32580631; 29954705; 27982131; 27291420; 26427795; 21666694
Phenotypes for gene: CREB3L3 were set to Hyperlipidaemia; hypertriglyceridemia
Review for gene: CREB3L3 was set to AMBER
Added comment: PMID: 26427795 - a loss of function variant (c.359delG p.K120fsX20) was identified in 2 affected adult siblings and a 13 yo normotriglyceridemic daughter of one of the siblings.
PMID: 21666694 - Lipoprotein profiles of the families of 4 individuals with CREB3L3 nonsense mutations showed a significantly elevated mean plasma TG level in 11 mutation carriers compared with 5 non-carrier first-degree relatives (9.67 ± 4.70 vs. 1.66 ± 0.55 mM, P = 0.021, Wilcoxon test). 3 of those families have the same variant - Lys245GlufsTer130, which has 126 (281,946 alleles) hets in gnomAD v2.1.
PMID: 32580631 - case-control analysis of nonmonogenic severe hypertriglyceridemia cases (N=265) vs normolipidemic controls (N=477), identified 5 cases with LoF variants (3 of whom had the Lys245GlufsTer130 frameshift) and none in controls. OR 20.2 (95% CI 1.11–366.1) p = 0.002, adjusted p = 0.03.
The frequency of Lys245GlufsTer130 is higher than expected for a dominant disorder, but other loss of function variants have been identified. The gene may be associated with variable penetrance. There are multiple supporting null mouse models with hyperlipidaemia.
Sources: Expert list
Mendeliome v0.6106 GPIHBP1 Bryony Thompson Marked gene: GPIHBP1 as ready
Mendeliome v0.6105 GPIHBP1 Bryony Thompson gene: GPIHBP1 was added
gene: GPIHBP1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: GPIHBP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GPIHBP1 were set to 17883852; 19304573; 20026666; 17403372
Phenotypes for gene: GPIHBP1 were set to Hyperlipoproteinemia, type 1D MIM#615947; familial chylomicronemia syndrome
Review for gene: GPIHBP1 was set to GREEN
gene: GPIHBP1 was marked as current diagnostic
Added comment: Well-established cause of familial chylomicronemia (see OMIM). Greater than 3 families reported and a supporting mouse model.
Sources: Expert list
Mendeliome v0.6103 CBY1 Bryony Thompson Marked gene: CBY1 as ready
Mendeliome v0.6102 CBY1 Bryony Thompson gene: CBY1 was added
gene: CBY1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CBY1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CBY1 were set to 33131181; 25103236; 25220153
Phenotypes for gene: CBY1 were set to intellectual disability; cerebellar ataxia; molar tooth sign; polydactyly; Joubert syndrome
Review for gene: CBY1 was set to GREEN
Added comment: Three cases in two unrelated consanguineous families with homozygous loss of function variants. Multiple null model organisms recapitulate the human phenotype: Null mouse model had cystic kidneys, a phenotype common to ciliopathies. Reducing Cby levels in Xenopus laevis model reduced the density of multiciliated cells, the number of basal bodies per multiciliated cell, and the numbers of neural tube primary cilia; it also led to abnormal development of the neural crest, central nervous system, and pronephros. Depletion of cby1 in zebrafish results in ciliopathy‐related phenotypes.
Sources: Literature
Mendeliome v0.6101 ZMYND15 Bryony Thompson Marked gene: ZMYND15 as ready
Mendeliome v0.6100 ZMYND15 Bryony Thompson gene: ZMYND15 was added
gene: ZMYND15 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZMYND15 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZMYND15 were set to 24431330; 33169450; 20675388
Phenotypes for gene: ZMYND15 were set to Severe oligozoospermia
Review for gene: ZMYND15 was set to GREEN
Added comment: 4 unrelated consanguineous cases with homozygous loss of function variants. Zmynd15-null male mice display reduced testis weight and azoospermia
Sources: Literature
Mendeliome v0.6099 PNPLA1 Zornitza Stark Marked gene: PNPLA1 as ready
Mendeliome v0.6096 TMEM251 Bryony Thompson Marked gene: TMEM251 as ready
Mendeliome v0.6095 TMEM251 Bryony Thompson gene: TMEM251 was added
gene: TMEM251 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TMEM251 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMEM251 were set to 33252156
Phenotypes for gene: TMEM251 were set to Dysostosis multiplex‐like skeletal dysplasia; severe short stature
Review for gene: TMEM251 was set to AMBER
Added comment: Two unrelated consanguineous families with homozygous variants (c.133C>T; p.Arg45Trp and c.215dupA; p.Tyr72Ter), with co-segregation data in one family. Preliminary in vitro functional assays conducted - Tmem251 knockdown by small interfering RNA induced dedifferentiation of rat primary chondrocytes.
Sources: Literature
Mendeliome v0.6094 LOR Zornitza Stark Marked gene: LOR as ready
Mendeliome v0.6091 CYP4F22 Zornitza Stark Marked gene: CYP4F22 as ready
Mendeliome v0.6088 CERS3 Zornitza Stark Marked gene: CERS3 as ready
Mendeliome v0.6085 ALOX12B Zornitza Stark Marked gene: ALOX12B as ready
Mendeliome v0.6082 ALX3 Zornitza Stark Marked gene: ALX3 as ready
Mendeliome v0.6079 ALX3 Zornitza Stark changed review comment from: Intellectual disability is part of the phenotype.
Sources: Expert list; to: Well established gene-disease association.
Sources: Expert list
Mendeliome v0.6079 ALX1 Zornitza Stark Marked gene: ALX1 as ready
Mendeliome v0.6076 HIST1H1E Zornitza Stark Marked gene: HIST1H1E as ready
Mendeliome v0.6073 EED Zornitza Stark Marked gene: EED as ready
Mendeliome v0.6070 CLCN1 Zornitza Stark Marked gene: CLCN1 as ready
Mendeliome v0.6067 TUBG1 Zornitza Stark Marked gene: TUBG1 as ready
Mendeliome v0.6064 TUBB3 Zornitza Stark Marked gene: TUBB3 as ready
Mendeliome v0.6064 TUBB3 Zornitza Stark Phenotypes for gene: TUBB3 were changed from to Cortical dysplasia, complex, with other brain malformations 1, MIM# 614039; Fibrosis of extraocular muscles, congenital, 3A, MIM# 600638
Mendeliome v0.6061 TUBB3 Zornitza Stark reviewed gene: TUBB3: Rating: GREEN; Mode of pathogenicity: None; Publications: 20829227, 25059107, 33318778, 20074521; Phenotypes: Cortical dysplasia, complex, with other brain malformations 1, MIM# 614039, Fibrosis of extraocular muscles, congenital, 3A, MIM# 600638; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6061 TUBB2B Zornitza Stark Marked gene: TUBB2B as ready
Mendeliome v0.6058 TUBB Zornitza Stark Marked gene: TUBB as ready
Mendeliome v0.6055 FZD4 Zornitza Stark Marked gene: FZD4 as ready
Mendeliome v0.6052 TSPAN12 Zornitza Stark Marked gene: TSPAN12 as ready
Mendeliome v0.6049 PPP2R5D Zornitza Stark Marked gene: PPP2R5D as ready
Mendeliome v0.6049 PPP2R5D Zornitza Stark Phenotypes for gene: PPP2R5D were changed from to Mental retardation, autosomal dominant 35, MIM#616355
Mendeliome v0.6045 KAT6B Zornitza Stark Marked gene: KAT6B as ready
Mendeliome v0.6045 KAT6B Zornitza Stark Phenotypes for gene: KAT6B were changed from to SBBYSS syndrome MIM#603736; Genitopatellar syndrome MIM#606170
Mendeliome v0.6041 DVL1 Zornitza Stark Marked gene: DVL1 as ready
Mendeliome v0.6039 DVL1 Zornitza Stark Mode of pathogenicity for gene: DVL1 was changed from to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Mendeliome v0.6037 ZFP36L1 Zornitza Stark Marked gene: ZFP36L1 as ready
Mendeliome v0.6035 SCAMP5 Zornitza Stark edited their review of gene: SCAMP5: Added comment: PMID 33390987: Four unrelated individuals reported with same de novo missense variant, p. Gly180Trp. The onset age of seizures was ranged from 6 to 15 months. Patients had different types of seizures, including focal seizures, generalized tonic-clonic seizures and tonic seizure. One patient showed typical autism spectrum disorder (ASD) symptoms. Electroencephalogram (EEG) findings presented as focal or multifocal discharges, sometimes spreading to generalization. Brain magnetic resonance imaging (MRI) abnormalities were present in each patient. Severe intellectual disability and language and motor developmental disorders were found in our patients, with all patients having poor language development and were nonverbal at last follow-up. All but one of the patients could walk independently in childhood, but the ability to walk independently in one patient had deteriorated with age. All patients had abnormal neurological exam findings, mostly signs of extrapyramidal system involvement. Dysmorphic features were found in 2/4 patients, mainly in the face and trunk.; Changed publications: 31439720, 33390987
Mendeliome v0.6032 ZNF526 Zornitza Stark Phenotypes for gene: ZNF526 were changed from to Intellectual disability; Microcephaly; Cataracts; Epilepsy; Hypertonia; Dystonia
Mendeliome v0.6027 MORC2 Zornitza Stark Phenotypes for gene: MORC2 were changed from Charcot-Marie-Tooth disease, axonal, type 2Z, MIM# 616688; Intellectual disability to Charcot-Marie-Tooth disease, axonal, type 2Z, MIM# 616688; Developmental delay, impaired growth, dysmorphic facies, and axonal neuropathy, MIM# 619090
Mendeliome v0.6026 MORC2 Zornitza Stark edited their review of gene: MORC2: Changed phenotypes: Charcot-Marie-Tooth disease, axonal, type 2Z, MIM# 616688, Developmental delay, impaired growth, dysmorphic facies, and axonal neuropathy, MIM# 619090
Mendeliome v0.6026 PPP2R5D Elena Savva reviewed gene: PPP2R5D: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 32074998, 26168268; Phenotypes: Mental retardation, autosomal dominant 35, MIM#616355; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.6026 KAT6B Elena Savva reviewed gene: KAT6B: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 22715153, 32424177; Phenotypes: SBBYSS syndrome MIM#603736, Genitopatellar syndrome MIM#606170; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.6026 DVL1 Kristin Rigbye reviewed gene: DVL1: Rating: GREEN; Mode of pathogenicity: Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments; Publications: 25817014, 25817016; Phenotypes: Robinow syndrome, autosomal dominant 2 (MIM#616331); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, paternally imprinted (maternal allele expressed)
Mendeliome v0.6026 ZNF526 Arina Puzriakova reviewed gene: ZNF526: Rating: GREEN; Mode of pathogenicity: None; Publications: 21937992, 25558065, 33397746; Phenotypes: Intellectual disability, Microcephaly, Cataracts, Epilepsy, Hypertonia, Dystonia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6026 INTS6 Zornitza Stark Marked gene: INTS6 as ready
Mendeliome v0.6025 BCS1L Zornitza Stark Marked gene: BCS1L as ready
Mendeliome v0.6025 BCS1L Zornitza Stark Phenotypes for gene: BCS1L were changed from to Bjornstad syndrome MIM#262000; GRACILE syndrome, MIM#603358; Mitochondrial complex III deficiency, nuclear type MIM#1124000
Mendeliome v0.6022 MRPS22 Zornitza Stark Marked gene: MRPS22 as ready
Mendeliome v0.6022 MRPS22 Zornitza Stark Phenotypes for gene: MRPS22 were changed from to Combined oxidative phosphorylation deficiency 5 MIM#611719; Ovarian dysgenesis 7 MIM#618117
Mendeliome v0.6019 BCS1L Elena Savva reviewed gene: BCS1L: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 17314340; Phenotypes: Bjornstad syndrome MIM#262000, GRACILE syndrome, MIM#603358, Mitochondrial complex III deficiency, nuclear type MIM#1124000; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.6019 MRPS22 Elena Savva reviewed gene: MRPS22: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 29566152; Phenotypes: Combined oxidative phosphorylation deficiency 5 MIM#611719, Ovarian dysgenesis 7 MIM#618117; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6019 CELF2 Zornitza Stark Marked gene: CELF2 as ready
Mendeliome v0.6018 CELF2 Zornitza Stark gene: CELF2 was added
gene: CELF2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CELF2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CELF2 were set to 33131106
Phenotypes for gene: CELF2 were set to Developmental and epileptic encephalopathy
Review for gene: CELF2 was set to GREEN
Added comment: Five unrelated individuals reported. Four with de novo variants, and one inherited from a mosaic mother. Notably, all identified variants, except for c.272‐1G>C, were clustered within 20 amino acid residues of the C‐terminus, which might be a nuclear localization signal.
Sources: Literature
Mendeliome v0.6017 FGF13 Zornitza Stark Marked gene: FGF13 as ready
Mendeliome v0.6016 FGF13 Zornitza Stark gene: FGF13 was added
gene: FGF13 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FGF13 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: FGF13 were set to 33245860
Phenotypes for gene: FGF13 were set to Intellectual disability; epilepsy
Mode of pathogenicity for gene: FGF13 was set to Other
Review for gene: FGF13 was set to GREEN
Added comment: Two sibling pairs and three unrelated males reported who presented in infancy with intractable focal seizures and severe developmental delay.

