Activity

Filter

Cancel
Date Panel Item Activity
98 actions
Mendeliome v1.3104 SLC38A6 Bryony Thompson gene: SLC38A6 was added
gene: SLC38A6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC38A6 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SLC38A6 were set to 40931016
Phenotypes for gene: SLC38A6 were set to essential tremor MONDO:0003233
Review for gene: SLC38A6 was set to AMBER
Added comment: The study identified SLC38A6 variants in 71 unrelated Chinese ET families (≈9.2% of families) and 47 unrelated sporadic cases, with 15 distinct protein‑altering variants. However, many of the 15 variants are >2% in the East Asian population, which is inconsistent with the incidence of essential tremor in the population (~1%). The study does not contain any statistical enrichment analyses or case-control analyses. It also reports incomplete segregation and non-segregation of variants (called a phenocopy by the authors). A null mouse model (Slc38a6-/-) displays tremor and delineated cerebellar cellular abnormalities. In vitro assessment of 3 of the most common missense variants (p.Y108F [gnomAD total 0.0002; East Asian 0.006, p.M281T [gnomAD total 0.0015; East Asian 0.0227] and p.G318S [gnomAD total 0.0021; East Asian 0.0278]) significantly impaired L-arginine (L-Arg) uptake in HeLa cells. Given the prevalence of the reported variants in the East Asian population, the genetic evidence for this gene-disease association is limited.
Sources: Literature
Mendeliome v1.3063 ZNF319 Zornitza Stark gene: ZNF319 was added
gene: ZNF319 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZNF319 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZNF319 were set to 40820230
Phenotypes for gene: ZNF319 were set to Leukodystrophy, MONDO:0019046, ZNF319-related
Review for gene: ZNF319 was set to RED
Added comment: Single individual with homozygous missense variant reported, p.Phe267Ser.

18-year-old male presenting with spasticity, ataxia, cognitive decline, and white matter abnormalities on MRI. Molecular dynamics simulations revealed that F267 is a stabilizing residue within a β-strand of the zinc finger domain, forming π-stacking and hydrophobic interactions that are lost upon substitution with serine, leading to structural instability, increased flexibility, and protein unfolding. Despite normal transcript and protein expression, ZNF319-F267S mislocalized to the cytoplasm due to disruption of its bipartite nuclear localization signal (NLS), resulting in impaired interaction with importin α1 (KPNA1). Functional analysis confirmed that the variant disrupts nuclear transport and prevents transcriptional activation of genes involved in myelination. Protein interaction network and gene ontology analysis highlighted ZNF319's role in transcriptional regulation and its localization in the CHOP-C/EBP transcriptional complex. Expression profiling demonstrated ZNF319 enrichment in oligodendrocytes and white matter regions, correlating with the observed leukoencephalopathy.
Sources: Literature
Mendeliome v1.3022 KRT32 Bryony Thompson gene: KRT32 was added
gene: KRT32 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KRT32 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KRT32 were set to 40814173; 39048559
Phenotypes for gene: KRT32 were set to loose anagen syndrome MONDO:0010908; Pityriasis rubra pilaris MONDO:0100017
Review for gene: KRT32 was set to GREEN
Added comment: Sufficient evidence for Pityriasis rubra pilaris association, but limited for association with loose anagen syndrome.
PMID: 39048559 - Significant enrichment of KRT32 variants (p=3.06e-4) in 58 PRP cases vs 364 healthy controls (4 variants - individual 1: c.344G>A (p.Arg115Gln - 10 hets gnomAD v4.1), individual 2: c.477_478del (p.Thr160fs), individual 3: c.607C>T (p.Arg203Cys - 71 hets gnomAD v4.1), and individual 4: c.685T>C (p.Cys229Arg - 18 hets gnomAD v4.1). Validation cohort of 44 PRP cases vs 436 healthy controls identified an additional 2 variants (individual 5: c.907G>A (p.Glu303Lys - 3 hets gnomAD v4.1), individual 6: c.937A>G (p.Ile313Val - 30 hets gnomAD v4.1). A combined analysis of the KRT32 gene in both the discovery and validation cohorts revealed a significant p value of 1.73 e-6. The KRT32 expression patterns (location of protein expression) were altered in PRP cases with the KRT32 variants. In vitro analysis demonstrated that the 6 variants (all located in the IF rod domain) exhibited varying degrees of attenuation in inhibiting the NF-κB signaling pathway. A Krt32 knockout mouse model recapitulates the human PRP-like phenotype.
PMID: 40814173 - a single family with loose anagen hair syndrome co-segregating (c.296C>T; p.Thr99Ile) in a large family; however, the AF in the European population is 0.3% in gnomAD v4.1 (6 homozygotes), which is higher than expected for a dominant condition. In vitro functional assay showing the variant alters interaction with KRT82, however, only WT & the variant were assessed (no positive control).
Sources: Literature
Mendeliome v1.2977 CSMD2 Krithika Murali changed review comment from: PMID: 40632521 Li et al 2025 (Epilepsia) reported 6 unrelated individuals of Han Chinese descent with biallelic CSMD2 missense variants (NM_052896) and focal epilepsy. 5 individuals were compound heterozygous and one was homozygous. These individuals were ascertained through trio WES analysis of 420 unrelated individuals with focal epilepsy enrolled in the China Epilepsy Gene 1.0 project.

Phenotypic features
- age of onset 1.5-10 years old
- complex partial seizures (4), secondary GTCS (2)
- Normal MRI-B (3), focal cortical dysplasia (1)
- mild ID (1).

The variants were noted to be rare in EXAC-East Asian cohort, most located in CUB/Sushi domains. The gene has some evidence of missense and LoF constraint in gnomAD v4. There was also enrichment of biallelic CSMD2 variants in affected individuals versus a control cohort of unaffected parents (5/420 compound hets affected individuals, 3/1942 compound hets in unaffected parents). Previous mouse Csmd2 knockdown models demonstrated reduction in dendritic spine density and complexity. LoF is the postulated disease mechanism.

Closely related gene paralog CSMD1 has a definitive association with autosomal recessive complex neurodevelopmental disorder with a more severe phenotype. Different expression profiles during developmental stages between CSMD1 and CSMD2 postulated for the comparatively milder phenotype associated with the latter.

CSMD2 has 71 exons and 3631 amino acids. The true prevalence of biallelic missense variants in healthy individuals across diverse ancestries has not been ascertained. Review of the missense variants in this study highlighted issues in a number of them including poor-moderate conservation, conflicting or benign in silicos including REVEL, non-coding in an alternative transcript, Case 4 p.Val1547Ile homozygote – this variant has been noted in an East Asian male homozygote aged between 45-50 in gnomAD v4. In addition, no information about unaffected siblings and segregation testing has been provided.

Given prevalence of focal epilepsy, stronger case-control evidence from diverse ancestries and variant-specific functional evidence is required to support this proposed gene-disease association.; to: PMID: 40632521 Li et al 2025 (Epilepsia) reported 6 unrelated individuals of Han Chinese descent with biallelic CSMD2 missense variants (NM_052896) and focal epilepsy. 5 individuals were compound heterozygous and one was homozygous. These individuals were ascertained through trio WES analysis of 420 unrelated individuals with focal epilepsy enrolled in the China Epilepsy Gene 1.0 project.

