Date | Panel | Item | Activity | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Genetic Epilepsy v0.1829 | BSN |
Krithika Murali changed review comment from: Ye et al 2022, Neurogenetics identified 4 unrelated individuals with epilepsy and compound heterozygous BSN variants via trio WES (combination of null and missense). Homozygous knockout mouse models showed abnormal CNS transmission and seizure activity. None of the identified variants were present in population databases as homozygotes. One individual had ID and microcephaly but all other individuals with biallelic variants had normal development. In addition, heterozygous variants were identified in unrelated affected individuals - 2 apparently co-segregating missense variants and 2 de novo null variants. These variants were either absent in population databases or rare. The authors note that affected individuals with heterozygous variants had milder disease - either requiring no therapy or monotherapy only. Heterozygous knockout mice had no phenotype and there were not enough affected individuals in the families to truly determine co-segregation. In addition, carrier parents of individuals with biallelic variants did not appear to be affected. Association between biallelic variants and epilepsy stronger than for monoallelic. Sources: Literature; to: Ye et al 2022, Neurogenetics https://jmg.bmj.com/content/early/2022/12/12/jmg-2022-108865 Identified 4 unrelated individuals with epilepsy and compound heterozygous BSN variants via trio WES (combination of null and missense). Homozygous knockout mouse models showed abnormal CNS transmission and seizure activity. None of the identified variants were present in population databases as homozygotes. One individual had ID and microcephaly but all other individuals with biallelic variants had normal development. In addition, heterozygous variants were identified in unrelated affected individuals - 2 apparently co-segregating missense variants and 2 de novo null variants. These variants were either absent in population databases or rare. The authors note that affected individuals with heterozygous variants had milder disease - either requiring no therapy or monotherapy only. Heterozygous knockout mice had no phenotype and there were not enough affected individuals in the families to truly determine co-segregation. In addition, carrier parents of individuals with biallelic variants did not appear to be affected. Association between biallelic variants and epilepsy stronger than for monoallelic. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genetic Epilepsy v0.1829 | BSN | Zornitza Stark Marked gene: BSN as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genetic Epilepsy v0.1829 | BSN | Zornitza Stark Added comment: Comment when marking as ready: We are aware of additional mono allelic cases. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genetic Epilepsy v0.1829 | BSN | Zornitza Stark Gene: bsn has been classified as Green List (High Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genetic Epilepsy v0.1829 | BSN | Zornitza Stark Mode of inheritance for gene: BSN was changed from BIALLELIC, autosomal or pseudoautosomal to BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genetic Epilepsy v0.1828 | BSN | Zornitza Stark Classified gene: BSN as Green List (high evidence) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genetic Epilepsy v0.1828 | BSN | Zornitza Stark Gene: bsn has been classified as Green List (High Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genetic Epilepsy v0.1824 | BSN |
Krithika Murali gene: BSN was added gene: BSN was added to Genetic Epilepsy. Sources: Literature Mode of inheritance for gene: BSN was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: BSN were set to Epilepsy MONDO:0005027 Review for gene: BSN was set to GREEN Added comment: Ye et al 2022, Neurogenetics identified 4 unrelated individuals with epilepsy and compound heterozygous BSN variants via trio WES (combination of null and missense). Homozygous knockout mouse models showed abnormal CNS transmission and seizure activity. None of the identified variants were present in population databases as homozygotes. One individual had ID and microcephaly but all other individuals with biallelic variants had normal development. In addition, heterozygous variants were identified in unrelated affected individuals - 2 apparently co-segregating missense variants and 2 de novo null variants. These variants were either absent in population databases or rare. The authors note that affected individuals with heterozygous variants had milder disease - either requiring no therapy or monotherapy only. Heterozygous knockout mice had no phenotype and there were not enough affected individuals in the families to truly determine co-segregation. In addition, carrier parents of individuals with biallelic variants did not appear to be affected. Association between biallelic variants and epilepsy stronger than for monoallelic. Sources: Literature |