The variants were located in the N-terminal domain of the A isoform of FGF13/FHF2 (FHF2A). The X-linked FHF2 gene (also known as FGF13) has alternative first exons which produce multiple protein isoforms that differ in their N-terminal sequence. The variants were located at highly conserved residues in the FHF2A inactivation particle that competes with the intrinsic fast inactivation mechanism of Nav channels. Functional characterization of mutant FHF2A co-expressed with wild-type Nav1.6 (SCN8A) revealed that mutant FHF2A proteins lost the ability to induce rapid-onset, long-term blockade of the channel while retaining pro-excitatory properties. These gain-of-function effects are likely to increase neuronal excitability consistent with the epileptic potential of FHF2 variants.
Sources: Literature
Mendeliome v0.6015 SCUBE3 Zornitza Stark Marked gene: SCUBE3 as ready
Mendeliome v0.6014 SCUBE3 Zornitza Stark changed review comment from: Eighteen affected individuals from nine unrelated families reported with a consistent phenotype characterised by reduced growth, skeletal features, distinctive craniofacial appearance, and dental anomalies.
Sources: Literature; to: Eighteen affected individuals from nine unrelated families reported with a consistent phenotype characterised by reduced growth, skeletal features, distinctive craniofacial appearance, and dental anomalies. Mouse model recapitulated phenotype.
Sources: Literature
Mendeliome v0.6014 SCUBE3 Zornitza Stark gene: SCUBE3 was added
gene: SCUBE3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SCUBE3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SCUBE3 were set to 33308444
Phenotypes for gene: SCUBE3 were set to Short stature; skeletal abnormalities; craniofacial abnormalities; dental anomalies
Review for gene: SCUBE3 was set to GREEN
Added comment: Eighteen affected individuals from nine unrelated families reported with a consistent phenotype characterised by reduced growth, skeletal features, distinctive craniofacial appearance, and dental anomalies.
Sources: Literature
Mendeliome v0.6013 UBR7 Zornitza Stark Marked gene: UBR7 as ready
Mendeliome v0.6012 UBR7 Zornitza Stark gene: UBR7 was added
gene: UBR7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UBR7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UBR7 were set to 33340455
Phenotypes for gene: UBR7 were set to Intellectual disability; epilepsy; hypothyroidism; congenital anomalies; dysmorphic features
Review for gene: UBR7 was set to GREEN
Added comment: Seven individuals from 6 unrelated families. All had developmental delay, and all males had urogenital anomalies, namely cryptorchidism in 5/6 and small penis in 1/6. Six individuals had seizures and hypotonia. Hypothyroidism was present in 4/7 individuals, and ptosis was noted in 6/7 individuals. Five individuals exhibited cardiac abnormalities: two had ventricular septal defect, one had atrial septal defect, one had a patent ductus arteriosus requiring surgery, and the other had a patent ductus arteriosus and a patent foramen ovale that both closed spontaneously. Five individuals had short stature (height < 3rd percentile). Physical examination revealed various dysmorphic features, including prominent forehead (3/7), hypertelorism (4/7), telecanthus (1/7), epicanthus(1/7), downslanting palpebral fissures (3/7), thick eyebrow (1/7), low-set ears (3/7), long philtrum (2/7), unilateral single transverse palmar crease (1/7), and hypertrichosis (1/7).
Sources: Literature
Mendeliome v0.6011 RNU7-1 Zornitza Stark Marked gene: RNU7-1 as ready
Mendeliome v0.6011 RNU7-1 Zornitza Stark Phenotypes for gene: RNU7-1 were changed from PMID: 33230297 to Aicardi–Goutières syndrome-like
Mendeliome v0.6009 RABL2A Zornitza Stark Marked gene: RABL2A as ready
Mendeliome v0.6005 AKT1 Zornitza Stark reviewed gene: AKT1: Rating: GREEN; Mode of pathogenicity: Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments; Publications: 21793738; Phenotypes: Proteus syndrome, somatic 176920; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6005 CEP250 Zornitza Stark Marked gene: CEP250 as ready
Mendeliome v0.6005 CEP250 Zornitza Stark Phenotypes for gene: CEP250 were changed from to Cone-rod dystrophy and hearing loss 2, MIM# 618358
Mendeliome v0.6002 CEP250 Zornitza Stark reviewed gene: CEP250: Rating: GREEN; Mode of pathogenicity: None; Publications: 24780881, 29718797, 30459346; Phenotypes: Cone-rod dystrophy and hearing loss 2, MIM# 618358; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6002 RABL2A Eleanor Williams gene: RABL2A was added
gene: RABL2A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RABL2A was set to Unknown
Publications for gene: RABL2A were set to 33075816
Phenotypes for gene: RABL2A were set to male infertility; ciliopathy
Review for gene: RABL2A was set to RED
Added comment: PMID: 33075816 - Ding et al 2020 - with the aim of identifying variants that affect male fertility, the authors report on mice expressing two RABL2A SNPs found to be rare (MAF between 2% and 0.02% in gnomAD, with a deleterious prediction from SIFT and PolyPhen-2, and to affect protein stability. Mice homozygous for these variants (p.L119F and p.V158F) were found to be show ciliopathy-associated disorders including male infertility, early growth retardation, excessive weight gain in adulthood, heterotaxia, pre-axial polydactyly, neural tube defects and hydrocephalus.
Sources: Literature
Mendeliome v0.6002 VCAN Zornitza Stark Marked gene: VCAN as ready
Mendeliome v0.5999 CAPN5 Zornitza Stark Marked gene: CAPN5 as ready
Mendeliome v0.5999 CAPN5 Zornitza Stark Phenotypes for gene: CAPN5 were changed from to Vitreoretinopathy, neovascular inflammatory, MIM# 193235
Mendeliome v0.5996 CAPN5 Zornitza Stark reviewed gene: CAPN5: Rating: GREEN; Mode of pathogenicity: None; Publications: 23055945, 32274441, 31110225, 30986125; Phenotypes: Vitreoretinopathy, neovascular inflammatory, MIM# 193235; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5996 UBIAD1 Zornitza Stark Marked gene: UBIAD1 as ready
Mendeliome v0.5993 TGFBI Zornitza Stark Marked gene: TGFBI as ready
Mendeliome v0.5990 TACSTD2 Zornitza Stark Marked gene: TACSTD2 as ready
Mendeliome v0.5987 KIF27 Zornitza Stark Marked gene: KIF27 as ready
Mendeliome v0.5986 ZEB1 Zornitza Stark Marked gene: ZEB1 as ready
Mendeliome v0.5983 ZNF469 Zornitza Stark Marked gene: ZNF469 as ready
Mendeliome v0.5980 PIKFYVE Zornitza Stark Marked gene: PIKFYVE as ready
Mendeliome v0.5977 OVOL2 Zornitza Stark Marked gene: OVOL2 as ready
Mendeliome v0.5974 KRT3 Zornitza Stark Marked gene: KRT3 as ready
Mendeliome v0.5971 DCN Zornitza Stark Marked gene: DCN as ready
Mendeliome v0.5968 COL8A2 Zornitza Stark Marked gene: COL8A2 as ready
Mendeliome v0.5965 STX3 Zornitza Stark Marked gene: STX3 as ready
Mendeliome v0.5962 SPINT2 Zornitza Stark Marked gene: SPINT2 as ready
Mendeliome v0.5962 SPINT2 Zornitza Stark Phenotypes for gene: SPINT2 were changed from to Diarrhoea 3, secretory sodium, congenital, syndromic 270420
Mendeliome v0.5959 SPINT2 Zornitza Stark reviewed gene: SPINT2: Rating: GREEN; Mode of pathogenicity: None; Publications: 24142340, 30445423; Phenotypes: Diarrhoea 3, secretory sodium, congenital, syndromic 270420; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5959 SLC9A3 Zornitza Stark Marked gene: SLC9A3 as ready
Mendeliome v0.5959 SLC9A3 Zornitza Stark Phenotypes for gene: SLC9A3 were changed from to Diarrhoea 8, secretory sodium, congenital 616868
Mendeliome v0.5956 SLC9A3 Zornitza Stark reviewed gene: SLC9A3: Rating: GREEN; Mode of pathogenicity: None; Publications: 30633106, 31276831, 26358773; Phenotypes: Diarrhoea 8, secretory sodium, congenital 616868; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5956 SLC5A1 Zornitza Stark Marked gene: SLC5A1 as ready
Mendeliome v0.5953 SLC39A4 Zornitza Stark Marked gene: SLC39A4 as ready
Mendeliome v0.5950 SLC26A3 Zornitza Stark Marked gene: SLC26A3 as ready
Mendeliome v0.5950 SLC26A3 Zornitza Stark Phenotypes for gene: SLC26A3 were changed from to Diarrhoea 1, secretory chloride, congenital, MIM# 214700
Mendeliome v0.5947 SLC26A3 Zornitza Stark reviewed gene: SLC26A3: Rating: GREEN; Mode of pathogenicity: None; Publications: 31325522, 19861545, 11524734; Phenotypes: Diarrhoea 1, secretory chloride, congenital, MIM# 214700; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5947 SLC51B Zornitza Stark Marked gene: SLC51B as ready
Mendeliome v0.5947 SLC51B Zornitza Stark gene: SLC51B was added
gene: SLC51B was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: SLC51B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC51B were set to 28898457
Phenotypes for gene: SLC51B were set to Congenital diarrhoea; Cholestasis
Review for gene: SLC51B was set to RED
Added comment: Two siblings reported with homozygous LOF variant in this gene and congenital diarrhoea/cholestasis.
Sources: Expert Review
Mendeliome v0.5946 SLC10A2 Zornitza Stark Marked gene: SLC10A2 as ready
Mendeliome v0.5946 SLC10A2 Zornitza Stark Phenotypes for gene: SLC10A2 were changed from to Bile acid malabsorption, primary, MIM# 613291
Mendeliome v0.5942 SLC10A2 Zornitza Stark reviewed gene: SLC10A2: Rating: RED; Mode of pathogenicity: None; Publications: 9109432; Phenotypes: Bile acid malabsorption, primary, MIM# 613291; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5942 PLVAP Zornitza Stark Marked gene: PLVAP as ready
Mendeliome v0.5942 PLVAP Zornitza Stark Phenotypes for gene: PLVAP were changed from to Diarrhoea 10, protein-losing enteropathy type, MIM# 618183
Mendeliome v0.5939 PLVAP Zornitza Stark reviewed gene: PLVAP: Rating: GREEN; Mode of pathogenicity: None; Publications: 29875123, 29661969, 26207260, 31215290; Phenotypes: Diarrhoea 10, protein-losing enteropathy type, MIM# 618183; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5939 NEUROG3 Zornitza Stark Marked gene: NEUROG3 as ready
Mendeliome v0.5939 NEUROG3 Zornitza Stark Phenotypes for gene: NEUROG3 were changed from to Diarrhoea 4, malabsorptive, congenital, MIM# 610370
Mendeliome v0.5936 NEUROG3 Zornitza Stark reviewed gene: NEUROG3: Rating: GREEN; Mode of pathogenicity: None; Publications: 16855267, 32574610, 28724572, 21490072; Phenotypes: Diarrhoea 4, malabsorptive, congenital, MIM# 610370; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5936 TMPRSS15 Zornitza Stark Marked gene: TMPRSS15 as ready
Mendeliome v0.5933 TTC37 Zornitza Stark Marked gene: TTC37 as ready
Mendeliome v0.5930 WNT2B Zornitza Stark Marked gene: WNT2B as ready
Mendeliome v0.5930 WNT2B Zornitza Stark Phenotypes for gene: WNT2B were changed from to Diarrhoea 9, MIM# 618168
Mendeliome v0.5927 WNT2B Zornitza Stark reviewed gene: WNT2B: Rating: GREEN; Mode of pathogenicity: None; Publications: 29909964; Phenotypes: Diarrhoea 9, MIM# 618168; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5927 MYO5B Zornitza Stark Marked gene: MYO5B as ready
Mendeliome v0.5924 LCT Zornitza Stark Marked gene: LCT as ready
Mendeliome v0.5922 FBRSL1 Zornitza Stark Marked gene: FBRSL1 as ready
Mendeliome v0.5922 CAMK2B Zornitza Stark Marked gene: CAMK2B as ready
Mendeliome v0.5922 CAMK2B Zornitza Stark Phenotypes for gene: CAMK2B were changed from to Mental retardation, autosomal dominant 54, MIM# 617799
Mendeliome v0.5919 CAMK2B Zornitza Stark reviewed gene: CAMK2B: Rating: GREEN; Mode of pathogenicity: None; Publications: 29100089, 29560374, 32875707; Phenotypes: Mental retardation, autosomal dominant 54, MIM# 617799; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5918 RALGAPB Seb Lunke Marked gene: RALGAPB as ready
Mendeliome v0.5917 RALGAPB Elena Savva gene: RALGAPB was added
gene: RALGAPB was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RALGAPB was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: RALGAPB were set to PMID: 32853829
Phenotypes for gene: RALGAPB were set to Neurodevelopmental disorders, autism
Review for gene: RALGAPB was set to GREEN
Added comment: PMID: 32853829 - 2 patients with de novo missense variants, 1 patient with a de novo PTC with autism spectrum disorder from a large cohort.
Reviews previous publications and identifies 10 de novo variants (5 PTCs, 5 missense) in patients with ASD (7/10), epilepsy (2/10) and developmental delay (1/10).
Functional studies of patient cells show reduced mRNA expression (PTC).
Sources: Literature
Mendeliome v0.5917 RPL3L Seb Lunke Marked gene: RPL3L as ready
Mendeliome v0.5916 LSM11 Seb Lunke Marked gene: LSM11 as ready
Mendeliome v0.5915 DPH2 Seb Lunke Marked gene: DPH2 as ready
Mendeliome v0.5914 RNU7-1 Ee Ming Wong changed review comment from: - 16 affected individuals from 11 families
- - Compared to control fibroblasts, patient fibroblasts were enriched for misprocessed forms of
replication-dependent histone (RDH) mRNAs
Sources: Literature; to: - 16 affected individuals from 11 families
- Compared to control fibroblasts, patient fibroblasts were enriched for misprocessed forms of
replication-dependent histone (RDH) mRNAs
Sources: Literature
Mendeliome v0.5914 RNU7-1 Ee Ming Wong gene: RNU7-1 was added
gene: RNU7-1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RNU7-1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RNU7-1 were set to PMID: 33230297
Phenotypes for gene: RNU7-1 were set to PMID: 33230297
Review for gene: RNU7-1 was set to GREEN
gene: RNU7-1 was marked as current diagnostic
Added comment: - 16 affected individuals from 11 families
- - Compared to control fibroblasts, patient fibroblasts were enriched for misprocessed forms of
replication-dependent histone (RDH) mRNAs
Sources: Literature
Mendeliome v0.5914 RPL3L Elena Savva gene: RPL3L was added
gene: RPL3L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RPL3L was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RPL3L were set to PMID: 32514796; 32870709
Phenotypes for gene: RPL3L were set to Neonatal dilated cardiomyopathy
Review for gene: RPL3L was set to GREEN
Added comment: PMID: 32514796 - 5 hom/chet individuals from three independent families who presented with severe neonatal dilated cardiomyopathy. Unaffected sibs were either carriers of a single variant or homozygous wildtype.

PMID: 32870709 - 1 hom patient w/ neonatal DCM
Sources: Literature
Mendeliome v0.5914 LSM11 Ee Ming Wong gene: LSM11 was added
gene: LSM11 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LSM11 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LSM11 were set to PMID: 33230297
Phenotypes for gene: LSM11 were set to type I interferonopathy Aicardi–Goutières syndrome
Review for gene: LSM11 was set to AMBER
gene: LSM11 was marked as current diagnostic
Added comment: - Two affected siblings from a consanguineous family carrying a homozygous variant in LSM11
- Compared to control fibroblasts, patient fibroblasts were enriched for misprocessed forms of
replication-dependent histone (RDH) mRNAs
- Knockdown of LSM11 in THP-1 cells results in an increase in misprocessed RDH mRNA and
interferon signaling
Sources: Literature
Mendeliome v0.5914 DPH2 Paul De Fazio changed review comment from: One family reported (PMID:32576952) with biallelic (one missense, one nonsense) variants in DPH2, with phenotype similar to DPH1 deficiency.

Another family was previously reported with biallelic nonsense variants (PMID:27421267) with a comparable phenotype, this family also has biallelic variants in KALRN and the authors thought those variants more likely causative.

In vitro functional assays support reduced diphthamide synthesis activity for the variants identified in PMID:32576952.
Sources: Literature; to: One 19 month old reported (PMID:32576952) with biallelic (one missense, one nonsense) variants in DPH2, with phenotype similar to DPH1 deficiency (gross motor delay, not walking, fine motor and expressive language delays, macrocephaly)

Another family (sibs) was previously reported with biallelic nonsense variants (PMID:27421267) with a comparable phenotype, this family also has biallelic variants in KALRN and the authors thought those variants more likely causative. Patients had ID and microcephaly (in contrast to the 19 month old above).

In vitro functional assays support reduced diphthamide synthesis activity for the variants identified in PMID:32576952.
Sources: Literature
Mendeliome v0.5914 DPH2 Paul De Fazio gene: DPH2 was added
gene: DPH2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DPH2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DPH2 were set to 32576952; 27421267
Phenotypes for gene: DPH2 were set to Diphthamide-deficiency syndrome
Review for gene: DPH2 was set to AMBER
gene: DPH2 was marked as current diagnostic
Added comment: One family reported (PMID:32576952) with biallelic (one missense, one nonsense) variants in DPH2, with phenotype similar to DPH1 deficiency.

Another family was previously reported with biallelic nonsense variants (PMID:27421267) with a comparable phenotype, this family also has biallelic variants in KALRN and the authors thought those variants more likely causative.