Phenotypic features
- age of onset 1.5-10 years old
- complex partial seizures (4), secondary GTCS (2)
- Normal MRI-B (3), focal cortical dysplasia (1)
- mild ID (1).

The variants were noted to be rare in EXAC-East Asian cohort, most located in CUB/Sushi domains. The gene has some evidence of missense and LoF constraint in gnomAD v4. There was also enrichment of biallelic CSMD2 variants in affected individuals versus a control cohort of unaffected parents (5/420 compound hets affected individuals, 3/1942 compound hets in unaffected parents). Previous mouse Csmd2 knockdown models demonstrated reduction in dendritic spine density and complexity. LoF is the postulated disease mechanism.

Closely related gene paralog CSMD1 has a definitive association with autosomal recessive complex neurodevelopmental disorder with a more severe phenotype. Different expression profiles during developmental stages between CSMD1 and CSMD2 postulated for the comparatively milder phenotype associated with the latter.

CSMD2 has 71 exons and 3631 amino acids. The true prevalence of biallelic missense variants in healthy individuals across diverse ancestries has not been ascertained. Review of the missense variants in this study highlighted issues in a number of them including poor-moderate conservation, conflicting or benign in silicos including REVEL, non-coding in an alternative transcript, Case 4 p.Val1547Ile homozygote – this variant has been noted in an East Asian male homozygote aged between 45-50 in gnomAD v4. In addition, no information about unaffected/affected siblings and segregation testing has been provided.

Given prevalence of focal epilepsy, stronger case-control evidence from diverse ancestries and variant-specific functional evidence is required to support this proposed gene-disease association.
Mendeliome v1.2977 CSMD2 Krithika Murali changed review comment from: PMID: 40632521 Li et al 2025 (Epilepsia) reported 6 unrelated individuals of Han Chinese descent with biallelic CSMD2 missense variants (NM_052896) and focal epilepsy. 5 individuals were compound heterozygous and one was homozygous. These individuals were ascertained through trio WES analysis of 420 unrelated individuals with focal epilepsy enrolled in the China Epilepsy Gene 1.0 project.

Phenotypic features
- age of onset 1.5-10 years old
- complex partial seizures (4), secondary GTCS (2)
- Normal MRI-B (3), focal cortical dysplasia (1)
- mild ID (1).

The variants were noted to be rare in EXAC-East Asian cohort, most located in CUB/Sushi domains. The gene has some evidence of missense and LoF constraint in gnomAD v4. There was also enrichment of biallelic CSMD2 variants in affected individuals versus a control cohort of unaffected parents (5/420 compound hets affected individuals, 3/1942 compound hets in unaffected parents). Previous mouse Csmd2 knockdown models demonstrated reduction in dendritic spine density and complexity. LoF is the postulated disease mechanism.

Closely related gene paralog CSMD1 has a definitive association with autosomal recessive complex neurodevelopmental disorder with a more severe phenotype. Different expression profiles during developmental stages between CSMD1 and CSMD2 postulated for the comparatively milder phenotype associated with the latter.

CSMD2 has 71 exons and 3631 amino acids. The true prevalence of biallelic missense variants in healthy individuals across diverse ancestries has not been ascertained. Review of the missense variants in this study highlighted issues in a number of them including poor-moderate conservation, conflicting or benign in silicos including REVEL, non-coding in an alternative transcript, Case 4 p.Val1547Ile homozygote – this variant has been noted in an East Asian male homozygote aged between 45-50 in gnomAD v4.

Given prevalence of focal epilepsy, stronger case-control evidence from diverse ancestries and variant-specific functional evidence is required to support this proposed gene-disease association.; to: PMID: 40632521 Li et al 2025 (Epilepsia) reported 6 unrelated individuals of Han Chinese descent with biallelic CSMD2 missense variants (NM_052896) and focal epilepsy. 5 individuals were compound heterozygous and one was homozygous. These individuals were ascertained through trio WES analysis of 420 unrelated individuals with focal epilepsy enrolled in the China Epilepsy Gene 1.0 project.

Phenotypic features
- age of onset 1.5-10 years old
- complex partial seizures (4), secondary GTCS (2)
- Normal MRI-B (3), focal cortical dysplasia (1)
- mild ID (1).

The variants were noted to be rare in EXAC-East Asian cohort, most located in CUB/Sushi domains. The gene has some evidence of missense and LoF constraint in gnomAD v4. There was also enrichment of biallelic CSMD2 variants in affected individuals versus a control cohort of unaffected parents (5/420 compound hets affected individuals, 3/1942 compound hets in unaffected parents). Previous mouse Csmd2 knockdown models demonstrated reduction in dendritic spine density and complexity. LoF is the postulated disease mechanism.

Closely related gene paralog CSMD1 has a definitive association with autosomal recessive complex neurodevelopmental disorder with a more severe phenotype. Different expression profiles during developmental stages between CSMD1 and CSMD2 postulated for the comparatively milder phenotype associated with the latter.

CSMD2 has 71 exons and 3631 amino acids. The true prevalence of biallelic missense variants in healthy individuals across diverse ancestries has not been ascertained. Review of the missense variants in this study highlighted issues in a number of them including poor-moderate conservation, conflicting or benign in silicos including REVEL, non-coding in an alternative transcript, Case 4 p.Val1547Ile homozygote – this variant has been noted in an East Asian male homozygote aged between 45-50 in gnomAD v4. In addition, no information about unaffected siblings and segregation testing has been provided.

Given prevalence of focal epilepsy, stronger case-control evidence from diverse ancestries and variant-specific functional evidence is required to support this proposed gene-disease association.
Mendeliome v1.2977 CSMD2 Krithika Murali changed review comment from: PMID: 40632521 Li et al 2025 (Epilepsia) reported 6 unrelated individuals of Han Chinese descent with biallelic CSMD2 missense variants (NM_052896) and focal epilepsy. 5 individuals were compound heterozygous and one was homozygous. These individuals were ascertained through trio WES analysis of 420 unrelated individuals with focal epilepsy enrolled in the China Epilepsy Gene 1.0 project.

Phenotypic features
- age of onset 1.5-10 years old
- complex partial seizures (4), secondary GTCS (2)
- Normal MRI-B (3), focal cortical dysplasia (1)
- mild ID (1).

The variants were noted to be rare in EXAC-East Asian cohort, most located in CUB/Sushi domains. The gene has some evidence of missense and LoF constraint in gnomAD v4. There was also enrichment of biallelic CSMD2 variants in affected individuals versus a control cohort of unaffected parents (5/420 compound hets affected individuals, 3/1942 compound hets in unaffected parents). Previous mouse Csmd2 knockdown models demonstrated reduction in dendritic spine density and complexity. LoF is the postulated disease mechanism.

Closely related gene paralog CSMD1 has a definitive association with autosomal recessive complex neurodevelopmental disorder with a more severe phenotype. Different expression profiles during developmental stages between CSMD1 and CSMD2 postulated for the comparatively milder phenotype associated with the latter.

CSMD2 has 71 exons and 3631 amino acids. The true prevalence of biallelic missense variants in healthy individuals across diverse ancestries has not been ascertained. Review of the missense variants in this study highlighted issues in a number of them including poor-moderate conservation, conflicting or benign in silicos including REVEL, non-coding in an alternative transcript, Case 4 p.Val1547Ile homozygote – this variant has been noted in an East Asian male homozygote aged between 45-50.