In vitro functional assays support reduced diphthamide synthesis activity for the variants identified in PMID:32576952.
Sources: Literature
Mendeliome v0.5914 FBRSL1 Elena Savva gene: FBRSL1 was added
gene: FBRSL1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FBRSL1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: FBRSL1 were set to PMID: 32424618
Phenotypes for gene: FBRSL1 were set to Malformation and intellectual disability syndrome
Review for gene: FBRSL1 was set to GREEN
Added comment: Three children with de novo PTCs that escape NMD, and an overlapping syndromic phenotype with respiratory insufficiency, postnatal growth restriction, microcephaly, global developmental delay and other malformations. 2/3 had heart defects, cleft palate and hearing impairement.
Supported by Xenopus oocyte functional studies
Sources: Literature
Mendeliome v0.5914 EPCAM Zornitza Stark Marked gene: EPCAM as ready
Mendeliome v0.5914 EPCAM Zornitza Stark Phenotypes for gene: EPCAM were changed from to Diarrhea 5, with tufting enteropathy, congenital, MIM# 613217
Mendeliome v0.5911 EPCAM Zornitza Stark reviewed gene: EPCAM: Rating: GREEN; Mode of pathogenicity: None; Publications: 24142340; Phenotypes: Diarrhea 5, with tufting enteropathy, congenital, MIM# 613217; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5911 DGAT1 Zornitza Stark Marked gene: DGAT1 as ready
Mendeliome v0.5911 DGAT1 Zornitza Stark Phenotypes for gene: DGAT1 were changed from to Diarrhoea 7, protein-losing enteropathy type, MIM# 615863
Mendeliome v0.5908 DGAT1 Zornitza Stark reviewed gene: DGAT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 33261563, 32786057, 31778854, 28373485, 29604290; Phenotypes: Diarrhoea 7, protein-losing enteropathy type, MIM# 615863; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5908 CPA6 Zornitza Stark Marked gene: CPA6 as ready
Mendeliome v0.5904 CPA6 Zornitza Stark edited their review of gene: CPA6: Added comment: Homozygous p.A270V variant reported in four siblings with Febrile seizures, familial, 11 (MIM 614418)(PMID:21922598), some functional data. Present in gnomad as hets but no homs. Also note one of the heterozygous individuals initially reported was subsequently found to have a second missense variant, PMID 23105115.

Disputed association between mono allelic variants and disease: variants reported have high frequency in gnomad, not in keeping with Mendelian disorder.; Changed rating: AMBER; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5904 HSD17B10 Zornitza Stark Marked gene: HSD17B10 as ready
Mendeliome v0.5902 HMGCS2 Zornitza Stark Marked gene: HMGCS2 as ready
Mendeliome v0.5899 HMGCL Zornitza Stark Marked gene: HMGCL as ready
Mendeliome v0.5896 GLUD1 Zornitza Stark Marked gene: GLUD1 as ready
Mendeliome v0.5891 AGPAT2 Zornitza Stark Marked gene: AGPAT2 as ready
Mendeliome v0.5888 LPIN1 Zornitza Stark Marked gene: LPIN1 as ready
Mendeliome v0.5885 MLYCD Zornitza Stark Marked gene: MLYCD as ready
Mendeliome v0.5885 MLYCD Zornitza Stark Phenotypes for gene: MLYCD were changed from to Malonyl-CoA decarboxylase deficiency, MIM# 248360
Mendeliome v0.5882 MLYCD Zornitza Stark reviewed gene: MLYCD: Rating: GREEN; Mode of pathogenicity: None; Publications: 12955715; Phenotypes: Malonyl-CoA decarboxylase deficiency, MIM# 248360; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5882 SLC25A20 Zornitza Stark Marked gene: SLC25A20 as ready
Mendeliome v0.5882 SLC25A20 Zornitza Stark Phenotypes for gene: SLC25A20 were changed from to Carnitine-acylcarnitine translocase deficiency, MIM# 212138
Mendeliome v0.5879 SLC25A20 Zornitza Stark reviewed gene: SLC25A20: Rating: GREEN; Mode of pathogenicity: None; Publications: 15363639, 15365988, 24088670; Phenotypes: Carnitine-acylcarnitine translocase deficiency, MIM# 212138; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5879 GABRD Zornitza Stark Marked gene: GABRD as ready
Mendeliome v0.5875 SPR Zornitza Stark Marked gene: SPR as ready
Mendeliome v0.5872 PRRT2 Zornitza Stark Marked gene: PRRT2 as ready
Mendeliome v0.5872 PRRT2 Zornitza Stark Phenotypes for gene: PRRT2 were changed from to Convulsions, familial infantile, with paroxysmal choreoathetosis 602066; Episodic kinesigenic dyskinesia 1 128200; Seizures, benign familial infantile, 2 605751
Mendeliome v0.5869 PRRT2 Zornitza Stark reviewed gene: PRRT2: Rating: GREEN; Mode of pathogenicity: None; Publications: 33126500; Phenotypes: Convulsions, familial infantile, with paroxysmal choreoathetosis 602066, Episodic kinesigenic dyskinesia 1 128200, Seizures, benign familial infantile, 2 605751; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5869 KCNQ3 Zornitza Stark Marked gene: KCNQ3 as ready
Mendeliome v0.5866 PRKACB Zornitza Stark Marked gene: PRKACB as ready
Mendeliome v0.5866 PRKACB Zornitza Stark Phenotypes for gene: PRKACB were changed from Postaxial hand polydactyly; Postaxial foot polydactyly; Common atrium; Atrioventricular canal defect; Narrow chest; Abnormality of the teeth; Intellectual disability to Cardioacrofacial dysplasia 2, MIM# 619143; Postaxial hand polydactyly; Postaxial foot polydactyly; Common atrium; Atrioventricular canal defect; Narrow chest; Abnormality of the teeth; Intellectual disability
Mendeliome v0.5865 PRKACB Zornitza Stark reviewed gene: PRKACB: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Cardioacrofacial dysplasia 2, MIM# 619143; Mode of inheritance: None
Mendeliome v0.5865 PRKACA Zornitza Stark Phenotypes for gene: PRKACA were changed from Postaxial hand polydactyly; Postaxial foot polydactyly; Common atrium; Atrioventricular canal defect; Narrow chest; Abnormality of the teeth to Cardioacrofacial dysplasia 1, MIM# 619142; Postaxial hand polydactyly; Postaxial foot polydactyly; Common atrium; Atrioventricular canal defect; Narrow chest; Abnormality of the teeth; Intellectual disability
Mendeliome v0.5864 PRKACA Zornitza Stark reviewed gene: PRKACA: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Cardioacrofacial dysplasia 1, MIM# 619142; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5864 SCARF2 Zornitza Stark Marked gene: SCARF2 as ready
Mendeliome v0.5864 SCARF2 Zornitza Stark Gene: scarf2 has been classified as Green List (High Evidence).
Mendeliome v0.5864 SCARF2 Zornitza Stark Phenotypes for gene: SCARF2 were changed from to Van den Ende-Gupta syndrome, MIM# 600920
Mendeliome v0.5863 SCARF2 Zornitza Stark Publications for gene: SCARF2 were set to
Mendeliome v0.5862 SCARF2 Zornitza Stark Mode of inheritance for gene: SCARF2 was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5861 SCARF2 Zornitza Stark reviewed gene: SCARF2: Rating: GREEN; Mode of pathogenicity: None; Publications: 20887961, 23808541, 24478002, 27375131, 24478002; Phenotypes: Van den Ende-Gupta syndrome, MIM# 600920; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5861 YIF1B Zornitza Stark Phenotypes for gene: YIF1B were changed from Central hypotonia; Failure to thrive; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Spasticity; Abnormality of movement to Kaya-Barakat-Masson syndrome, MIM# 619125; Central hypotonia; Failure to thrive; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Spasticity; Abnormality of movement
Mendeliome v0.5860 YIF1B Zornitza Stark edited their review of gene: YIF1B: Changed phenotypes: Kaya-Barakat-Masson syndrome, MIM# 619125, Central hypotonia, Failure to thrive, Microcephaly, Global developmental delay, Intellectual disability, Seizures, Spasticity, Abnormality of movement
Mendeliome v0.5860 GSTO1 Zornitza Stark Marked gene: GSTO1 as ready
Mendeliome v0.5857 PRR12 Zornitza Stark Marked gene: PRR12 as ready
Mendeliome v0.5854 PRSS56 Zornitza Stark Marked gene: PRSS56 as ready
Mendeliome v0.5851 GJA8 Zornitza Stark Marked gene: GJA8 as ready
Mendeliome v0.5851 GJA8 Zornitza Stark Phenotypes for gene: GJA8 were changed from to Cataract 1, multiple types, MIM# 116200; Microphthalmia
Mendeliome v0.5848 GJA8 Zornitza Stark reviewed gene: GJA8: Rating: GREEN; Mode of pathogenicity: None; Publications: 30498267, 29464339, 10480374, 18006672; Phenotypes: Cataract 1, multiple types, MIM# 116200, Microphthalmia; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5848 ATIC Zornitza Stark Marked gene: ATIC as ready
Mendeliome v0.5845 FZD5 Zornitza Stark Marked gene: FZD5 as ready
Mendeliome v0.5843 STRA6 Zornitza Stark Marked gene: STRA6 as ready
Mendeliome v0.5840 SOX2 Zornitza Stark Marked gene: SOX2 as ready
Mendeliome v0.5837 SIX6 Zornitza Stark Marked gene: SIX6 as ready
Mendeliome v0.5837 SIX6 Zornitza Stark Phenotypes for gene: SIX6 were changed from to Optic disc anomalies with retinal and/or macular dystrophy, MIM# 212550
Mendeliome v0.5834 SIX6 Zornitza Stark reviewed gene: SIX6: Rating: GREEN; Mode of pathogenicity: None; Publications: 23167593, 24702266, 33108933, 31207931, 24702266; Phenotypes: Optic disc anomalies with retinal and/or macular dystrophy, MIM# 212550; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5834 RERE Zornitza Stark Marked gene: RERE as ready
Mendeliome v0.5834 RERE Zornitza Stark Phenotypes for gene: RERE were changed from to Neurodevelopmental disorder with or without anomalies of the brain, eye, or heart, MIM# 616975
Mendeliome v0.5831 RERE Zornitza Stark reviewed gene: RERE: Rating: GREEN; Mode of pathogenicity: None; Publications: 27087320, 23451234, 30896913, 30061196; Phenotypes: Neurodevelopmental disorder with or without anomalies of the brain, eye, or heart, MIM# 616975; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5830 RAX Zornitza Stark Marked gene: RAX as ready
Mendeliome v0.5826 RARB Zornitza Stark Marked gene: RARB as ready
Mendeliome v0.5826 RARB Zornitza Stark Gene: rarb has been classified as Green List (High Evidence).
Mendeliome v0.5826 RARB Zornitza Stark Phenotypes for gene: RARB were changed from to Microphthalmia, syndromic 12, MIM# 615524
Mendeliome v0.5825 RARB Zornitza Stark Publications for gene: RARB were set to
Mendeliome v0.5824 RARB Zornitza Stark Mode of pathogenicity for gene: RARB was changed from to Other
Mendeliome v0.5823 RARB Zornitza Stark Mode of inheritance for gene: RARB was changed from Unknown to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.5822 RARB Zornitza Stark reviewed gene: RARB: Rating: GREEN; Mode of pathogenicity: Other; Publications: 30880327, 30281527, 24075189, 27120018, 25457163, 17506106; Phenotypes: Microphthalmia, syndromic 12, MIM# 615524; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.5822 RARA Zornitza Stark Phenotypes for gene: RARA were changed from to Syndromic chorioretinal coloboma
Mendeliome v0.5821 RARA Zornitza Stark Publications for gene: RARA were set to
Mendeliome v0.5820 RARA Zornitza Stark Mode of inheritance for gene: RARA was changed from Unknown to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5819 RARA Zornitza Stark edited their review of gene: RARA: Added comment: Single case report of de novo missense variant in association with syndromic coloboma.; Changed publications: 31343737; Changed phenotypes: Syndromic chorioretinal coloboma
Mendeliome v0.5819 PXDN Zornitza Stark Marked gene: PXDN as ready
Mendeliome v0.5816 SMOC1 Zornitza Stark Marked gene: SMOC1 as ready
Mendeliome v0.5813 MFRP Zornitza Stark Marked gene: MFRP as ready
Mendeliome v0.5810 MAB21L2 Zornitza Stark Marked gene: MAB21L2 as ready
Mendeliome v0.5807 MAB21L2 Zornitza Stark changed review comment from: More than 7 unrelated families reported with microphthalmia/anophthalmia/coloboma and rhizomelia. Two individuals with the c.151C > T (p.Arg51Cys) variant also had ID. One family reported with eye phenotype and bi-allelic missense variants, LIMITED evidence for bi-allelic disease. Three different animal models support gene-disease association.; to: More than 7 unrelated families reported with microphthalmia/anophthalmia/coloboma and rhizomelia. Several individuals with the c.151C > T (p.Arg51Cys) variant also had ID. One family reported with eye phenotype and bi-allelic missense variants, LIMITED evidence for bi-allelic disease. Three different animal models support gene-disease association.
Mendeliome v0.5807 PDSS1 Zornitza Stark Marked gene: PDSS1 as ready
Mendeliome v0.5807 PDSS1 Zornitza Stark Phenotypes for gene: PDSS1 were changed from to Coenzyme Q10 deficiency, primary, 2 MIM#614651
Mendeliome v0.5804 PDSS1 Paul De Fazio reviewed gene: PDSS1: Rating: GREEN; Mode of pathogenicity: None; Publications: 17332895, 22494076, 33285023; Phenotypes: Coenzyme Q10 deficiency, primary, 2 MIM#614651; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.5804 POLR1A Zornitza Stark Marked gene: POLR1A as ready
Mendeliome v0.5804 POLR1A Zornitza Stark Added comment: Comment when marking as ready: Limited evidence for the association between bi-allelic variants and leukodystrophy.
Mendeliome v0.5800 LOXL3 Zornitza Stark Marked gene: LOXL3 as ready
Mendeliome v0.5799 LOXL3 Zornitza Stark gene: LOXL3 was added
gene: LOXL3 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: LOXL3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LOXL3 were set to 30362103; 25663169
Phenotypes for gene: LOXL3 were set to Stickler syndrome
Review for gene: LOXL3 was set to AMBER
Added comment: Two unrelated families reported with homozygous missense variants, mouse model supports gene-disease association.
Sources: Expert Review
Mendeliome v0.5798 RBP4 Zornitza Stark Marked gene: RBP4 as ready
Mendeliome v0.5795 VAX1 Zornitza Stark Marked gene: VAX1 as ready
Mendeliome v0.5791 VSX2 Zornitza Stark Marked gene: VSX2 as ready
Mendeliome v0.5788 WDR37 Zornitza Stark Marked gene: WDR37 as ready
Mendeliome v0.5788 WDR37 Zornitza Stark Phenotypes for gene: WDR37 were changed from to Neurooculocardiogenitourinary syndrome, MIM# 618652
Mendeliome v0.5785 WDR37 Zornitza Stark reviewed gene: WDR37: Rating: GREEN; Mode of pathogenicity: None; Publications: 31327508, 31327508; Phenotypes: Neurooculocardiogenitourinary syndrome, MIM# 618652; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5785 ALDH1A3 Zornitza Stark Marked gene: ALDH1A3 as ready
Mendeliome v0.5781 VEGFC Zornitza Stark Marked gene: VEGFC as ready
Mendeliome v0.5778 KDELR2 Zornitza Stark Phenotypes for gene: KDELR2 were changed from Increased susceptibility to fractures; joint hypermobility; Scoliosis; Bowing of the legs; Bowing of the arms to Osteogenesis imperfecta 21, MIM# 619131; Increased susceptibility to fractures; joint hypermobility; Scoliosis; Bowing of the legs; Bowing of the arms
Mendeliome v0.5777 KDELR2 Zornitza Stark edited their review of gene: KDELR2: Changed phenotypes: Osteogenesis imperfecta 21, MIM# 619131, Increased susceptibility to fractures, joint hypermobility, Scoliosis, Bowing of the legs, Bowing of the arms
Mendeliome v0.5775 RNASEH2B Zornitza Stark Marked gene: RNASEH2B as ready
Mendeliome v0.5775 RNASEH2B Zornitza Stark Phenotypes for gene: RNASEH2B were changed from to Aicardi-Goutieres syndrome 2, MIM# 610181
Mendeliome v0.5772 RNASEH2B Zornitza Stark reviewed gene: RNASEH2B: Rating: GREEN; Mode of pathogenicity: None; Publications: 16845400, 33307271, 29239743; Phenotypes: Aicardi-Goutieres syndrome 2, MIM# 610181; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5772 PDGFB Zornitza Stark Marked gene: PDGFB as ready
Mendeliome v0.5769 XYLT1 Zornitza Stark reviewed gene: XYLT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 30554721, 24581741, 23982343; Phenotypes: Desbuquois dysplasia 2, MIM# 615777, Baratela-Scott syndrome; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5769 TUSC3 Zornitza Stark Marked gene: TUSC3 as ready
Mendeliome v0.5769 TUSC3 Zornitza Stark Phenotypes for gene: TUSC3 were changed from to Mental retardation, autosomal recessive 7, MIM# 611093, MONDO:0012615; TUSC3-CDG (Disorders of protein N-glycosylation)
Mendeliome v0.5766 TUSC3 Zornitza Stark reviewed gene: TUSC3: Rating: GREEN; Mode of pathogenicity: None; Publications: 18452889, 18455129, 21739581, 27148795, 31606977; Phenotypes: Mental retardation, autosomal recessive 7, MIM# 611093, MONDO:0012615, TUSC3-CDG (Disorders of protein N-glycosylation); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5766 TMEM165 Zornitza Stark Marked gene: TMEM165 as ready
Mendeliome v0.5761 SLC35C1 Zornitza Stark Marked gene: SLC35C1 as ready
Mendeliome v0.5756 SEC23B Zornitza Stark changed review comment from: Over 20 families reported.; to: Bi-allelic variants and anaemia: Over 20 families reported.