Given prevalence of focal epilepsy, stronger case-control evidence from diverse ancestries and variant-specific functional evidence is required to support this proposed gene-disease association.; to: PMID: 40632521 Li et al 2025 (Epilepsia) reported 6 unrelated individuals of Han Chinese descent with biallelic CSMD2 missense variants (NM_052896) and focal epilepsy. 5 individuals were compound heterozygous and one was homozygous. These individuals were ascertained through trio WES analysis of 420 unrelated individuals with focal epilepsy enrolled in the China Epilepsy Gene 1.0 project.

Phenotypic features
- age of onset 1.5-10 years old
- complex partial seizures (4), secondary GTCS (2)
- Normal MRI-B (3), focal cortical dysplasia (1)
- mild ID (1).

The variants were noted to be rare in EXAC-East Asian cohort, most located in CUB/Sushi domains. The gene has some evidence of missense and LoF constraint in gnomAD v4. There was also enrichment of biallelic CSMD2 variants in affected individuals versus a control cohort of unaffected parents (5/420 compound hets affected individuals, 3/1942 compound hets in unaffected parents). Previous mouse Csmd2 knockdown models demonstrated reduction in dendritic spine density and complexity. LoF is the postulated disease mechanism.

Closely related gene paralog CSMD1 has a definitive association with autosomal recessive complex neurodevelopmental disorder with a more severe phenotype. Different expression profiles during developmental stages between CSMD1 and CSMD2 postulated for the comparatively milder phenotype associated with the latter.

CSMD2 has 71 exons and 3631 amino acids. The true prevalence of biallelic missense variants in healthy individuals across diverse ancestries has not been ascertained. Review of the missense variants in this study highlighted issues in a number of them including poor-moderate conservation, conflicting or benign in silicos including REVEL, non-coding in an alternative transcript, Case 4 p.Val1547Ile homozygote – this variant has been noted in an East Asian male homozygote aged between 45-50 in gnomAD v4.

Given prevalence of focal epilepsy, stronger case-control evidence from diverse ancestries and variant-specific functional evidence is required to support this proposed gene-disease association.
Mendeliome v1.2976 CSMD2 Krithika Murali changed review comment from: PMID: 40632521 Li et al 2025 (Epilepsia) reported 6 unrelated individuals with biallelic CSMD2 missense variants (NM_052896) and focal epilepsy. 5 individuals were compound heterozygous and one was homozygous. These individuals were ascertained through trio WES analysis of 420 unrelated individuals of Han Chinese descent with focal epilepsy enrolled in the China Epilepsy Gene 1.0 project.

The age of onset was 1.5-10 years old, complex partial seizures (4 individuals), secondary GTCS (2 individuals), normal MRI (3), focal cortical dysplasia (1), mild ID (1).

The variants were noted to be rare, most located in CUB/Sushi domains, none reported in EXAC - East Asian population in homozygotes, and none predicted to have co-occurred as compound hets. There was also a significant enrichment of biallelic CSMD2 variants in affected individuals versus a control cohort of unaffected parents (5/420 compound hets affected individuals, 3/1942 compound hets in unaffected parents).

Previous mouse Csmd2 knockdown models demonstrated reduction in dendritic spine density and complexity and LoF is the postulated mechanism.

Closely related gene paralog CSMD1 has a definitive association with autosomal recessive complex neurodevelopmental disorder with a more severe phenotype. Different expression profiles during developmental stages between CSMD1 and CSMD2 postulated for the comparatively milder phenotype with the latter.

CSMD2 has 71 exons and true prevalence of biallelic missense variants in healthy individuals across diverse ancestries has not been ascertained. Closer review of the missense variants in this study showed some to be moderately conserved residues with conflicting or benign in silicos.

Given prevalence of focal epilepsy, stronger case-control evidence from diverse ancestries required to support gene-disease association in conjunction with variant-specific functional evidence.
Sources: Literature; to: PMID: 40632521 Li et al 2025 (Epilepsia) reported 6 unrelated individuals with biallelic CSMD2 missense variants (NM_052896) and focal epilepsy. 5 individuals were compound heterozygous and one was homozygous. These individuals were ascertained through trio WES analysis of 420 unrelated individuals of Han Chinese descent with focal epilepsy enrolled in the China Epilepsy Gene 1.0 project.

The age of onset was 1.5-10 years old, complex partial seizures (4 individuals), secondary GTCS (2 individuals), normal MRI (3), focal cortical dysplasia (1), mild ID (1).

The variants were noted to be rare, most located in CUB/Sushi domains, none reported in EXAC - East Asian population in homozygotes, and none predicted to have co-occurred as compound hets. There was also a significant enrichment of biallelic CSMD2 variants in affected individuals versus a control cohort of unaffected parents (5/420 compound hets affected individuals, 3/1942 compound hets in unaffected parents).

Previous mouse Csmd2 knockdown models demonstrated reduction in dendritic spine density and complexity and LoF is the postulated mechanism.

Closely related gene paralog CSMD1 has a definitive association with autosomal recessive complex neurodevelopmental disorder with a more severe phenotype. Different expression profiles during developmental stages between CSMD1 and CSMD2 postulated for the comparatively milder phenotype with the latter.

CSMD2 has 71 exons and 3631 amino acids. The true prevalence of biallelic missense variants in healthy individuals across diverse ancestries has not been ascertained. Closer review of the missense variants in this study showed some to be moderately conserved residues with conflicting or benign in silicos.

Given prevalence of focal epilepsy, stronger case-control evidence from diverse ancestries required to support gene-disease association in conjunction with variant-specific functional evidence.
Sources: Literature
Mendeliome v1.2976 CSMD2 Krithika Murali changed review comment from: PMID: 40632521 Li et al 2025 (Epilepsia) reported 6 unrelated individuals with biallelic CSMD2 missense variants (NM_052896) and focal epilepsy. 5 individuals were compound heterozygous and one was homozygous. These individuals were ascertained through trio WES analysis of 420 unrelated individuals of Han Chinese descent with focal epilepsy enrolled in the China Epilepsy Gene 1.0 project.

The age of onset was 1.5-10 years old, complex partial seizures (4 individuals), secondary GTCS (2 individuals), normal MRI (3), focal cortical dysplasia (1), mild ID (1).

The variants were noted to be rare, most located in CUB/Sushi domains, none reported in EXAC - East Asian population in homozygotes, and none predicted to have co-occurred as compound hets. There was also a significant enrichment of biallelic CSMD2 variants in affected individuals versus a control cohort of unaffected parents (5/420 compound hets affected individuals, 3/1942 compound hets in unaffected parents).

Previous mouse Csmd2 knockdown models demonstrated reduction in dendritic spine density and complexity and LoF is the postulated mechanism.

Closely related gene paralog CSMD1 has a definitive association with autosomal recessive complex neurodevelopmental disorder with a more severe phenotype. Different expression profiles during developmental stages between CSMD1 and CSMD2 postulated for the comparatively milder phenotype with the latter.

CSMD2 has 71 exons and true prevalence of biallelic missense variants in healthy individuals across diverse ancestries has not been ascertained. Closer review of the missense variants in this study showed a number of them to be moderately conserved residues with conflicting or benign in silicos.

Given prevalence of focal epilepsy, stronger case-control evidence required from diverse ancestries required to support gene-disease association in conjunction with variant-specific functional evidence.
Sources: Literature; to: PMID: 40632521 Li et al 2025 (Epilepsia) reported 6 unrelated individuals with biallelic CSMD2 missense variants (NM_052896) and focal epilepsy. 5 individuals were compound heterozygous and one was homozygous. These individuals were ascertained through trio WES analysis of 420 unrelated individuals of Han Chinese descent with focal epilepsy enrolled in the China Epilepsy Gene 1.0 project.

The age of onset was 1.5-10 years old, complex partial seizures (4 individuals), secondary GTCS (2 individuals), normal MRI (3), focal cortical dysplasia (1), mild ID (1).

The variants were noted to be rare, most located in CUB/Sushi domains, none reported in EXAC - East Asian population in homozygotes, and none predicted to have co-occurred as compound hets. There was also a significant enrichment of biallelic CSMD2 variants in affected individuals versus a control cohort of unaffected parents (5/420 compound hets affected individuals, 3/1942 compound hets in unaffected parents).

Previous mouse Csmd2 knockdown models demonstrated reduction in dendritic spine density and complexity and LoF is the postulated mechanism.

Closely related gene paralog CSMD1 has a definitive association with autosomal recessive complex neurodevelopmental disorder with a more severe phenotype. Different expression profiles during developmental stages between CSMD1 and CSMD2 postulated for the comparatively milder phenotype with the latter.

CSMD2 has 71 exons and true prevalence of biallelic missense variants in healthy individuals across diverse ancestries has not been ascertained. Closer review of the missense variants in this study showed some to be moderately conserved residues with conflicting or benign in silicos.

Given prevalence of focal epilepsy, stronger case-control evidence from diverse ancestries required to support gene-disease association in conjunction with variant-specific functional evidence.
Sources: Literature
Mendeliome v1.2976 CSMD2 Krithika Murali gene: CSMD2 was added
gene: CSMD2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CSMD2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CSMD2 were set to PMID: 40632521; 38649688; 31068362
Phenotypes for gene: CSMD2 were set to Focal epilepsy - MONDO:0005384, CSMD1-related
Review for gene: CSMD2 was set to AMBER
Added comment: PMID: 40632521 Li et al 2025 (Epilepsia) reported 6 unrelated individuals with biallelic CSMD2 missense variants (NM_052896) and focal epilepsy. 5 individuals were compound heterozygous and one was homozygous. These individuals were ascertained through trio WES analysis of 420 unrelated individuals of Han Chinese descent with focal epilepsy enrolled in the China Epilepsy Gene 1.0 project.

The age of onset was 1.5-10 years old, complex partial seizures (4 individuals), secondary GTCS (2 individuals), normal MRI (3), focal cortical dysplasia (1), mild ID (1).

The variants were noted to be rare, most located in CUB/Sushi domains, none reported in EXAC - East Asian population in homozygotes, and none predicted to have co-occurred as compound hets. There was also a significant enrichment of biallelic CSMD2 variants in affected individuals versus a control cohort of unaffected parents (5/420 compound hets affected individuals, 3/1942 compound hets in unaffected parents).

Previous mouse Csmd2 knockdown models demonstrated reduction in dendritic spine density and complexity and LoF is the postulated mechanism.

Closely related gene paralog CSMD1 has a definitive association with autosomal recessive complex neurodevelopmental disorder with a more severe phenotype. Different expression profiles during developmental stages between CSMD1 and CSMD2 postulated for the comparatively milder phenotype with the latter.

CSMD2 has 71 exons and true prevalence of biallelic missense variants in healthy individuals across diverse ancestries has not been ascertained. Closer review of the missense variants in this study showed a number of them to be moderately conserved residues with conflicting or benign in silicos.

Given prevalence of focal epilepsy, stronger case-control evidence required from diverse ancestries required to support gene-disease association in conjunction with variant-specific functional evidence.
Sources: Literature
Mendeliome v1.2929 TMPRSS7 Zornitza Stark gene: TMPRSS7 was added
gene: TMPRSS7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TMPRSS7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMPRSS7 were set to 40796295
Phenotypes for gene: TMPRSS7 were set to Neurodevelopmental disorder, TMPRSS7-related
Review for gene: TMPRSS7 was set to RED
Added comment: PMID 40796295: individual with compound het variants, p.R479H and p.S685Kfs*26 and neurodevelopmental disorder. Tmprss7 homozygous knockout (KO) mice exhibited dysregulated synaptic dendritic spine density, function, and dendritic elongation in the cerebral cortex and hippocampus. In addition, the KO animals displayed neurobehavioral deficits, including impairments in spatial learning, anxiety-like behavior, and a reduced preference for social novelty. Multi-omics analysis discovered enrichment of pathways related to synaptic signaling disruptions in both the cerebral cortex and hippocampus.
Sources: Literature
Mendeliome v1.2764 MAJIN Zornitza Stark gene: MAJIN was added
gene: MAJIN was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: MAJIN was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MAJIN were set to 39545410; 33211200
Phenotypes for gene: MAJIN were set to Recurrent hydatidiform mole, non-obstructive azoospermia
Review for gene: MAJIN was set to AMBER
Added comment: New papers (biallelic variant for HM/male infertility):
i) PMID: 39545410- Novel homozygous splice donor site variant c.349+1G>T in patient 1824 (Italian) with 2 HMs followed by secondary infertility and substantially reduced bilateral ovarian volumes. MAJIN codes for a junction protein that forms a complex with TERB1 and TERB2, which together bind to telomeres and anchor them to the inner nuclear membrane components KASH5 and SUN1. This attachment of chromosomes to the nuclear envelope is essential for homologous chromosome movement and synapsis. In mice, both male and female null mutants Majin are infertile (PMID: 26548954). In humans, biallelic mutations in MAJIN have been reported in infertile males.

ii) PMID: 33211200- A homozygous p.Arg53His in NOA-affected male (Individual 4- M1646) with high CADD scores and low gnomad freq. Mice disrupted for either Majin or Terb2 display impaired synapsis, zygotene arrest, a lack of postmeiotic cells and infertility (Shibuya et al. 2015; Zhang et al. 2017).
Sources: Expert list
Mendeliome v1.2293 HECTD1 Chirag Patel gene: HECTD1 was added
gene: HECTD1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HECTD1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: HECTD1 were set to PMID: 39879987
Phenotypes for gene: HECTD1 were set to Neurodevelopmental disorder MONDO:0700092
Review for gene: HECTD1 was set to GREEN
Added comment: 14 unrelated individuals (identified through GeneMatcher) with 15 variants of uncertain significance (VUS) in HECTD1 (10 missense, 3 frameshift, 1 nonsense, and 1 splicing variant). Of the 15 different variants in HECTD1, 10 occurred de novo, 3 had unknown inheritance, and 2 were compound heterozygous. All variants were absent in gnomAD, and HECTD1 is highly intolerant to loss-of-function variation (loss-of-function-intolerant score of 1). Clinical presentation was variable developmental delay, intellectual disability, autism spectrum disorder, ADHD, and epilepsy.