Mono-allelic variants: three families reported with heterozygous missense variants, however note these are present in gnomad. In the case of one of the variants, >2,000 hets. LIMITED evidence for disease association.
Mendeliome v0.5756 GNE Zornitza Stark Marked gene: GNE as ready
Mendeliome v0.5753 EXT2 Zornitza Stark Marked gene: EXT2 as ready
Mendeliome v0.5752 TBL1X Zornitza Stark Marked gene: TBL1X as ready
Mendeliome v0.5751 CHSY1 Zornitza Stark Marked gene: CHSY1 as ready
Mendeliome v0.5748 DHDDS Zornitza Stark Marked gene: DHDDS as ready
Mendeliome v0.5743 FBLN1 Zornitza Stark reviewed gene: FBLN1: Rating: RED; Mode of pathogenicity: None; Publications: 24084572; Phenotypes: Synpolydactyly, 3/3'4, associated with metacarpal and metatarsal synostoses MIM#608180; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.5743 FBLN1 Zornitza Stark Marked gene: FBLN1 as ready
Mendeliome v0.5743 FBLN1 Zornitza Stark Phenotypes for gene: FBLN1 were changed from to Synpolydactyly, 3/3'4, associated with metacarpal and metatarsal synostoses MIM#608180
Mendeliome v0.5739 ST3GAL5 Zornitza Stark Marked gene: ST3GAL5 as ready
Mendeliome v0.5736 FBLN1 Elena Savva reviewed gene: FBLN1: Rating: RED; Mode of pathogenicity: None; Publications: PMID: 11836357; Phenotypes: Synpolydactyly, 3/3'4, associated with metacarpal and metatarsal synostoses MIM#608180; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.5736 SUCLA2 Zornitza Stark Marked gene: SUCLA2 as ready
Mendeliome v0.5733 RFT1 Zornitza Stark Marked gene: RFT1 as ready
Mendeliome v0.5730 CHST6 Zornitza Stark Marked gene: CHST6 as ready
Mendeliome v0.5730 CHST6 Zornitza Stark Phenotypes for gene: CHST6 were changed from to Macular corneal dystrophy, MIM# 217800, MONDO:0009020
Mendeliome v0.5727 CHST6 Zornitza Stark reviewed gene: CHST6: Rating: GREEN; Mode of pathogenicity: None; Publications: 11818380, 16207214, 26604660; Phenotypes: Macular corneal dystrophy, MIM# 217800, MONDO:0009020; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5727 MGAT2 Zornitza Stark Marked gene: MGAT2 as ready
Mendeliome v0.5724 MPI Zornitza Stark Marked gene: MPI as ready
Mendeliome v0.5721 PGM3 Zornitza Stark Marked gene: PGM3 as ready
Mendeliome v0.5718 PGM3 Zornitza Stark changed review comment from: Phosphoglucomutase 3 (PGM3) protein catalyzes the conversion of N-acetyl-d-glucosamine-6-phosphate (GlcNAc-6-P) to N-acetyl-d-glucosamine-1-phosphate (GlcNAc-1-P), which is required for the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) an important precursor for protein glycosylation. Bi-allelic variants in this gene are associated with a primary immunodeficiency syndrome characterised by onset of recurrent infections, usually respiratory or cutaneous, in early childhood. Immune workup usually shows neutropenia, lymphopenia, eosinophilia, and increased serum IgE or IgA. Neutrophil chemotactic defects have also been reported. Infectious agents include bacteria, viruses, and fungi. Many patients develop atopic dermatitis, eczema, and other signs of autoinflammation. Affected individuals may also show developmental delay or cognitive impairment of varying severity. More than 10 unrelated families reported.; to: Phosphoglucomutase 3 (PGM3) protein catalyzes the conversion of N-acetyl-d-glucosamine-6-phosphate (GlcNAc-6-P) to N-acetyl-d-glucosamine-1-phosphate (GlcNAc-1-P), which is required for the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) an important precursor for protein glycosylation.

Bi-allelic variants in this gene are associated with a primary immunodeficiency syndrome characterised by onset of recurrent infections, usually respiratory or cutaneous, in early childhood. Immune workup usually shows neutropenia, lymphopenia, eosinophilia, and increased serum IgE or IgA. Neutrophil chemotactic defects have also been reported. Infectious agents include bacteria, viruses, and fungi. Many patients develop atopic dermatitis, eczema, and other signs of autoinflammation. Affected individuals may also show developmental delay or cognitive impairment of varying severity.

More than 10 unrelated families reported.
Mendeliome v0.5718 PGAP3 Zornitza Stark Marked gene: PGAP3 as ready
Mendeliome v0.5718 PGAP3 Zornitza Stark Phenotypes for gene: PGAP3 were changed from to Hyperphosphatasia with mental retardation syndrome 4, MIM# 615716, MONDO:0014318
Mendeliome v0.5715 PGAP3 Zornitza Stark reviewed gene: PGAP3: Rating: GREEN; Mode of pathogenicity: None; Publications: 24439110, 29620724, 30345601, 30217754; Phenotypes: Hyperphosphatasia with mental retardation syndrome 4, MIM# 615716, MONDO:0014318; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5715 PGAP2 Zornitza Stark Marked gene: PGAP2 as ready
Mendeliome v0.5715 PGAP2 Zornitza Stark Phenotypes for gene: PGAP2 were changed from to Hyperphosphatasia with mental retardation syndrome 3, MIM# 614207, MONDO:0013628
Mendeliome v0.5712 PGAP2 Zornitza Stark reviewed gene: PGAP2: Rating: GREEN; Mode of pathogenicity: None; Publications: 23561846, 23561847, 31805394, 29119105, 27871432; Phenotypes: Hyperphosphatasia with mental retardation syndrome 3, MIM# 614207, MONDO:0013628; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5712 PIGV Zornitza Stark Marked gene: PIGV as ready
Mendeliome v0.5712 PIGV Zornitza Stark Phenotypes for gene: PIGV were changed from to Hyperphosphatasia with mental retardation syndrome 1, MIM# 239300, MONDO:0009398
Mendeliome v0.5709 PIGV Zornitza Stark reviewed gene: PIGV: Rating: GREEN; Mode of pathogenicity: None; Publications: 20802478, 22315194, 28817240, 24129430; Phenotypes: Hyperphosphatasia with mental retardation syndrome 1, MIM# 239300, MONDO:0009398; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5708 PIGO Zornitza Stark Marked gene: PIGO as ready
Mendeliome v0.5708 PIGO Zornitza Stark Phenotypes for gene: PIGO were changed from to Hyperphosphatasia with mental retardation syndrome 2, MIM# 614749, MONDO:0013882
Mendeliome v0.5705 PIGO Zornitza Stark reviewed gene: PIGO: Rating: GREEN; Mode of pathogenicity: None; Publications: 22683086, 31698102, 28900819, 28545593, 28337824; Phenotypes: Hyperphosphatasia with mental retardation syndrome 2, MIM# 614749, MONDO:0013882; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5705 PIGN Zornitza Stark Marked gene: PIGN as ready
Mendeliome v0.5702 PIGA Zornitza Stark Marked gene: PIGA as ready
Mendeliome v0.5699 PIGL Zornitza Stark Marked gene: PIGL as ready
Mendeliome v0.5696 B3GALT6 Zornitza Stark Marked gene: B3GALT6 as ready
Mendeliome v0.5693 B3GALNT2 Zornitza Stark Marked gene: B3GALNT2 as ready
Mendeliome v0.5693 B3GALNT2 Zornitza Stark Phenotypes for gene: B3GALNT2 were changed from to Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies, type A, 11, MIM# 615181; MONDO:0014071
Mendeliome v0.5690 B3GALNT2 Zornitza Stark reviewed gene: B3GALNT2: Rating: GREEN; Mode of pathogenicity: None; Publications: 23453667, 33290285, 29791932, 29273094, 28688748, 28303321; Phenotypes: Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies, type A, 11, MIM# 615181, MONDO:0014071; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5690 MPDU1 Zornitza Stark Marked gene: MPDU1 as ready
Mendeliome v0.5687 DPAGT1 Zornitza Stark Marked gene: DPAGT1 as ready
Mendeliome v0.5687 DPAGT1 Zornitza Stark Phenotypes for gene: DPAGT1 were changed from to Congenital disorder of glycosylation, type Ij, MIM# 608093; DPAGT1-CDG MONDO:0011964; Myasthenic syndrome, congenital, 13, with tubular aggregates, MIM# 614750
Mendeliome v0.5684 DPAGT1 Zornitza Stark changed review comment from: Type I CDG. More than 20 unrelated families reported. Most affected individuals have a very severe disease course, where common findings are pronounced muscular hypotonia, intractable epilepsy, global developmental delay/intellectual disability, and early death. Additional features that may be observed include apnoea and respiratory deficiency, cataracts, joint contractures, vermian hypoplasia, dysmorphic features (esotropia, arched palate, micrognathia, finger clinodactyly, single flexion creases) and feeding difficulties.

Myasthenic syndrome, congenital, 13, with tubular aggregates, MIM 614750 is a milder allelic disorder.; to: Type I CDG. More than 20 unrelated families reported. Most affected individuals have a very severe disease course, where common findings are pronounced muscular hypotonia, intractable epilepsy, global developmental delay/intellectual disability, and early death. Additional features that may be observed include apnoea and respiratory deficiency, cataracts, joint contractures, vermian hypoplasia, dysmorphic features (esotropia, arched palate, micrognathia, finger clinodactyly, single flexion creases) and feeding difficulties.