The one individual with compound heterozygous variants had growth impairment along with NDD. The variants were inherited from apparently healthy parents, suggesting that genetic or environmental modifiers may be required to develop the phenotype. Significant enrichment of de novo variants in HECTD1 was also shown in an independent cohort of 53,305 published trios with NDDs or congenital heart disease.

HECT-domain-containing protein 1 (HECTD1) mediates developmental pathways, including cell signalling, gene expression, and embryogenesis. Conditional knockout of Hectd1 in the neural lineage in mice resulted in microcephaly, severe hippocampal malformations, and complete agenesis of the corpus callosum, supporting a role for Hectd1 in embryonic brain development. Functional studies of 2 missense variants and 1 nonsense variant in C. elegans revealed dominant effects, including either change-of-function or loss-of-function/haploinsufficient mechanisms.
Sources: Literature
Mendeliome v1.2236 LDB1 Bryony Thompson gene: LDB1 was added
gene: LDB1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LDB1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: LDB1 were set to 39680505
Phenotypes for gene: LDB1 were set to Congenital hydrocephalus MONDO:0016349
Review for gene: LDB1 was set to GREEN
Added comment: Exome-wide significant enrichment of LDB1 protein-altering de novo variants (p = 1.11 x 10-15) in a large cerebral ventriculomegaly cohort (>2,697 parent-proband trios). 8 unrelated cases with ventriculomegaly, developmental delay, and dysmorphic features with de novo variants (7 LoF variants truncate LDB1's carboxy-terminal LIM interaction domain & 1 missense).
Sources: Literature
Mendeliome v1.1911 LEO1 Ain Roesley changed review comment from: enrichment of a neurodev cohort
LEO1:
8x de novo – 6x missense + 2x PTC
1x pat splice (father unaffected)
2x unknown_inh PTCs

Of the missense variants, G370E has 8 hets in gnomad v4

This gene is not constraint for LoF with 4 hets with an NMD variant in gnomad v4
Sources: Literature; to: cohort of individuals with delayed motor and speech development, ASD

8x de novo – 6x missense + 2x PTC
1x pat splice (father unaffected)
2x unknown_inh PTCs

Of the missense variants, G370E has 8 hets in gnomad v4

This gene is not constraint for LoF with 4 hets with an NMD variant in gnomad v4
Sources: Literature
Mendeliome v1.1911 LEO1 Ain Roesley changed review comment from: enrichment of a neurodev cohort
LEO1:
8x de novo – 6x missense + 2x PTC
1x pat splice
2x unknown_inh PTCs

Of the missense variants, G370E has 8 hets in gnomad v4

This gene is not constraint for LoF with 4 hets with an NMD variant in gnomad v4
Sources: Literature; to: enrichment of a neurodev cohort
LEO1:
8x de novo – 6x missense + 2x PTC
1x pat splice (father unaffected)
2x unknown_inh PTCs

Of the missense variants, G370E has 8 hets in gnomad v4

This gene is not constraint for LoF with 4 hets with an NMD variant in gnomad v4
Sources: Literature
Mendeliome v1.1910 LEO1 Ain Roesley gene: LEO1 was added
gene: LEO1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LEO1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: LEO1 were set to 38965372
Phenotypes for gene: LEO1 were set to neurodevelopmental disorder MONDO:0700092, LEO-1 related
Review for gene: LEO1 was set to AMBER
gene: LEO1 was marked as current diagnostic
Added comment: enrichment of a neurodev cohort
LEO1:
8x de novo – 6x missense + 2x PTC
1x pat splice
2x unknown_inh PTCs

Of the missense variants, G370E has 8 hets in gnomad v4

This gene is not constraint for LoF with 4 hets with an NMD variant in gnomad v4
Sources: Literature
Mendeliome v1.1787 AGTR2 Zornitza Stark changed review comment from: Variants in AGTR2 have been reported in individuals presenting various neurodevelopmental phenotypes, including intellectual disability, autistic features, epileptic seizures, speech delay, restlessness, and hyperactivity, as early as 2002. Per criteria outlined by the ClinGen Lumping and Splitting Working Group, we found no difference in molecular mechanism, inheritance pattern, or phenotypic variability. Therefore, for the purposes of this curation, all of these features have been lumped into one disease entity, X-linked complex neurodevelopmental disorder. Although eight unique variants, including missense and truncating, have been reported in affected humans, the majority (six) have been ruled out from disease-causality based on high frequency in control populations (Piton et al., PMID 23871722), occurrence in unaffected males (Erdmann et al., PMID 14722754), non-segregation within a family (Bienvenu et al., PMID 12746399), and lack of enrichment in patients in a case-control study (Huang et al., PMID 16283672). Given that the two remaining variants are missense with no supporting functional evidence, and AGTR2 was the only gene sequenced in each case, the ClinGen Intellectual Disability and Autism Working Group recommended awarding 0 points for these variants. There are two AGTR2 mouse models which collectively show altered neuronal spine morphology, spatial memory impairment, delayed learning, and reduced exploratory behavior (PMIDs 18335189 and 7477267).
Sources: Expert Review; to: DISPUTED by ClinGen:

Variants in AGTR2 have been reported in individuals presenting various neurodevelopmental phenotypes, including intellectual disability, autistic features, epileptic seizures, speech delay, restlessness, and hyperactivity, as early as 2002. Per criteria outlined by the ClinGen Lumping and Splitting Working Group, we found no difference in molecular mechanism, inheritance pattern, or phenotypic variability. Therefore, for the purposes of this curation, all of these features have been lumped into one disease entity, X-linked complex neurodevelopmental disorder. Although eight unique variants, including missense and truncating, have been reported in affected humans, the majority (six) have been ruled out from disease-causality based on high frequency in control populations (Piton et al., PMID 23871722), occurrence in unaffected males (Erdmann et al., PMID 14722754), non-segregation within a family (Bienvenu et al., PMID 12746399), and lack of enrichment in patients in a case-control study (Huang et al., PMID 16283672). Given that the two remaining variants are missense with no supporting functional evidence, and AGTR2 was the only gene sequenced in each case, the ClinGen Intellectual Disability and Autism Working Group recommended awarding 0 points for these variants. There are two AGTR2 mouse models which collectively show altered neuronal spine morphology, spatial memory impairment, delayed learning, and reduced exploratory behavior (PMIDs 18335189 and 7477267).
Sources: Expert Review
Mendeliome v1.1787 AGTR2 Zornitza Stark gene: AGTR2 was added
gene: AGTR2 was added to Mendeliome. Sources: Expert Review
disputed tags were added to gene: AGTR2.
Mode of inheritance for gene: AGTR2 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Phenotypes for gene: AGTR2 were set to X-linked complex neurodevelopmental disorder MONDO:0100148
Review for gene: AGTR2 was set to RED
Added comment: Variants in AGTR2 have been reported in individuals presenting various neurodevelopmental phenotypes, including intellectual disability, autistic features, epileptic seizures, speech delay, restlessness, and hyperactivity, as early as 2002. Per criteria outlined by the ClinGen Lumping and Splitting Working Group, we found no difference in molecular mechanism, inheritance pattern, or phenotypic variability. Therefore, for the purposes of this curation, all of these features have been lumped into one disease entity, X-linked complex neurodevelopmental disorder. Although eight unique variants, including missense and truncating, have been reported in affected humans, the majority (six) have been ruled out from disease-causality based on high frequency in control populations (Piton et al., PMID 23871722), occurrence in unaffected males (Erdmann et al., PMID 14722754), non-segregation within a family (Bienvenu et al., PMID 12746399), and lack of enrichment in patients in a case-control study (Huang et al., PMID 16283672). Given that the two remaining variants are missense with no supporting functional evidence, and AGTR2 was the only gene sequenced in each case, the ClinGen Intellectual Disability and Autism Working Group recommended awarding 0 points for these variants. There are two AGTR2 mouse models which collectively show altered neuronal spine morphology, spatial memory impairment, delayed learning, and reduced exploratory behavior (PMIDs 18335189 and 7477267).
Sources: Expert Review
Mendeliome v1.1786 AVPR1A Zornitza Stark gene: AVPR1A was added
gene: AVPR1A was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: AVPR1A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: AVPR1A were set to 24924430
Phenotypes for gene: AVPR1A were set to Autism spectrum disorder MONDO:0005258
Review for gene: AVPR1A was set to RED
Added comment: DISPUTED by ClinGen:

The Arginine Vasopressin Receptor 1A (AVPR1A) was considered a candidate gene in autism spectrum disorder (ASD) based on reports focused on linkage intervals and animal models. Additionally, experimental evidence showed that AVPR1A is possibly involved in social behaviors, including affiliation and attachment (PMID: 24924430). However, these association studies were underpowered—sequencing more individuals may have identified variants of functional significance. In two studies, transmission disequilibrium between AVPR1A microsatellites and autism were found but most were not statistically significant (PMID: 12082568, 16520824). In another study, investigators screened AVPR1A exons in 125 independent autistic probands (PMID: 15098001). However, the study did not demonstrate a disease-causing variant in the coding sequence, and the authors noted that differences in AVPR1A at the amino-acid level are unlikely to confer genetic vulnerability to autism. Experimental evidence is available, but, in the absence of human genetic evidence, such data were not utilized in the scoring. In summary, there is no valid genetic evidence to support an association between AVPR1A and autism spectrum disorder.
Sources: Expert list
Mendeliome v1.1566 APPL1 Bryony Thompson edited their review of gene: APPL1: Added comment: PMID: 36208030 - a study using the UK Biobank comparing individuals with and without diabetes found LoF variants in APPL1 were ‘Inconsistent’ with being high penetrant for diabetes (failed both statistical criteria - enrichment & comparison to maximum credible allele frequency). Refutes previous study.; Changed rating: RED; Changed publications: 26073777, 36208030
Mendeliome v1.1401 PLA2G16 Lauren Rogers changed review comment from: 7 patients from 4 unrelated consanguineous families with homozygous loss of function PTC variants. Features: 4/7 metabolic features, 6/7 neurological/skeletal features, 3/7 Psychomotor retardation/intellectual disability, 5/7 demyelinating peripheral neuropathy.

Null mouse and patient derived white adipose tissue showed enrichment of arachidonic acid-containing membrane phospholipids and a strong decrease in PPARγ. CRISPR–Cas9-mediated PLAAT3 inactivation in human adipose stem cells induced insulin resistance, altered adipocyte diferentiation with decreased lipid droplet formation and reduced the expression of adipogenic and mature adipocyte markers, including PPARγ.
Sources: Literature; to: 7 patients from 4 unrelated consanguineous families with homozygous loss of function PTC variants. Features: 4/7 metabolic features, 6/7 neurological/skeletal features, 3/7 Psychomotor retardation/intellectual disability, 5/7 demyelinating peripheral neuropathy.

Null mouse and patient derived white adipose tissue showed enrichment of arachidonic acid-containing membrane phospholipids and a strong decrease in PPARγ. CRISPR–Cas9-mediated PLAAT3 inactivation in human adipose stem cells induced insulin resistance, altered adipocyte differentiation with decreased lipid droplet formation and reduced the expression of adipogenic and mature adipocyte markers, including PPARγ.
Sources: Literature
Mendeliome v1.1401 PLA2G16 Lauren Rogers gene: PLA2G16 was added
gene: PLA2G16 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PLA2G16 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PLA2G16 were set to PMID: 37919452
Phenotypes for gene: PLA2G16 were set to Lipodystrophy (MONDO:0006573)
Review for gene: PLA2G16 was set to GREEN
Added comment: 7 patients from 4 unrelated consanguineous families with homozygous loss of function PTC variants. Features: 4/7 metabolic features, 6/7 neurological/skeletal features, 3/7 Psychomotor retardation/intellectual disability, 5/7 demyelinating peripheral neuropathy.

Null mouse and patient derived white adipose tissue showed enrichment of arachidonic acid-containing membrane phospholipids and a strong decrease in PPARγ. CRISPR–Cas9-mediated PLAAT3 inactivation in human adipose stem cells induced insulin resistance, altered adipocyte diferentiation with decreased lipid droplet formation and reduced the expression of adipogenic and mature adipocyte markers, including PPARγ.
Sources: Literature
Mendeliome v1.1381 KDR Zornitza Stark edited their review of gene: KDR: Added comment: PMID 34113005: Exome sequencing in a family with two siblings affected by ToF revealed biallelic missense variants in KDR. Studies in knock-in mice and in HEK 293T cells identified embryonic lethality for one variant when occurring in the homozygous state, and a significantly reduced VEGFR2 phosphorylation for both variants.

Rare variant burden analysis conducted in a set of 1,569 patients of European descent with ToF identified a 46-fold enrichment of protein-truncating variants (PTVs) in TOF cases compared to controls (P = 7 × 10-11). At this stage MOI unclear and insufficient evidence for either MOI.; Changed publications: 31980491, 29650961, 18931684, 34113005; Changed phenotypes: Pulmonary hypertension, Haemangioma, capillary infantile, somatic 602089, Tetralogy of Fallot, MONDO:0008542; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.715 SRPRA Zornitza Stark gene: SRPRA was added
gene: SRPRA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SRPRA was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SRPRA were set to 36223592
Phenotypes for gene: SRPRA were set to Schwachman-Diamond syndrome MONDO:0009833, SRPA-related
Review for gene: SRPRA was set to AMBER
Added comment: De novo variant; zebrafish model. Schwachman-Diamond like.
Sources: Literature
Mendeliome v1.572 ZMYM3 Belinda Chong gene: ZMYM3 was added
gene: ZMYM3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZMYM3 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: ZMYM3 were set to 36586412; 24721225
Phenotypes for gene: ZMYM3 were set to Neurodevelopmental disorders (NDDs)
Review for gene: ZMYM3 was set to GREEN
Added comment: PMID: 36586412
Using the MatchMaker Exchange - Described 27 individuals with rare, variation in the ZMYM3. Most individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) with de novo variants.
Overlapping features included developmental delay, intellectual disability, behavioural abnormalities, and a specific facial gestalt in a subset of males.
Variants in almost all individuals are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441 (R441W), a site at which variation has been previously seen in NDD-affected siblings (24721225), and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T).
ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect.
Sources: Literature
Mendeliome v1.318 UBAP2L Zornitza Stark changed review comment from: Based on Jia et al (2022 - PMID: 35977029) speech, motor delay as well as ID are observed in individuals harboring de novo pLoF variants in UBAP2L. The gene encodes a regulator of the stress granule (SG) assembly. Extensive evidence is provided on the effect of variants as well as the role of UBAP2L and other genes for components and/or regulation of SG in pathogenesis of NDDs. Among others a Ubap2l htz deletion mouse model (behavioral and cognitive impairment, abnormal cortical development due to impaired SG assembly, etc). Data from 26 previous studies, aggregating 40,853 probands with NDDs (mostly DD/ID, also ASD) suggest enrichment for DNMs in UBAP2L or other genes previously known and further shown to be important for SG formation (incl. G3BP1/G3BP2, CAPRIN1).
Sources: Literature; to: Based on Jia et al (2022 - PMID: 35977029) speech, motor delay as well as ID are observed in 11 individuals harboring de novo pLoF variants in UBAP2L. The gene encodes a regulator of the stress granule (SG) assembly. Extensive evidence is provided on the effect of variants as well as the role of UBAP2L and other genes for components and/or regulation of SG in pathogenesis of NDDs. Among others a Ubap2l htz deletion mouse model (behavioral and cognitive impairment, abnormal cortical development due to impaired SG assembly, etc). Data from 26 previous studies, aggregating 40,853 probands with NDDs (mostly DD/ID, also ASD) suggest enrichment for DNMs in UBAP2L or other genes previously known and further shown to be important for SG formation (incl. G3BP1/G3BP2, CAPRIN1).
Sources: Literature
Mendeliome v1.317 UBAP2L Zornitza Stark gene: UBAP2L was added
gene: UBAP2L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UBAP2L was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: UBAP2L were set to 35977029
Phenotypes for gene: UBAP2L were set to Neurodevelopmental disorder, MONDO:0700092, UBAP2L-related
Review for gene: UBAP2L was set to GREEN
Added comment: Based on Jia et al (2022 - PMID: 35977029) speech, motor delay as well as ID are observed in individuals harboring de novo pLoF variants in UBAP2L. The gene encodes a regulator of the stress granule (SG) assembly. Extensive evidence is provided on the effect of variants as well as the role of UBAP2L and other genes for components and/or regulation of SG in pathogenesis of NDDs. Among others a Ubap2l htz deletion mouse model (behavioral and cognitive impairment, abnormal cortical development due to impaired SG assembly, etc). Data from 26 previous studies, aggregating 40,853 probands with NDDs (mostly DD/ID, also ASD) suggest enrichment for DNMs in UBAP2L or other genes previously known and further shown to be important for SG formation (incl. G3BP1/G3BP2, CAPRIN1).
Sources: Literature
Mendeliome v1.264 COL9A3 Zornitza Stark Phenotypes for gene: COL9A3 were changed from Epiphyseal dysplasia, multiple, 3, with or without myopathy, MIM# 600969; Stickler syndrome AR; Deafness AD; Peripheral vitreoretinal degeneration and retinal detachment, AD to Epiphyseal dysplasia, multiple, 3, with or without myopathy, MIM# 600969; Stickler syndrome, type VI, MIM# 620022; Deafness AD; Peripheral vitreoretinal degeneration and retinal detachment, AD
Mendeliome v1.134 PIK3C2B Krithika Murali gene: PIK3C2B was added
gene: PIK3C2B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PIK3C2B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PIK3C2B were set to PMID:35786744
Phenotypes for gene: PIK3C2B were set to familial partial epilepsy - MONDO#0017704
Review for gene: PIK3C2B was set to AMBER
Added comment: No OMIM gene disease association.

Gozzelino et al.(2022) Brain - report enrichment of ultra-rare PIK3C2B variants in focal epilepsy cohorts, including one variant shown to be de novo (G1294Q). Segregation data not provided for all cases. The p.G1345S variant was inherited from an affected father. The p.K584* variant was inherited from an unaffected father suggesting incomplete penetrance. Functional studies supported a LoF mechanism and mouse model studies suggestive of mTORC1 pathway hyperactivation.
Sources: Literature
Mendeliome v1.130 CHMP3 Zornitza Stark Marked gene: CHMP3 as ready
Mendeliome v1.130 CHMP3 Zornitza Stark Gene: chmp3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.130 CHMP3 Zornitza Stark Classified gene: CHMP3 as Amber List (moderate evidence)
Mendeliome v1.130 CHMP3 Zornitza Stark Gene: chmp3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.126 CHMP3 Chern Lim gene: CHMP3 was added
gene: CHMP3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CHMP3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CHMP3 were set to PMID: 35710109
Phenotypes for gene: CHMP3 were set to Hereditary spastic paraplegia (MONDO:0019064), CHMP3-related
Review for gene: CHMP3 was set to AMBER
gene: CHMP3 was marked as current diagnostic
Added comment: PMID: 35710109
- Single large family with consanguinity, homozygous missense variant in 5 affected individuals with intellectual and progressive motor disabilities, seizures and spastic quadriplegia.
- Functional studies showed reduced CHMP3 protein in patient's fibroblasts, lenti-rescue study showed improved cellular phenotypes associated with impaired autophagy.
Sources: Literature
Mendeliome v1.34 TRIM47 Zornitza Stark gene: TRIM47 was added
gene: TRIM47 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TRIM47 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TRIM47 were set to 35511193
Phenotypes for gene: TRIM47 were set to Genetic cerebral small vessel disease MONDO:0018787
Review for gene: TRIM47 was set to RED
Added comment: GWAS data: Combined evidence from summary-based Mendelian randomization studies and profiling of human loss-of-function allele carriers showed an inverse relation between TRIM47 expression in the brain and blood vessels and extensive small vessel disease severity. Observed significant enrichment of Trim47 in isolated brain vessel preparations compared to total brain fraction in mice, in line with the literature showing Trim47 enrichment in brain endothelial cells at single cell level. Functional evaluation of TRIM47 by small interfering RNAs-mediated knockdown in human brain endothelial cells showed increased endothelial permeability, an important hallmark of cerebral small vessel disease pathology.
Sources: Literature
Mendeliome v0.13301 CHMP4B Ain Roesley Marked gene: CHMP4B as ready
Mendeliome v0.13301 CHMP4B Ain Roesley Gene: chmp4b has been classified as Green List (High Evidence).
Mendeliome v0.13301 CHMP4B Ain Roesley Phenotypes for gene: CHMP4B were changed from to Cataract 31, multiple types MIM#605387
Mendeliome v0.13300 CHMP4B Ain Roesley Publications for gene: CHMP4B were set to
Mendeliome v0.13300 CHMP4B Ain Roesley Mode of inheritance for gene: CHMP4B was changed from Unknown to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.13299 CHMP4B Ain Roesley reviewed gene: CHMP4B: Rating: GREEN; Mode of pathogenicity: None; Publications: 34722561, 17701905, 10682967, 30078984; Phenotypes: Cataract 31, multiple types MIM#605387; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.13299 CHM Ain Roesley Marked gene: CHM as ready
Mendeliome v0.13299 CHM Ain Roesley Gene: chm has been classified as Green List (High Evidence).
Mendeliome v0.13299 CHM Ain Roesley Publications for gene: CHM were set to
Mendeliome v0.13299 CHM Ain Roesley Phenotypes for gene: CHM were changed from to Choroideremia MIM#303100
Mendeliome v0.13299 CHM Ain Roesley Mode of inheritance for gene: CHM was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.13298 CHM Ain Roesley reviewed gene: CHM: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301511; Phenotypes: Choroideremia MIM#303100; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes
Mendeliome v0.12859 SGCD Samantha Ayres edited their review of gene: SGCD: Added comment: Variants identified in multiple cases of cardiomyopathy, however most are too common in the general population to explain the disease.
First described in the literature with potential association to cardiomyopathy in 2000 (Tsubata et al 10974018).
Case-control study by Mazzarotto et al 2020, did not identify enrichment of SGCD in DCM cohort.