Myasthenic syndrome, congenital, 13, with tubular aggregates, MIM 614750 is a milder allelic disorder. More than 5 unrelated families reported with this presentation.
Mendeliome v0.5684 DPAGT1 Zornitza Stark reviewed gene: DPAGT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 12872255, 22492991, 22304930, 31153949, 30653653, 30117111; Phenotypes: Congenital disorder of glycosylation, type Ij, MIM# 608093, DPAGT1-CDG MONDO:0011964, Myasthenic syndrome, congenital, 13, with tubular aggregates, MIM# 614750; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5684 DOLK Zornitza Stark Marked gene: DOLK as ready
Mendeliome v0.5681 SLC2A1 Zornitza Stark Marked gene: SLC2A1 as ready
Mendeliome v0.5678 MTX2 Zornitza Stark Phenotypes for gene: MTX2 were changed from Mandibuloacral dysplasia; lipodystrophy; arterial calcification to Mandibuloacral dysplasia progeroid syndrome, MIM# 619127; Mandibuloacral dysplasia; lipodystrophy; arterial calcification
Mendeliome v0.5677 MTX2 Zornitza Stark edited their review of gene: MTX2: Changed phenotypes: Mandibuloacral dysplasia progeroid syndrome, MIM# 619127, Mandibuloacral dysplasia, lipodystrophy, arterial calcification
Mendeliome v0.5677 ERCC1 Zornitza Stark Marked gene: ERCC1 as ready
Mendeliome v0.5674 POR Zornitza Stark Marked gene: POR as ready
Mendeliome v0.5671 MYH6 Zornitza Stark Marked gene: MYH6 as ready
Mendeliome v0.5671 MYH6 Zornitza Stark Phenotypes for gene: MYH6 were changed from to Atrial septal defect 3 MIM#614089; Congenital heart disease; Cardiomyopathy, dilated, 1EE MIM#613252; Cardiomyopathy, hypertrophic, 14 MIM#613251; {Sick sinus syndrome 3} MIM#614090
Mendeliome v0.5668 MYH6 Zornitza Stark reviewed gene: MYH6: Rating: GREEN; Mode of pathogenicity: None; Publications: 32656206, 31638415, 29969989, 29536580, 29332214, 30681346; Phenotypes: Atrial septal defect 3 MIM#614089, Congenital heart disease, Cardiomyopathy, dilated, 1EE MIM#613252, Cardiomyopathy, hypertrophic, 14 MIM#613251, {Sick sinus syndrome 3} MIM#614090; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5668 EZH2 Zornitza Stark Marked gene: EZH2 as ready
Mendeliome v0.5665 MYH6 Elena Savva reviewed gene: MYH6: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Atrial septal defect 3 MIM#614089, Cardiomyopathy, dilated, 1EE MIM#613252, Cardiomyopathy, hypertrophic, 14 MIM#613251, {Sick sinus syndrome 3} MIM#614090; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.5665 COG6 Zornitza Stark Marked gene: COG6 as ready
Mendeliome v0.5662 COG5 Zornitza Stark Marked gene: COG5 as ready
Mendeliome v0.5659 FIGLA Zornitza Stark Marked gene: FIGLA as ready
Mendeliome v0.5659 FIGLA Zornitza Stark Phenotypes for gene: FIGLA were changed from to Premature ovarian failure 6, MIM# 612310
Mendeliome v0.5656 FIGLA Zornitza Stark reviewed gene: FIGLA: Rating: GREEN; Mode of pathogenicity: None; Publications: 18499083, 25314148, 29914564; Phenotypes: Premature ovarian failure 6, MIM# 612310; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.5656 ESR1 Zornitza Stark Marked gene: ESR1 as ready
Mendeliome v0.5653 SHMT2 Zornitza Stark Phenotypes for gene: SHMT2 were changed from Congenital microcephaly; Infantile axial hypotonia; Spastic paraparesis; Global developmental delay; Intellectual disability; Abnormality of the corpus callosum; Abnormal cortical gyration; Hypertrophic cardiomyopathy; Abnormality of the face; Proximal placement of thumb; 2-3 toe syndactyly to Neurodevelopmental disorder with cardiomyopathy, spasticity, and brain abnormalities (NEDCASB), MIM#619121; Congenital microcephaly; Infantile axial hypotonia; Spastic paraparesis; Global developmental delay; Intellectual disability; Abnormality of the corpus callosum; Abnormal cortical gyration; Hypertrophic cardiomyopathy; Abnormality of the face; Proximal placement of thumb; 2-3 toe syndactyly
Mendeliome v0.5652 SHMT2 Zornitza Stark edited their review of gene: SHMT2: Changed phenotypes: Neurodevelopmental disorder with cardiomyopathy, spasticity, and brain abnormalities (NEDCASB), MIM#619121, Congenital microcephaly, Infantile axial hypotonia, Spastic paraparesis, Global developmental delay, Intellectual disability, Abnormality of the corpus callosum, Abnormal cortical gyration, Hypertrophic cardiomyopathy, Abnormality of the face, Proximal placement of thumb, 2-3 toe syndactyly
Mendeliome v0.5652 BMP15 Zornitza Stark commented on gene: BMP15: Only affects females, variants inherited from asymptomatic fathers. Over 50 individuals reported.
Mendeliome v0.5652 BMP15 Zornitza Stark Marked gene: BMP15 as ready
Mendeliome v0.5652 BMP15 Zornitza Stark Phenotypes for gene: BMP15 were changed from to Ovarian dysgenesis 2, MIM# 300510; Premature ovarian failure 4, MIM# 300510
Mendeliome v0.5649 BMP15 Zornitza Stark reviewed gene: BMP15: Rating: GREEN; Mode of pathogenicity: None; Publications: 15136966, 16508750, 16464940; Phenotypes: Ovarian dysgenesis 2, MIM# 300510, Premature ovarian failure 4, MIM# 300510; Mode of inheritance: Other
Mendeliome v0.5649 PANX1 Zornitza Stark Marked gene: PANX1 as ready
Mendeliome v0.5647 NANOS3 Bryony Thompson Marked gene: NANOS3 as ready
Mendeliome v0.5646 NANOS3 Bryony Thompson gene: NANOS3 was added
gene: NANOS3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NANOS3 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: NANOS3 were set to 25054146; 24091668
Phenotypes for gene: NANOS3 were set to Primary ovarian insufficiency
Review for gene: NANOS3 was set to AMBER
Added comment: A homozygous missense (p.Glu120Lys) was identified in two Brazillian sisters with primary amenorrhea, and supporting in vitro functional assays. A heterozygous missense (p.Arg153Trp) was identified in a Chinese woman with POI, with supporting in vitro functional assays. Also, supporting null mouse model.
Sources: Literature
Mendeliome v0.5645 MSH5 Bryony Thompson Marked gene: MSH5 as ready
Mendeliome v0.5644 MSH5 Bryony Thompson gene: MSH5 was added
gene: MSH5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MSH5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MSH5 were set to 28175301; 9916805; 24970489
Phenotypes for gene: MSH5 were set to Premature ovarian failure 13 MIM#617442
Review for gene: MSH5 was set to AMBER
Added comment: A homozygous missense mutation (p.D487Y) in two sisters with POI. Also, homologous mutation in mice results in atrophic ovaries without oocytes, and in vitro functional study revealed that mutant MSH5 impaired DNA homologous recombination repair. Null mouse model is viable, but sterile. A case with congenital adrenal hyperplasia, ovarian failure and Ehlers-Danlos syndrome had a de novo t(6;14)(p21;q32) translocation, including CYP21A2,TNXB and MSH5.
Sources: Literature
Mendeliome v0.5643 PATL2 Zornitza Stark Marked gene: PATL2 as ready
Mendeliome v0.5641 FANCM Bryony Thompson Phenotypes for gene: FANCM were changed from Spermatogenic failure 28, MIM# 618086 to Spermatogenic failure 28, MIM# 618086; Premature ovarian failure 15 MIM#618096
Mendeliome v0.5638 FANCM Bryony Thompson reviewed gene: FANCM: Rating: GREEN; Mode of pathogenicity: None; Publications: 29231814, 28837162, 33036707, 25010009; Phenotypes: Premature ovarian failure 15 MIM#618096; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5638 EIF4ENIF1 Bryony Thompson Marked gene: EIF4ENIF1 as ready
Mendeliome v0.5638 PGRMC1 Zornitza Stark Marked gene: PGRMC1 as ready
Mendeliome v0.5638 PGRMC1 Zornitza Stark gene: PGRMC1 was added
gene: PGRMC1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: PGRMC1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PGRMC1 were set to 25246111; 18782852
Phenotypes for gene: PGRMC1 were set to Premature ovarian failure
Review for gene: PGRMC1 was set to RED
Added comment: One family with translocation reported and two affected individuals. Another individual identified as part of a cohort with a missense variant (H165R), but the variant is present in >200 hets in gnomad. Subsequent cohort study did not find an association.
Sources: Expert list
Mendeliome v0.5636 EIF4ENIF1 Bryony Thompson gene: EIF4ENIF1 was added
gene: EIF4ENIF1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EIF4ENIF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: EIF4ENIF1 were set to 31810472; 23902945; 33095795
Phenotypes for gene: EIF4ENIF1 were set to Primary ovarian insufficiency
Review for gene: EIF4ENIF1 was set to AMBER
Added comment: 3 families: A missense (p.Q842P) segregated between a mother and daughter with diminished ovarian reserve (DOR) and premature ovarian insufficiency (POI). A nonsense variant (p.Ser429Ter) segregated in 7 affected women over 3 consecutive generations with early menopause at approximately age 30 years. A missense (p.Lys669Arg) was identified in a Brazilian case with POI.
Sources: Literature
Mendeliome v0.5635 POF1B Zornitza Stark Marked gene: POF1B as ready
Mendeliome v0.5635 POF1B Zornitza Stark Phenotypes for gene: POF1B were changed from to Premature ovarian failure 2B, MIM# 300604
Mendeliome v0.5631 DIAPH2 Bryony Thompson Marked gene: DIAPH2 as ready
Mendeliome v0.5631 POF1B Zornitza Stark reviewed gene: POF1B: Rating: AMBER; Mode of pathogenicity: None; Publications: 16773570, 25676666; Phenotypes: Premature ovarian failure 2B, MIM# 300604; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.5630 DIAPH2 Bryony Thompson reviewed gene: DIAPH2: Rating: RED; Mode of pathogenicity: None; Publications: 9497258, 30689869, 26175800, 11129329; Phenotypes: ?Premature ovarian failure 2A MIM#300511; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.5630 CCDC141 Bryony Thompson Marked gene: CCDC141 as ready
Mendeliome v0.5630 POU5F1 Zornitza Stark gene: POU5F1 was added
gene: POU5F1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: POU5F1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: POU5F1 were set to 21273125
Phenotypes for gene: POU5F1 were set to Premature ovarian failure
Review for gene: POU5F1 was set to RED
Added comment: Single individual reported in 2011 and a missense variant.
Sources: Expert list
Mendeliome v0.5628 CCDC141 Bryony Thompson gene: CCDC141 was added
gene: CCDC141 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CCDC141 was set to Unknown
Publications for gene: CCDC141 were set to 27014940; 28324054; 25192046
Phenotypes for gene: CCDC141 were set to Anosmic hypogonadotropic hypogonadism
Review for gene: CCDC141 was set to AMBER
Added comment: A consanguineous family had a homozygous nonsense variant, but also had a homozygous missense in FEZF1. 3 other families reported with heterozygous variants, but other variants in other genes present. In an olfactory mouse model, Ccdc141 is expressed in GnRH neurons and olfactory fibers and that knockdown of Ccdc141 reduces GnRH neuronal migration.
Sources: Literature
Mendeliome v0.5627 SGO2 Zornitza Stark Marked gene: SGO2 as ready
Mendeliome v0.5627 SGO2 Zornitza Stark gene: SGO2 was added
gene: SGO2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: SGO2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SGO2 were set to 27629923
Phenotypes for gene: SGO2 were set to Perrault syndrome
Review for gene: SGO2 was set to RED
Added comment: Single affected individual reported, though deafness was thought to be explained by a CLDN14 variant. Protein is known to be involved in meiosis.
Sources: Expert list
Mendeliome v0.5626 SOHLH2 Zornitza Stark Marked gene: SOHLH2 as ready
Mendeliome v0.5626 SOHLH2 Zornitza Stark gene: SOHLH2 was added
gene: SOHLH2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: SOHLH2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SOHLH2 were set to 24524832; 19014927
Phenotypes for gene: SOHLH2 were set to Premature ovarian failure
Review for gene: SOHLH2 was set to RED
Added comment: Heterozygous variants in this gene found to be enriched in a cohort of women with POF, substantial data including mouse models implicating this gene in infertility but paucity of well characterised cases.
Sources: Expert list
Mendeliome v0.5625 SYCE1 Zornitza Stark Marked gene: SYCE1 as ready
Mendeliome v0.5624 SYCE1 Zornitza Stark gene: SYCE1 was added
gene: SYCE1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: SYCE1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SYCE1 were set to 25062452; 32917591; 32741963; 32402064; 31925770; 31916078
Phenotypes for gene: SYCE1 were set to Premature ovarian failure 12, MIM# 616947; Spermatogenic failure 15 ,MIM#616950
Review for gene: SYCE1 was set to GREEN
Added comment: More than 5 families reported with POF/SF and bi-allelic variants in this gene. Mechanism is thought to be disruption of meiosis, mouse model data also supports gene-disease association.
Sources: Expert list
Mendeliome v0.5623 DACH2 Zornitza Stark Marked gene: DACH2 as ready
Mendeliome v0.5623 DACH2 Zornitza Stark gene: DACH2 was added
gene: DACH2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: DACH2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DACH2 were set to 15459172
Phenotypes for gene: DACH2 were set to Primary ovarian insufficiency
Review for gene: DACH2 was set to RED
Added comment: In a small candidate gene study, missense were more common in POI cases than controls (p= 0.0125). 5 missense reported in 7 POI cases, although 2 of the missense are too common in gnomAD for a dominant disorder. No other reports with evidence for an association with POI.
Sources: Expert list
Mendeliome v0.5622 TUBB8 Zornitza Stark Marked gene: TUBB8 as ready
Mendeliome v0.5619 WEE2 Zornitza Stark Marked gene: WEE2 as ready
Mendeliome v0.5616 ZP1 Zornitza Stark Marked gene: ZP1 as ready
Mendeliome v0.5615 ZP1 Zornitza Stark gene: ZP1 was added
gene: ZP1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: ZP1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: ZP1 were set to 24670168; 30810869; 32573113; 33272616
Phenotypes for gene: ZP1 were set to Oocyte maturation defect 1, MIM# 615774
Review for gene: ZP1 was set to GREEN
Added comment: Multiple unrelated individuals reported, presents as primary infertility.
Sources: Expert list
Mendeliome v0.5613 ZP3 Zornitza Stark Marked gene: ZP3 as ready
Mendeliome v0.5612 ZP3 Zornitza Stark gene: ZP3 was added
gene: ZP3 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: ZP3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ZP3 were set to 28886344; 30810869; 33272616; 32573113
Phenotypes for gene: ZP3 were set to Oocyte maturation defect 3, MIM# 617712
Review for gene: ZP3 was set to GREEN
Added comment: Oocyte maturation defect with normal ovarian reserves and menstrual cycles, presents as infertility.
Sources: Expert list
Mendeliome v0.5611 ECEL1P2 Zornitza Stark Marked gene: ECEL1P2 as ready
Mendeliome v0.5610 CCDC32 Zornitza Stark Phenotypes for gene: CCDC32 were changed from craniofacial, cardiac and neurodevelopmental anomalies to Cardiofacioneurodevelopmental syndrome (CFNDS), MIM#619123; Craniofacial, cardiac, laterality and neurodevelopmental anomalies
Mendeliome v0.5609 CCDC32 Zornitza Stark edited their review of gene: CCDC32: Changed rating: GREEN; Changed phenotypes: Cardiofacioneurodevelopmental syndrome (CFNDS), MIM#619123, Craniofacial, cardiac, laterality and neurodevelopmental anomalies; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5609 CDC40 Zornitza Stark Marked gene: CDC40 as ready
Mendeliome v0.5609 CDC40 Zornitza Stark gene: CDC40 was added
gene: CDC40 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CDC40 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CDC40 were set to 33220177
Phenotypes for gene: CDC40 were set to Pontocerebellar hypoplasia; microcephaly; seizures
Review for gene: CDC40 was set to RED
Added comment: Single individual reported with bi-allelic variants in the gene and PCH, microcephaly, hypotonia, seizures, severe DD/ID, thrombocytopaenia, anaemia. Interaction with PPIL1 and mouse model support gene-disease association. Gene referred to as PRP17 in paper.
Sources: Literature
Mendeliome v0.5608 PPIL1 Zornitza Stark Marked gene: PPIL1 as ready
Mendeliome v0.5607 PPIL1 Zornitza Stark gene: PPIL1 was added
gene: PPIL1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PPIL1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PPIL1 were set to 33220177
Phenotypes for gene: PPIL1 were set to Pontocerebellar hypoplasia; microcephaly; seizures
Review for gene: PPIL1 was set to GREEN
Added comment: 17 individuals from 9 unrelated families reported with bi-allelic variants in the gene and PCH, microcephaly, hypotonia, seizures, severe DD/ID. Mouse models support gene-disease association.
Sources: Literature
Mendeliome v0.5605 FRA12A Bryony Thompson STR: FRA12A was added
STR: FRA12A was added to Mendeliome. Sources: Other
5'UTR tags were added to STR: FRA12A.
Mode of inheritance for STR: FRA12A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: FRA12A were set to 17236128
Phenotypes for STR: FRA12A were set to Mental retardation, FRA12A type MIM#136630
Review for STR: FRA12A was set to AMBER
Added comment: NM_173602.2:c.-137CGG[X]
All individuals expressing FRA12A had CGG-repeat expansion. The length of the expanded allele in 3 unaffected FRA12A carriers was 650–850 bp. In the two affected patients from 2 families with FRA12A, the length of the expanded allele was ∼1,050-1,150 bp.
70 controls used to determine the "normal" repeat range.
Sources: Other
Mendeliome v0.5601 PTPRQ Zornitza Stark changed review comment from: Additional heterozygous variants reported in PMID: 33229591; to: Additional heterozygous variants reported in PMID: 33229591, Green for both MOIs.
Mendeliome v0.5601 PTPRQ Zornitza Stark edited their review of gene: PTPRQ: Added comment: Additional heterozygous variants reported in PMID: 33229591; Changed publications: 20346435, 20472657, 25919374, 14534255, 22357859, 29849575, 29309402, 31655630, 33229591
Mendeliome v0.5601 CANVAS_ACAGG Bryony Thompson Marked STR: CANVAS_ACAGG as ready
Mendeliome v0.5600 CANVAS_ACAGG Bryony Thompson STR: CANVAS_ACAGG was added
STR: CANVAS_ACAGG was added to Mendeliome. Sources: Literature
Mode of inheritance for STR: CANVAS_ACAGG was set to BIALLELIC, autosomal or pseudoautosomal
Publications for STR: CANVAS_ACAGG were set to 33103729
Phenotypes for STR: CANVAS_ACAGG were set to Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome; fasciculations; elevated serum creatine kinase levels; denervation
Review for STR: CANVAS_ACAGG was set to AMBER
Added comment: A novel RFC1 repeat expansion motif, (ACAGG)exp, identified in three affected individuals from 2 families in an Asian-Pacific cohort for CANVAS. Southern blot was used to identify the repeat was ~1000kb in one of the cases, equivalent to ~1000 repeats.
Sources: Literature
Mendeliome v0.5599 CANVAS Bryony Thompson Marked STR: CANVAS as ready
Mendeliome v0.5598 CANVAS Bryony Thompson STR: CANVAS was added
STR: CANVAS was added to Mendeliome. Sources: Expert list
Mode of inheritance for STR: CANVAS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for STR: CANVAS were set to 30926972; 32851396
Phenotypes for STR: CANVAS were set to Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome MIM#614575
Review for STR: CANVAS was set to GREEN
STR: CANVAS was marked as clinically relevant
Added comment: Simple tandem repeat (AAAAG)11 replaced with (AAGGG)n in intron 2 of RFC1. Loss of function is not the mechanism of disease. Maori population-specific CANVAS configuration (AAAGG)10-25(AAGGG)exp. (AAAGG)n repeat alone is not pathogenic.
Sources: Expert list
Mendeliome v0.5595 RNASEH2C Zornitza Stark Marked gene: RNASEH2C as ready
Mendeliome v0.5595 RNASEH2C Zornitza Stark Phenotypes for gene: RNASEH2C were changed from to Aicardi-Goutieres syndrome 3 (MIM# 610329), AR
Mendeliome v0.5592 CFAP52 Zornitza Stark Marked gene: CFAP52 as ready
Mendeliome v0.5591 CFAP45 Zornitza Stark Marked gene: CFAP45 as ready
Mendeliome v0.5590 RNASEH2C Chern Lim reviewed gene: RNASEH2C: Rating: GREEN; Mode of pathogenicity: None; Publications: 24183309, 23322642; Phenotypes: Aicardi-Goutieres syndrome 3 (MIM# 610329), AR; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.5589 RAP1A Zornitza Stark Marked gene: RAP1A as ready
Mendeliome v0.5583 RAP1B Zornitza Stark Marked gene: RAP1B as ready
Mendeliome v0.5579 EMC10 Zornitza Stark Marked gene: EMC10 as ready
Mendeliome v0.5579 EMC10 Zornitza Stark gene: EMC10 was added
gene: EMC10 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EMC10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EMC10 were set to 32869858
Phenotypes for gene: EMC10 were set to Intellectual disability
Review for gene: EMC10 was set to RED
Added comment: Homozygous variants of EMC1 are associated with GDD, scoliosis, and cerebellar atrophy, indicating the relevance of this pathway for neurogenetic disorders.

One Saudi family with 2 affected individuals with mild ID, speech delay, and GDD.
WES and Sanger sequencing revealed a homozygous splice acceptor site variant (c.679‐1G>A) in EMC10 . Variant segregated within the family. RT‐qPCR showed a substantial decrease in the relative EMC10 gene expression in the patients.
Sources: Literature
Mendeliome v0.5578 FBXO28 Zornitza Stark Marked gene: FBXO28 as ready
Mendeliome v0.5577 FBXO28 Zornitza Stark gene: FBXO28 was added
gene: FBXO28 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FBXO28 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FBXO28 were set to 33280099
Phenotypes for gene: FBXO28 were set to Developmental and epileptic encephalopathy
Review for gene: FBXO28 was set to GREEN
Added comment: Nine new individuals with FBXO28 pathogenic variants (four missense, including one recurrent, three nonsense, and one frameshift) and all 10 known cases reviewed to delineate the phenotypic spectrum. All had epilepsy and 9 of 10 had DEE, including infantile spasms (3) and a progressive myoclonic epilepsy (1). Median age at seizure onset was 22.5 months (range 8 months to 5 years). Nine of 10 patients had intellectual disability, which was profound in six of nine and severe in three of nine. Movement disorders occurred in eight of 10 patients, six of 10 had hypotonia, four of 10 had acquired microcephaly, and five of 10 had dysmorphic features.
Sources: Literature
Mendeliome v0.5575 CFAP45 Zornitza Stark gene: CFAP45 was added
gene: CFAP45 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CFAP45 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CFAP45 were set to 33139725
Phenotypes for gene: CFAP45 were set to Situs inversus; asthenospermia
Review for gene: CFAP45 was set to GREEN
Added comment: Three unrelated individuals reported with bi-alleic LOF variants, mouse model recapitulated phenotype.
Sources: Literature
Mendeliome v0.5572 CLCN6 Zornitza Stark edited their review of gene: CLCN6: Added comment: Three unrelated families reported with recurrent GOF de novo c.1658A>G (p.Tyr553Cys) and severe developmental delay with pronounced generalized hypotonia, respiratory insufficiency, and variable neurodegeneration and diffusion restriction in cerebral peduncles, midbrain, and/or brainstem in MRI scans.; Changed rating: GREEN; Changed publications: 25794116, 21107136, 33217309; Changed phenotypes: Neurodegeneration, Benign partial epilepsy, febrile seizures, NCL; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5571 GDF6 Zornitza Stark Marked gene: GDF6 as ready
Mendeliome v0.5567 VPS4A Kristin Rigbye changed review comment from: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain.
1x homozygous missense in the MIT domain (milder phenotype and unaffected parents).
Demonstrated defective CD71 trafficking in all 3 patients.

PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly).
Demonstrated that the variants had a dominant-negative effect on VPS4A function.
"The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Sources: Literature; to: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain.
1x homozygous missense in the MIT domain (milder phenotype and unaffected parents - possibly just a simple LoF mechanism for AR inheritance).
Demonstrated defective CD71 trafficking in all 3 patients.

PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly).
Demonstrated that the variants had a dominant-negative effect on VPS4A function.

"The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Mendeliome v0.5567 VPS4A Elena Savva changed review comment from: Comment when marking as ready: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain. 1x homozygous missense in the MIT domain (milder phenotype and unaffected parents). Demonstrated defective CD71 trafficking in all 3 patients. PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly). Demonstrated that the variants had a dominant-negative effect on VPS4A function. "The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."; to: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain.
1x homozygous missense in the MIT domain (milder phenotype and unaffected parents).
Demonstrated defective CD71 trafficking in all 3 patients.

Comment when marking as ready: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain. 1x homozygous missense in the MIT domain (milder phenotype and unaffected parents). Demonstrated defective CD71 trafficking in all 3 patients. PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly). Demonstrated that the variants had a dominant-negative effect on VPS4A function. "The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Mendeliome v0.5567 VPS4A Elena Savva Marked gene: VPS4A as ready
Mendeliome v0.5567 VPS4A Elena Savva Added comment: Comment when marking as ready: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain. 1x homozygous missense in the MIT domain (milder phenotype and unaffected parents). Demonstrated defective CD71 trafficking in all 3 patients. PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly). Demonstrated that the variants had a dominant-negative effect on VPS4A function. "The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Mendeliome v0.5565 DAAM2 Zornitza Stark Marked gene: DAAM2 as ready
Mendeliome v0.5563 HS2ST1 Zornitza Stark Marked gene: HS2ST1 as ready
Mendeliome v0.5563 BICRA Elena Savva Marked gene: BICRA as ready
Mendeliome v0.5563 BICRA Elena Savva Added comment: Comment when marking as ready: 12 individuals reported, 11 de novo (1 not resolved), "with neurodevelopmental phenotypes—developmental delay (HP:0001263), intellectual disability (HP:0001249), autism spectrum disorder (HP:0000729), and/or behavioral phenotypes (HP:0000708)—and variable structural birth defects and dysmorphic features". Mostly LoF or gene deletions, but 2 missense reported. Zebrafish model supports the gene-disease association.
Mendeliome v0.5561 KDM4B Zornitza Stark Marked gene: KDM4B as ready
Mendeliome v0.5559 UNC45B Zornitza Stark Marked gene: UNC45B as ready
Mendeliome v0.5558 VPS4A Kristin Rigbye gene: VPS4A was added
gene: VPS4A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: VPS4A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: VPS4A were set to PMID: 33186543; 33186545
Phenotypes for gene: VPS4A were set to Neurodevelopmental disorder
Review for gene: VPS4A was set to GREEN
Added comment: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain.
1x homozygous missense in the MIT domain (milder phenotype and unaffected parents).
Demonstrated defective CD71 trafficking in all 3 patients.

PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly).
Demonstrated that the variants had a dominant-negative effect on VPS4A function.
"The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Sources: Literature
Mendeliome v0.5558 AGO2 Zornitza Stark Marked gene: AGO2 as ready
Mendeliome v0.5557 AGO2 Zornitza Stark gene: AGO2 was added
gene: AGO2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: AGO2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: AGO2 were set to 33199684
Phenotypes for gene: AGO2 were set to Intellectual disability
Review for gene: AGO2 was set to GREEN
Added comment: 21 individuals reported, five variants (p.L192P, p.G201V, p.T357M, p.M364T, p.C751Y) were recurrent. Variable ID.
Sources: Literature
Mendeliome v0.5556 DAAM2 Ain Roesley gene: DAAM2 was added
gene: DAAM2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DAAM2 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: DAAM2 were set to steroid-resistant nephrotic syndrome (SRNS)
Penetrance for gene: DAAM2 were set to unknown
Review for gene: DAAM2 was set to GREEN
Added comment: - steroid-resistant nephrotic syndrome (SRNS) with focal segmental glomerulosclerosis on histologic analysis of kidney biopsies and foot process effacement shown by electron microscopy (authors have suggested the term nephrotic syndrome type 22 (NPHS22))
- 4 unrelated families, 3 of which were consanguineous
- 4 unique missense and 1 stop
- in vitro studies done for the missense variants
Sources: Literature
Mendeliome v0.5556 RRP7A Zornitza Stark Marked gene: RRP7A as ready
Mendeliome v0.5555 RRP7A Zornitza Stark gene: RRP7A was added
gene: RRP7A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RRP7A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RRP7A were set to 33199730
Phenotypes for gene: RRP7A were set to Microcephaly
Review for gene: RRP7A was set to AMBER
Added comment: 10 affected individuals from a single large consanguineous family where bi-allelic variant segregated with severe microcephaly (-6-8SD), variable ID. Supportive functional data from mouse and zebrafish.
Sources: Literature
Mendeliome v0.5554 BICRA Paul De Fazio gene: BICRA was added
gene: BICRA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: BICRA was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: BICRA were set to 33232675
Phenotypes for gene: BICRA were set to Developmental delay, intellectual disability, autism spectrum disorder,behavioral abnormalities, dysmorphic features
Review for gene: BICRA was set to GREEN
gene: BICRA was marked as current diagnostic
Added comment: 12 individuals reported, 11 de novo (1 not resolved), "with neurodevelopmental phenotypes—developmental delay (HP:0001263), intellectual disability (HP:0001249), autism spectrum disorder (HP:0000729), and/or behavioral phenotypes (HP:0000708)—and variable structural birth defects and dysmorphic features". Mostly LoF or gene deletions, but 2 missense reported. Zebrafish model supports the gene-disease association.
Sources: Literature
Mendeliome v0.5554 MINPP1 Zornitza Stark Marked gene: MINPP1 as ready
Mendeliome v0.5553 KDM4B Kristin Rigbye gene: KDM4B was added
gene: KDM4B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KDM4B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KDM4B were set to PMID: 33232677
Phenotypes for gene: KDM4B were set to Global developmental delay, intellectual disability and neuroanatomical defects
Review for gene: KDM4B was set to GREEN
Added comment: Nine individuals with mono-allelic de novo or inherited variants in KDM4B.

All individuals presented with dysmorphic features and global developmental delay (GDD) with language and motor skills most affected. Three individuals had a history of seizures, and four had anomalies on brain imaging ranging from agenesis of the corpus callosum with hydrocephalus to cystic formations, abnormal hippocampi, and polymicrogyria.

In a knockout mouse the total brain volume was significantly reduced with decreased
size of the hippocampal dentate gyrus, partial agenesis of the corpus callosum, and ventriculomegaly.
Sources: Literature
Mendeliome v0.5553 MINPP1 Zornitza Stark gene: MINPP1 was added
gene: MINPP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MINPP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MINPP1 were set to 33257696
Phenotypes for gene: MINPP1 were set to Pontocerebellar hypoplasia
Review for gene: MINPP1 was set to GREEN
Added comment: 8 individuals from 6 unrelated families reported with bi-allelic LOF variants. All presented with almost complete absence of motor and cognitive development, progressive or congenital microcephaly, spastic tetraplegia or dystonia, and vision impairments. For most, the first symptoms included neonatal severe axial hypotonia and epilepsy that started during the first months or years of life. Prenatal symptoms of microcephaly associated with increased thalami echogenicity were detected in one, while the seven other individuals presented with progressive microcephaly. Some exhibited rapidly progressive phenotype and the affected children died in their infancy or middle-childhood. Strikingly, all the affected children had a unique brain MRI showing a mild to severe PCH, fluid-filled posterior fossa, with dilated lateral ventricles. In addition, severe atrophy at the level of the basal ganglia or thalami often associated with typical T2 hypersignal were identified in all the patients MRI.

Supportive functional data showing accumulation of highly phosphorylated inositols, mostly inositol hexakisphosphate (IP6), detected in HEK293 cells, fibroblasts, iPSCs and differentiating neurons lacking MINPP1. In mutant cells, higher IP6 level is expected to be associated with an increased chelation of intracellular cations, such as iron or calcium, resulting in decreased levels of available ions.
Sources: Literature
Mendeliome v0.5552 UNC45B Paul De Fazio gene: UNC45B was added
gene: UNC45B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UNC45B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UNC45B were set to 33217308
Phenotypes for gene: UNC45B were set to Progressive Myopathy with Eccentric Cores
Review for gene: UNC45B was set to GREEN
gene: UNC45B was marked as current diagnostic
Added comment: 10 individuals from 8 families reported with biallelic variants clinically manifesting with childhood-onset, progressive proximal and axial muscle weakness and various degrees of respiratory insufficiency. 4 missense variants and a +5 splice variant reported, p.Arg754Gln is recurrent. Functional studies support pathogenicity.
Sources: Literature
Mendeliome v0.5552 RFC1 Teresa Zhao reviewed gene: RFC1: Rating: GREEN; Mode of pathogenicity: None; Publications: 33103729; Phenotypes: Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5552 DNAJB11 Zornitza Stark Phenotypes for gene: DNAJB11 were changed from Polycystic kidney disease 6 with or without polycystic liver disease, MIM#618061 to Polycystic kidney disease 6 with or without polycystic liver disease, MIM#618061; Ivermark II syndrome.
Mendeliome v0.5549 DNAJB11 Zornitza Stark changed review comment from: Seven unrelated. families described with phenotypes overlapping ADTKD and ADPKD, five different variants, one of these, p.Arg206* recurrent in three families.; to: Seven unrelated. families described with phenotypes overlapping ADTKD and ADPKD, five different mono-allelic variants, one of these, p.Arg206* recurrent in three families.
Mendeliome v0.5549 DNAJB11 Zornitza Stark edited their review of gene: DNAJB11: Added comment: Single family reported with bi-allelic variant and severe, fetal onset renal cystic disease, dilation and proliferation of pancreatic duct cells, and liver ductal plate malformation, an association known as Ivemark II syndrome.; Changed publications: 29706351, 29777155, 33129895; Changed phenotypes: Polycystic kidney disease 6 with or without polycystic liver disease, MIM#618061, Ivermark II syndrome.; Changed mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.5549 MYLPF Zornitza Stark Phenotypes for gene: MYLPF were changed from Distal arthrogryoposis to Distal arthrogryposis type 1C (DA1C), MIM#619110
Mendeliome v0.5548 MYLPF Zornitza Stark edited their review of gene: MYLPF: Changed rating: AMBER; Changed phenotypes: Distal arthrogryposis type 1C (DA1C), MIM#619110; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.5548 HHAT Zornitza Stark Marked gene: HHAT as ready
Mendeliome v0.5547 HHAT Zornitza Stark gene: HHAT was added
gene: HHAT was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: HHAT was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HHAT were set to 24784881; 30912300
Phenotypes for gene: HHAT were set to Nivelon-Nivelon-Mabille syndrome 600092
Review for gene: HHAT was set to AMBER
Added comment: Two unrelated families reported. Clinical features include progressive microcephaly, cerebellar vermis hypoplasia, and skeletal dysplasia. Variable features include infantile-onset seizures, dwarfism, generalized chondrodysplasia, and micromelia.
Sources: Expert list
Mendeliome v0.5541 H3F3B Zornitza Stark edited their review of gene: H3F3B: Added comment: 13 unrelated individuals reported with missense variants in H3F3B. Phenotype primarily comprised intellectual disability and minor congenital anomalies, regression in significant proportion. Seizures in 50%.; Changed rating: GREEN; Changed publications: 33268356; Changed phenotypes: Intellectual disability, regression, seizures; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5537 H3F3A Zornitza Stark edited their review of gene: H3F3A: Added comment: 33 unrelated individuals reported with missense variants in H3F3A. Phenotype primarily comprised intellectual disability and minor congenital anomalies, regression in significant proportion. Seizures in 50%.; Changed rating: GREEN; Changed publications: 33268356; Changed phenotypes: Intellectual disability, regression; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5537 ALDH7A1 Zornitza Stark Marked gene: ALDH7A1 as ready
Mendeliome v0.5534 PRPS1 Zornitza Stark Marked gene: PRPS1 as ready
Mendeliome v0.5534 PRPS1 Zornitza Stark Phenotypes for gene: PRPS1 were changed from to Arts syndrome MIM#301835; Charcot-Marie-Tooth disease, X-linked recessive, 5 MIM#311070; Deafness, X-linked 1 MIM#304500; Gout, PRPS-related MIM#300661; Phosphoribosylpyrophosphate synthetase superactivity MIM#300661
Mendeliome v0.5530 HIVEP2 Zornitza Stark Marked gene: HIVEP2 as ready
Mendeliome v0.5530 HIVEP2 Zornitza Stark Phenotypes for gene: HIVEP2 were changed from to Mental retardation, autosomal dominant 43 MIM#616977
Mendeliome v0.5527 HIVEP2 Zornitza Stark reviewed gene: HIVEP2: Rating: GREEN; Mode of pathogenicity: None; Publications: 26153216, 27003583, 16836985, 31602191; Phenotypes: Mental retardation, autosomal dominant 43, MIM# 616977; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5527 HIVEP2 Elena Savva reviewed gene: HIVEP2: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 31207095; Phenotypes: Mental retardation, autosomal dominant 43 MIM#616977; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5527 PRPS1 Elena Savva reviewed gene: PRPS1: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 32781272, 17701896, 7593598; Phenotypes: Arts syndrome MIM#301835, Charcot-Marie-Tooth disease, X-linked recessive, 5 MIM#311070, Deafness, X-linked 1 MIM#304500, Gout, PRPS-related MIM#300661, Phosphoribosylpyrophosphate synthetase superactivity MIM#300661; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.5527 YIPF5 Zornitza Stark Marked gene: YIPF5 as ready
Mendeliome v0.5526 YIPF5 Zornitza Stark gene: YIPF5 was added
gene: YIPF5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: YIPF5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: YIPF5 were set to 33164986
Phenotypes for gene: YIPF5 were set to Neonatal diabetes; microcephaly; seizures
Review for gene: YIPF5 was set to GREEN
Added comment: Six individuals from 5 unrelated consanguineous families reported with bi-allelic variants in this gene and neonatal/early-onset diabetes, severe microcephaly, and epilepsy. Functional data supports gene-disease association.
Sources: Literature
Mendeliome v0.5523 TFE3 Zornitza Stark edited their review of gene: TFE3: Added comment: PMID: 32409512 (2020) - 14 variants reported as de novo events in 17 unrelated cases (including 5 previously published) of severe intellectual disability with pigmentary mosaicism and storage disorder-like features; Changed publications: 30595499, 31833172, 32409512; Changed mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.5523 SLC38A8 Zornitza Stark Marked gene: SLC38A8 as ready
Mendeliome v0.5520 CAPN15 Zornitza Stark Marked gene: CAPN15 as ready
Mendeliome v0.5519 TONSL Zornitza Stark Marked gene: TONSL as ready
Mendeliome v0.5516 FKBP8 Zornitza Stark Marked gene: FKBP8 as ready
Mendeliome v0.5514 NPPA Zornitza Stark Marked gene: NPPA as ready
Mendeliome v0.5511 FOXA2 Zornitza Stark Marked gene: FOXA2 as ready
Mendeliome v0.5507 USP7 Zornitza Stark edited their review of gene: USP7: Added comment: Hao-Fountain syndrome (HAFOUS) is a neurodevelopmental disorder characterized by global developmental delay, variably impaired intellectual development with significant speech delay, behavioral abnormalities, such as autism, and mild dysmorphic facies. Additional features are variable, but may include hypotonia, feeding problems, delayed walking with unsteady gait, hypogonadism in males, and ocular anomalies, such as strabismus. Some patients develop seizures and some have mild white matter abnormalities on brain imaging.; Changed publications: 26365382, 30679821; Changed phenotypes: Hao-Fountain syndrome, MIM# 616863, Intellectual disability, Autism
Mendeliome v0.5507 FKBP8 Eleanor Williams gene: FKBP8 was added
gene: FKBP8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FKBP8 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: FKBP8 were set to 32969478
Phenotypes for gene: FKBP8 were set to spina bifida HP:0002414
Review for gene: FKBP8 was set to AMBER
Added comment: Not associated with a phenotype in OMIM.

PMID: 32969478 - Tian et al 2020 - performed Sanger sequencing of FKBP8 on DNA samples from 472 spina bifida (SB) affected fetuses and 565 unaffected controls. 5 different rare heterozygous variants (MAF ≤ 0.001) were identified among the SB patients, while no deleterious rare variants were identified in the controls. 4 of the variants are missense, the other is a stop-gain. 2 cases were in white-Hispanic patients while the other 3 were non-white Hispanic. Functional studies showed that p.Glu140* affected FKBP8 localization to the mitochondria and impaired its interaction with BCL2 ultimately leading to an increase in cellular apoptosis. p.Ser3Leu, p.Lys315Asn and p.Ala292Ser variants decreased FKBP8 protein level. Gene expression was studied in mouse Fkbp8-/- embryos and found to be abnormal. Previous mouse models have shown neural tube defects.

Sufficient cases to rate green, but only the FKBP8 gene looked at so perhaps some caution required while further evidence is gathered.
Sources: Literature
Mendeliome v0.5507 CAPN15 Eleanor Williams changed review comment from: PMID: 32885237 - Zha et al 2020 - report 5 individuals with microphthalmia and/or coloboma from 4 independent families who, through WES, were identified as carrying homozygous or compound heterozygous missense variants in CAPN15 that are predicted to be damanging. the variants segregated with the disease in all 4 families, with parents being unaffected heterozygous carriers. Several individuals had additional phenotypes including growth deficits (2 families), developmental delay (2 families) and hearing loss (2 families).
Sources: Literature; to: PMID: 32885237 - Zha et al 2020 - report 5 individuals with microphthalmia and/or coloboma from 4 independent families who, through WES, were identified as carrying homozygous or compound heterozygous missense variants in CAPN15 that are predicted to be damanging. the variants segregated with the disease in all 4 families, with parents being unaffected heterozygous carriers. Several individuals had additional phenotypes including growth deficits (2 families), developmental delay (2 families) and hearing loss (2 families). Capn15 knockout mice showed similar severe developmental eye defects, including anophthalmia, microphthalmia and cataract, and diminished growth.

Sources: Literature
Mendeliome v0.5507 CAPN15 Eleanor Williams gene: CAPN15 was added
gene: CAPN15 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CAPN15 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CAPN15 were set to 32885237
Phenotypes for gene: CAPN15 were set to microphthalmia HP:0000568; coloboma HP:0000589
Review for gene: CAPN15 was set to GREEN
Added comment: PMID: 32885237 - Zha et al 2020 - report 5 individuals with microphthalmia and/or coloboma from 4 independent families who, through WES, were identified as carrying homozygous or compound heterozygous missense variants in CAPN15 that are predicted to be damanging. the variants segregated with the disease in all 4 families, with parents being unaffected heterozygous carriers. Several individuals had additional phenotypes including growth deficits (2 families), developmental delay (2 families) and hearing loss (2 families).
Sources: Literature
Mendeliome v0.5507 MYF5 Zornitza Stark Marked gene: MYF5 as ready
Mendeliome v0.5504 TARS2 Zornitza Stark Publications for gene: TARS2 were set to 24827421; 26811336
Mendeliome v0.5503 TARS2 Zornitza Stark edited their review of gene: TARS2: Added comment: Second family reported, single affected individual, compound heterozygous missense variants, computational data only in support of pathogenicity.; Changed publications: 24827421, 26811336, 33153448
Mendeliome v0.5503 COX16 Bryony Thompson Marked gene: COX16 as ready
Mendeliome v0.5502 COX16 Bryony Thompson gene: COX16 was added
gene: COX16 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: COX16 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: COX16 were set to 33169484
Phenotypes for gene: COX16 were set to Hypertrophic cardiomyopathy; encephalopathy; severe fatal lactic acidosis
Review for gene: COX16 was set to AMBER
Added comment: 2 unrelated patients with the same homozygous (non-consanguineous) nonsense variant c.244C>T (p.Arg82*), and isolated complex IV deficiency present in both patient fibroblasts/skeletal muscle biopsy. COX16 is involved in the biogenesis of complex IV, the terminal complex of the mitochondrial respiratory chain (RC)
Sources: Literature
Mendeliome v0.5500 KCNJ18 Zornitza Stark Marked gene: KCNJ18 as ready
Mendeliome v0.5500 KCNJ18 Zornitza Stark gene: KCNJ18 was added
gene: KCNJ18 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: KCNJ18 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KCNJ18 were set to 20074522; 27008341
Phenotypes for gene: KCNJ18 were set to {Thyrotoxic periodic paralysis, susceptibility to, 2}, MIM# 613239
Review for gene: KCNJ18 was set to RED
Added comment: Six variants reported in original publication, however note lack of segregation data and limited functional data. Subsequently, concerns raised about high nucleotide sequence homology between multiple potassium channel genes, with variant misattribution.
Sources: Expert Review
Mendeliome v0.5499 DPM3 Zornitza Stark Marked gene: DPM3 as ready
Mendeliome v0.5499 DPM3 Zornitza Stark Phenotypes for gene: DPM3 were changed from to Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, 15 , MIM#612937; Muscular dystrophy-dystroglycanopathy (congenital with impaired intellectual development), type B, 15 618992
Mendeliome v0.5496 DPM3 Zornitza Stark reviewed gene: DPM3: Rating: GREEN; Mode of pathogenicity: None; Publications: 31266720, 28803818, 19576565, 31266720, 31469168; Phenotypes: Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, 15 , MIM#612937, Muscular dystrophy-dystroglycanopathy (congenital with impaired intellectual development), type B, 15 618992; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5496 B3GAT3 Zornitza Stark Marked gene: B3GAT3 as ready
Mendeliome v0.5496 B3GAT3 Zornitza Stark Phenotypes for gene: B3GAT3 were changed from to Multiple joint dislocations, short stature, craniofacial dysmorphism, with or without congenital heart defects, MIM# 245600
Mendeliome v0.5493 B3GAT3 Zornitza Stark reviewed gene: B3GAT3: Rating: GREEN; Mode of pathogenicity: None; Publications: 26754439, 31988067, 26086840, 25893793, 21763480, 24668659; Phenotypes: Multiple joint dislocations, short stature, craniofacial dysmorphism, with or without congenital heart defects, MIM# 245600; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5493 SLC10A7 Zornitza Stark Marked gene: SLC10A7 as ready
Mendeliome v0.5490 PIGP Zornitza Stark Phenotypes for gene: PIGP were changed from Epileptic encephalopathy, early infantile, 55, MIM# 617599 to Developmental and epileptic encephalopathy 55, MIM# 617599
Mendeliome v0.5489 PIGK Zornitza Stark Phenotypes for gene: PIGK were changed from Intellectual disability; seizures; cerebellar atrophy to Neurodevelopmental disorder with hypotonia and cerebellar atrophy, with or without seizures, MIM# 618879
Mendeliome v0.5488 PIGK Zornitza Stark edited their review of gene: PIGK: Changed phenotypes: Neurodevelopmental disorder with hypotonia and cerebellar atrophy, with or without seizures, MIM# 618879
Mendeliome v0.5487 PIGH Zornitza Stark edited their review of gene: PIGH: Added comment: Further three families reported.

Common clinical features include developmental delay/intellectual disability and hypotonia. Variable clinical features include seizures, autism spectrum disorder, apraxia, severe language delay, dysarthria, feeding difficulties, facial dysmorphisms, microcephaly, strabismus, and musculoskeletal anomalies.; Changed publications: 29573052, 29603516, 33156547
Mendeliome v0.5487 PIGB Zornitza Stark Phenotypes for gene: PIGB were changed from Epileptic encephalopathy, early infantile, 80; OMIM #618580 to Developmental and epileptic encephalopathy 80, MIM# 618580
Mendeliome v0.5486 GPAA1 Zornitza Stark Marked gene: GPAA1 as ready
Mendeliome v0.5483 GPAA1 Zornitza Stark edited their review of gene: GPAA1: Added comment: At least 5 unrelated families reported with bi-allelic variants in this gene and delayed psychomotor development, variable intellectual disability, hypotonia, early-onset seizures in most, and cerebellar atrophy, resulting in cerebellar signs including gait ataxia and dysarthria. The disorder is caused by a defect in glycosylphosphatidylinositol (GPI) biosynthesis.; Changed publications: 29100095
Mendeliome v0.5483 ATP7A Zornitza Stark Marked gene: ATP7A as ready
Mendeliome v0.5483 ATP7A Zornitza Stark Phenotypes for gene: ATP7A were changed from to Occipital horn syndrome, 304150; X-linked recessive Menkes disease, 309400 Spinal muscular atrophy, distal, X-linked 3, 300489
Mendeliome v0.5480 PEX1 Zornitza Stark Marked gene: PEX1 as ready
Mendeliome v0.5475 HDAC4 Bryony Thompson Phenotypes for gene: HDAC4 were changed from Brachydactyly mental retardation syndrome; Brachydactyly without intellectual disability to Brachydactyly mental retardation syndrome; Brachydactyly without intellectual disability; Intellectual disability syndrome
Mendeliome v0.5474 ATP7A Elena Savva reviewed gene: ATP7A: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 21221114; Phenotypes: Occipital horn syndrome, 304150, X-linked recessive Menkes disease, 309400 Spinal muscular atrophy, distal, X-linked 3, 300489; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.5474 TMEM218 Bryony Thompson Marked gene: TMEM218 as ready
Mendeliome v0.5473 TMEM218 Bryony Thompson gene: TMEM218 was added
gene: TMEM218 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TMEM218 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMEM218 were set to https://doi.org/10.1016/j.xhgg.2020.100016; 25161209
Phenotypes for gene: TMEM218 were set to Joubert syndrome; retinal dystrophy; polycystic kidneys; occipital encephalocele
Review for gene: TMEM218 was set to GREEN
Added comment: 11 cases in 6 families with homozygous or compound heterozygous missense and nonsense (1) variants, with a Joubert/Meckel syndrome phenotype. Clinical features included the molar tooth sign (N=2), occipital encephalocele (N=5, all fetuses), retinal dystrophy (N=4, all living individuals), polycystic kidneys (N=2), and polydactyly (N=2), without liver involvement. A null mouse model had nephronophthisis and retinal degeneration. No OMIM entry.
Sources: Literature
Mendeliome v0.5472 AGBL1 Zornitza Stark Marked gene: AGBL1 as ready
Mendeliome v0.5472 AGBL1 Zornitza Stark gene: AGBL1 was added
gene: AGBL1 was added to Mendeliome. Sources: Expert Review
disputed tags were added to gene: AGBL1.
Mode of inheritance for gene: AGBL1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: AGBL1 were set to 24094747; 31555324
Phenotypes for gene: AGBL1 were set to Corneal dystrophy, Fuchs endothelial, 8, MIM# 615523
Review for gene: AGBL1 was set to RED
Added comment: Gene disease association first reported in 2013 in PMID 24094747, in a large multigenerational family. However, note the variant reported, p.Arg1028Ter is present in over 400 hets in gnomad. Another variant reported in same paper, p.Cys990Ser in three unrelated individuals, is present in over 300 hets in gnomad and 1 hom.

Two further variants reported in PMID 31555324, one is missense, p.Arg748His, present in 60 hets, and the other, p.Arg1028Ter, is present is the variant identified in the previous publication, present in over 400 hets.

These variant frequencies are out of keeping for a rare disorder.
Sources: Expert Review
Mendeliome v0.5471 TLE6 Zornitza Stark Marked gene: TLE6 as ready
Mendeliome v0.5470 TLE6 Zornitza Stark gene: TLE6 was added
gene: TLE6 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: TLE6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TLE6 were set to 26537248; 31897846
Phenotypes for gene: TLE6 were set to Preimplantation embryonic lethality, MIM# 616814
Review for gene: TLE6 was set to GREEN
Added comment: At least 5 individuals reported with bi-allelic variants and early embryonic lethality.
Sources: Expert Review
Mendeliome v0.5469 OGT Zornitza Stark Marked gene: OGT as ready
Mendeliome v0.5469 OGT Zornitza Stark Phenotypes for gene: OGT were changed from to Mental retardation, X-linked 106, MIM# 300997
Mendeliome v0.5466 OGT Zornitza Stark reviewed gene: OGT: Rating: GREEN; Mode of pathogenicity: None; Publications: 28302723, 28584052, 31296563, 31627256, 29769320, 29606577; Phenotypes: Mental retardation, X-linked 106, MIM# 300997; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.5466 EXTL3 Zornitza Stark Marked gene: EXTL3 as ready
Mendeliome v0.5463 SSR3 Zornitza Stark Marked gene: SSR3 as ready
Mendeliome v0.5462 SSR3 Zornitza Stark gene: SSR3 was added
gene: SSR3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SSR3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SSR3 were set to 30945312
Phenotypes for gene: SSR3 were set to Congenital disorder of glycosylation
Review for gene: SSR3 was set to AMBER
Added comment: Single individual reported with an unsolved type I CDG, intellectual disability, homozygous LOF variant in SSR3, supportive functional evidence.
Sources: Literature
Mendeliome v0.5461 LCP2 Zornitza Stark Marked gene: LCP2 as ready
Mendeliome v0.5461 LCP2 Zornitza Stark gene: LCP2 was added
gene: LCP2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LCP2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LCP2 were set to 33231617
Phenotypes for gene: LCP2 were set to Severe combined immunodeficiency
Review for gene: LCP2 was set to RED
Added comment: Infant with bi-allelic variants in this gene and early-onset life-threatening infections, combined T and B cell immunodeficiency, severe neutrophil defects, and impaired platelet aggregation.
Sources: Literature
Mendeliome v0.5458 DPM2 Zornitza Stark edited their review of gene: DPM2: Added comment: Further unrelated individual reported, main clinical features were truncal hypotonia, hypertonicity, congenital heart defects, intellectual disability, and generalized muscle wasting.; Changed rating: GREEN; Changed publications: 23109149, 33129689
Mendeliome v0.5458 ATP6V0A2 Zornitza Stark Marked gene: ATP6V0A2 as ready
Mendeliome v0.5455 ALG9 Zornitza Stark Marked gene: ALG9 as ready
Mendeliome v0.5449 ALG8 Zornitza Stark changed review comment from: Review of 15 reported individuals in PMID: 26066342: multiple prenatal abnormalities were present in 6/12 patients. In 13/15, there were symptoms at birth, 9/15 died within 12 months. Birth weight was appropriate in 11/12, only one was small for gestational age. Prematurity was reported in 7/12. Hydrops fetalis was noticed in 3, edemas in 11/13; gastrointestinal symptoms in 9/14; structural brain pathology, psychomental retardation, seizures, ataxia in 12/13, muscle hypotonia in 13/14. Common dysmorphic signs were: low set ears, macroglossia, hypertelorism, pes equinovarus, campto- and brachydactyly (13/15). In 10/11, there was coagulopathy, in 8/11 elevated transaminases; thrombocytopenia was present in 9/9. Eye involvement was reported in 9/14. CDG typical skin involvement was reported in 8/13.; to: Bi-allelic variants and CDG: Review of 15 reported individuals in PMID: 26066342. Multiple prenatal abnormalities were present in 6/12 patients. In 13/15, there were symptoms at birth, 9/15 died within 12 months. Birth weight was appropriate in 11/12, only one was small for gestational age. Prematurity was reported in 7/12. Hydrops fetalis was noticed in 3, edemas in 11/13; gastrointestinal symptoms in 9/14; structural brain pathology, psychomental retardation, seizures, ataxia in 12/13, muscle hypotonia in 13/14. Common dysmorphic signs were: low set ears, macroglossia, hypertelorism, pes equinovarus, campto- and brachydactyly (13/15). In 10/11, there was coagulopathy, in 8/11 elevated transaminases; thrombocytopenia was present in 9/9. Eye involvement was reported in 9/14. CDG typical skin involvement was reported in 8/13.
Mendeliome v0.5449 ALG8 Zornitza Stark edited their review of gene: ALG8: Added comment: Monoallelic variants are associated with polycystic liver disease.; Changed publications: 26066342, 28375157, 15235028; Changed phenotypes: Congenital disorder of glycosylation, type Ih, MIM# 608104, Polycystic liver disease 3 with or without kidney cysts, MIM# 617874; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.5449 ALG8 Zornitza Stark Marked gene: ALG8 as ready
Mendeliome v0.5446 ALG3 Zornitza Stark Marked gene: ALG3 as ready
Mendeliome v0.5441 SLC3A2 Naomi Baker changed review comment from: No evidence of mendelian gene-disease association reported in the literature.; to: Weak evidence of mendelian gene-disease association reported in the literature.

Three monoallelic missense variants reported in patients with Autism spectrum disorder (ASD) from one publication (PMID: 31701662).
Mendeliome v0.5441 SLC3A2 Zornitza Stark Marked gene: SLC3A2 as ready
Mendeliome v0.5440 HOXA4 Zornitza Stark Marked gene: HOXA4 as ready
Mendeliome v0.5435 ASTE1 Zornitza Stark Marked gene: ASTE1 as ready
Mendeliome v0.5435 ASTE1 Zornitza Stark Phenotypes for gene: ASTE1 were changed from to palmar and plantar fibromatosis
Mendeliome v0.5431 ASTE1 Naomi Baker reviewed gene: ASTE1: Rating: RED; Mode of pathogenicity: None; Publications: PMID: 29104234; Phenotypes: palmar and plantar fibromatosis; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5431 SMARCA1 Zornitza Stark Marked gene: SMARCA1 as ready
Mendeliome v0.5431 SMARCA1 Zornitza Stark Gene: smarca1 has been classified as Red List (Low Evidence).
Mendeliome v0.5431 SMARCA1 Zornitza Stark Phenotypes for gene: SMARCA1 were changed from to Intellectual disability
Mendeliome v0.5430 SMARCA1 Zornitza Stark Publications for gene: SMARCA1 were set to
Mendeliome v0.5429 SMARCA1 Zornitza Stark Mode of inheritance for gene: SMARCA1 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.5428 SMARCA1 Zornitza Stark Classified gene: SMARCA1 as Red List (low evidence)
Mendeliome v0.5428 SMARCA1 Zornitza Stark Gene: smarca1 has been classified as Red List (Low Evidence).
Mendeliome v0.5427 CDKAL1 Zornitza Stark Marked gene: CDKAL1 as ready
Mendeliome v0.5426 TCHH Zornitza Stark Marked gene: TCHH as ready
Mendeliome v0.5422 SMARCA1 Naomi Baker reviewed gene: SMARCA1: Rating: RED; Mode of pathogenicity: None; Publications: PMID: 26740508, 26539891, 29249292.; Phenotypes: ; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.5422 CRTAP Zornitza Stark Marked gene: CRTAP as ready
Mendeliome v0.5419 USP9X Zornitza Stark Marked gene: USP9X as ready
Mendeliome v0.5419 USP9X Zornitza Stark Phenotypes for gene: USP9X were changed from to Mental retardation, X-linked 99, XLR (MIM#300919) and XLD (MIM#300968)
Mendeliome v0.5416 ALG6 Zornitza Stark Marked gene: ALG6 as ready
Mendeliome v0.5412 RORB Zornitza Stark Marked gene: RORB as ready
Mendeliome v0.5409 MYL9 Zornitza Stark Marked gene: MYL9 as ready
Mendeliome v0.5407 USP9X Paul De Fazio reviewed gene: USP9X: Rating: GREEN; Mode of pathogenicity: None; Publications: 31443933, 26833328; Phenotypes: Mental retardation, X-linked 99, XLR (MIM#300919) and XLD (MIM#300968); Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes
Mendeliome v0.5405 PHYKPL Zornitza Stark Marked gene: PHYKPL as ready
Mendeliome v0.5400 MTCL1 Bryony Thompson edited their review of gene: MTCL1: Added comment: A new report of another case with a homozygous loss of function variant and a similar phenotype to the previously reported early onset homozygous Polish case (2 independent cases), and the supporting null mouse model.; Changed rating: GREEN; Changed publications: 30548255, 28283581, 32961396; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5400 POLE Zornitza Stark Marked gene: POLE as ready
Mendeliome v0.5396 OFD1 Zornitza Stark Marked gene: OFD1 as ready
Mendeliome v0.5393 NARS Zornitza Stark Phenotypes for gene: NARS were changed from Abnormal muscle tone; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Ataxia; Abnormality of the face; Demyelinating peripheral neuropathy to Neurodevelopmental disorder with microcephaly, impaired language, and gait abnormalities (NEDMILG), MIM#619091; Neurodevelopmental disorder with microcephaly, impaired language, epilepsy, and gait abnormalities (NEDMILEG), MIM#619092; Abnormal muscle tone; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Ataxia; Abnormality of the face; Demyelinating peripheral neuropathy
Mendeliome v0.5392 NARS Zornitza Stark Tag new gene name tag was added to gene: NARS.
Mendeliome v0.5392 NARS Zornitza Stark edited their review of gene: NARS: Changed phenotypes: Neurodevelopmental disorder with microcephaly, impaired language, and gait abnormalities (NEDMILG), MIM#619091, Neurodevelopmental disorder with microcephaly, impaired language, epilepsy, and gait abnormalities (NEDMILEG), MIM#619092, Abnormal muscle tone, Microcephaly, Global developmental delay, Intellectual disability, Seizures, Ataxia, Abnormality of the face, Demyelinating peripheral neuropathy
Mendeliome v0.5389 DZIP1 Zornitza Stark changed review comment from: One large 4-generation family reported, where missense variant segregated with disease. Two additional individuals identified from a cohort. All variants present at low frequency in population databases. Mouse model recapitulated phenotype.
Sources: Literature; to: Association with MVP: One large 4-generation family reported, where missense variant segregated with disease. Two additional individuals identified from a cohort. All variants present at low frequency in population databases. Mouse model recapitulated phenotype.
Sources: Literature
Mendeliome v0.5389 DZIP1 Zornitza Stark edited their review of gene: DZIP1: Added comment: Two individuals reported in PMID 32051257 with bi-allelic variants and spermatogenic failure.; Changed publications: 31118289, 32051257; Changed phenotypes: Mitral valve prolapse, MIM#610840, Spermatogenic failure 47, MIM# 619102; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.5389 DZIP1 Zornitza Stark Marked gene: DZIP1 as ready
Mendeliome v0.5387 DZIP1 Zornitza Stark gene: DZIP1 was added
gene: DZIP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DZIP1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DZIP1 were set to 31118289
Phenotypes for gene: DZIP1 were set to Mitral valve prolapse
Review for gene: DZIP1 was set to AMBER
Added comment: One large 4-generation family reported, where missense variant segregated with disease. Two additional individuals identified from a cohort. All variants present at low frequency in population databases. Mouse model recapitulated phenotype.
Sources: Literature
Mendeliome v0.5386 ADH5 Zornitza Stark Marked gene: ADH5 as ready
Mendeliome v0.5385 ADH5 Zornitza Stark gene: ADH5 was added
gene: ADH5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ADH5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ADH5 were set to 33147438
Phenotypes for gene: ADH5 were set to Aplastic anaemia; myelodysplasia; short stature
Review for gene: ADH5 was set to GREEN
Added comment: 7 individuals reported with bi-allelic variants in this gene and a Fanconi syndrome-like phenotype. All had aplastic anaemia, 4 developed a myelodysplastic syndrome, and one developed AML. Short stature and abnormal skin pigmentation were additional features.

Note, all also had the ALDH2*2 allele, which is common in East Asian populations, and may be contributory.

Extensive experimental data.
Sources: Literature
Mendeliome v0.5384 NPHS2 Zornitza Stark Marked gene: NPHS2 as ready
Mendeliome v0.5384 NPHS2 Zornitza Stark Phenotypes for gene: NPHS2 were changed from to Nephrotic syndrome, type 2 (MIM#600995), AR
Mendeliome v0.5381 NPHS2 Chern Lim reviewed gene: NPHS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 32467597, 30260545, 24509478; Phenotypes: Nephrotic syndrome, type 2 (MIM#600995), AR; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.5381 LRIF1 Bryony Thompson changed review comment from: A single consanguineous case with a homozygous truncating variant. DZ4Z hypomethylation and increased DUX expression was present in patient cells. siRNA-mediated depletion of LRIF1L in immortalized myoblasts derepressed the DUX4 locus.
Sources: Literature; to: A single consanguineous case with a homozygous truncating variant, and D4Z4 repeat of 13 units on a 4qA haplotype (permissive haplotype). DZ4Z hypomethylation and increased DUX expression was present in patient cells. siRNA-mediated depletion of LRIF1L in immortalized myoblasts derepressed the DUX4 locus.
Sources: Literature
Mendeliome v0.5380 LRIF1 Bryony Thompson gene: LRIF1 was added
gene: LRIF1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LRIF1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LRIF1 were set to 32467133
Phenotypes for gene: LRIF1 were set to Facioscapulohumeral muscular dystrophy
Review for gene: LRIF1 was set to AMBER
Added comment: A single consanguineous case with a homozygous truncating variant. DZ4Z hypomethylation and increased DUX expression was present in patient cells. siRNA-mediated depletion of LRIF1L in immortalized myoblasts derepressed the DUX4 locus.
Sources: Literature
Mendeliome v0.5379 DNAH8 Zornitza Stark Phenotypes for gene: DNAH8 were changed from Asthenozoospermia; primary ciliary dyskinesia to Spermatogenic failure 46, MIM#619095; Asthenozoospermia; primary ciliary dyskinesia
Mendeliome v0.5378 DNAH8 Zornitza Stark edited their review of gene: DNAH8: Changed phenotypes: Spermatogenic failure 46, MIM#619095, Asthenozoospermia, primary ciliary dyskinesia
Mendeliome v0.5378 MYRF Zornitza Stark Phenotypes for gene: MYRF were changed from Nanophthalmos; High hyperopia to Nanophthalmos and high hyperopia; Cardiac-urogenital syndrome, MIM# 618280; Encephalitis/encephalopathy, mild, with reversible myelin vacuolization, MIM# 618113
Mendeliome v0.5376 MYRF Zornitza Stark edited their review of gene: MYRF: Added comment: Association with Encephalitis/encephalopathy, mild, with reversible myelin vacuolization 618113: limited evidence, two multiplex families with same missense variant (likely founder effect) reported (p.Gln403Arg); Changed publications: 31048900, 31172260, 31266062, 31700225, 29446546, 29446546, 30532227, 31069960, 29265453; Changed phenotypes: Nanophthalmos and high hyperopia, Cardiac-urogenital syndrome, MIM# 618280, Encephalitis/encephalopathy, mild, with reversible myelin vacuolization, MIM# 618113
Mendeliome v0.5376 MYRF Zornitza Stark changed review comment from: Cardiac-urogenital syndrome is characterized by partial anomalous pulmonary venous return in association with tracheal anomalies, pulmonary hypoplasia, congenital diaphragmatic hernia, thyroid fibrosis, thymic involution, cleft spleen, penoscrotal hypospadias, and cryptorchidism. More than 10 unrelated individuals reported.; to: Cardiac-urogenital syndrome MIM# 618280 is characterized by partial anomalous pulmonary venous return in association with tracheal anomalies, pulmonary hypoplasia, congenital diaphragmatic hernia, thyroid fibrosis, thymic involution, cleft spleen, penoscrotal hypospadias, and cryptorchidism. More than 10 unrelated individuals reported.
Mendeliome v0.5376 MYRF Zornitza Stark edited their review of gene: MYRF: Added comment: Cardiac-urogenital syndrome is characterized by partial anomalous pulmonary venous return in association with tracheal anomalies, pulmonary hypoplasia, congenital diaphragmatic hernia, thyroid fibrosis, thymic involution, cleft spleen, penoscrotal hypospadias, and cryptorchidism. More than 10 unrelated individuals reported.; Changed publications: 31048900, 31172260, 31266062, 31700225, 29446546, 29446546, 30532227, 31069960; Changed phenotypes: Nanophthalmos and high hyperopia, Cardiac-urogenital syndrome, MIM# 618280