Animal models demonstrate mild cardiomyopathy phenotype.

Curated as 'limited' gene-disease association by ClinGen; Changed rating: RED; Changed publications: 10974018, 31983221, 23695275; Changed phenotypes: Cardiomyopathy, dilated, 1L, MIM#606685, dilated cardiomyopathy MONDO:0005021; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12610 SPG7 Zornitza Stark changed review comment from: SPG7 mutations most often lead to spastic paraparesis (HSP) and/or hereditary cerebellar ataxia (HCA), frequently with mixed phenotypes.

Well established for bi-allelic variants.

Enrichment of mono-allelic variants reported in a couple of cohorts, although a recent one suggests digenic inheritance.; to: SPG7 mutations most often lead to spastic paraparesis (HSP) and/or hereditary cerebellar ataxia (HCA), frequently with mixed phenotypes.

Well established for bi-allelic variants.

Enrichment of mono-allelic variants reported in a couple of cohorts, although a recent one suggests digenic inheritance.

Association with OA: 7 families reported for AD OA, including 5 missense and 2 frameshift variants, PMID 32548275
Mendeliome v0.10550 PAK2 Arina Puzriakova gene: PAK2 was added
gene: PAK2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PAK2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PAK2 were set to 33693784
Phenotypes for gene: PAK2 were set to Knobloch 2 syndrome
Review for gene: PAK2 was set to RED
Added comment: Antonarakis et al., 2021 (PMID: 33693784) reported two affected siblings from a non-consanguineous New Zealand family. Both had retinal detachment and interstitial parenchymal pulmonary changes on chest X-rays, but only one child had additional significant features such as cataract, posterior encephalocele, severe DD/ID with ASD, and epilepsy. WES revealed a heterozygous PAK2 variant (c.1303 G>A, p.Glu435Lys) in both individuals that apparently occurred de novo indicating parental germ-line mosaicism; however, mosaicism could not be detected by deep sequencing of blood parental DNA. Functional studies showed that the variant, located in the kinase domain, results in a partial loss of the kinase activity.
Sources: Literature
Mendeliome v0.8834 RNF220 Zornitza Stark gene: RNF220 was added
gene: RNF220 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RNF220 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RNF220 were set to 33964137; 10881263
Phenotypes for gene: RNF220 were set to Leukodystrophy; CNS hypomyelination; Ataxia; Intellectual disability; Sensorineural hearing impairment; Elevated hepatic transaminases; Hepatic fibrosis; Dilated cardiomyopathy; Spastic paraplegia; Dysarthria; Abnormality of the corpus callosum
Review for gene: RNF220 was set to GREEN
Added comment: Sferra et al (2021 - PMID: 33964137) provide extensive evidence that biallelic RNF220 mutations cause a disorder characterized by hypomyelinating leukodystrophy, ataxia (9/9 - onset 1-5y), borderline intellectual functioning (3/9) / intellectual disability (5/9 - in most cases mild), sensorineural deafness (9/9) with complete hearing loss in the first decade of life, hepatopathy (9/9) with associated periportal fibrosis, and dilated cardiomyopathy (9/9) which was fatal.

Other neurologic manifestations apart from ataxia incl. hyperreflexia (8/8), spastic paraplegia (9/9), dysarthria (9/9), peripheral neuropathy (4/9), seizures in one case (1/9). Upon brain MRI there was thin corpus callosum (9/9) or cerebellar atrophy in some (2/9).

The authors identified homozygosity for 2 recurrent missense RNF220 variants in affected members belonging to these 5 broad consanguineous pedigrees (7 families), namely NM_018150.4:c.1094G>A / p.Arg365Gly in 4 Roma families in the context of a shared haplotype (/founder effect) as well as c.1088G>A / p.Arg363Gly in a large pedigree from southern Italy initially reported by Leuzzi et al (2000 - PMID: 10881263).

Extensive segregation analyses were carried out including several affected and unaffected members.

RNF220 encodes ring finger protein 220, which functions as an E3 ubiquitin ligase. Previous studies have shown among others a role in modulation of Sonic hedgehog/GLI signaling and cerebellar development

Evidence for the role of RNF220 included relevant expression, localization within the cell, interaction partners (lamin B1, 20S proteasome), similarities with other laminopathies in terms of phenotype, etc :
*RNF220 has a relevant expression pattern in CNS (based on qRT-PCR analyses in human brain, cerebellum, cerebral cortex / mRNA levels in human fetal CNS with higher expression in cerebellum, spinal cord and cortex / previous GTEx data / protein levels in mouse CNS)
*The protein displays nuclear localization based on iPSC cells differentiated to motor neurons (also supported by data from the Human Protein Atlas). Transfection of COS-1 cells demonstrated localization primarily to the nucleus (as also previously demonstrated in HEK293T cells) in vesicle like structures with ASF2/SF2 colocalization suggesting enrichment in nuclear speckles. There was also partial co-distribution with the 20S proteasome. R363Q and R365Q additionally coalesced in the cytoplasm forming protein aggregates/inclusions.
*Immunofluorescence studies in patient fibroblasts also confirmed abnormal increase of the protein in the cytoplasm and increased fluorescence with the 20S proteasome.
*Proteomic identification of RNF220-interacting proteins in transfected HEK293T cells demonstrated enrichment for all members of the lamin protein family (incl . lamin B1, AC, B2).
*RNAi-mediated downregulation of RNF222 in Drosophila suggested altered subcellular localization and accumulation of the fly orthologue for human lamin B1.
*Immunoprecipitation of lamin B1 from the nuclear matrix of cerebellar cells suggested significant interaction of endogenous lamin B1 with RNF220, while transfection studies in HEK293T cells for wt/mt suggested reduced binding to endogenous lamin B1 for RNF220 mt compared to wt (more prominent for R365Q). RNF220 mutants also reduced ubiquitination of nuclear lamin B1 compared to wt.
*Patient fibroblasts immunostained with different nuclear envelope markers displayed abnormal nuclear shapes with multiple invaginations and lobulations, findings also observed in laminopathies.
Sources: Literature
Mendeliome v0.8214 SBDS Zornitza Stark Phenotypes for gene: SBDS were changed from to Shwachman-Diamond syndrome, MIM# 260400
Mendeliome v0.8212 SBDS Zornitza Stark reviewed gene: SBDS: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Shwachman-Diamond syndrome, MIM# 260400; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8165 RNU12 Bryony Thompson gene: RNU12 was added
gene: RNU12 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RNU12 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RNU12 were set to 34085356; 27863452
Phenotypes for gene: RNU12 were set to CDAGS syndrome MIM#603116; Craniosynostosis, Delayed closure of the fontanelles, cranial defects, clavicular hypoplasia, Anal and Genitourinary malformations, and Skin manifestations
Review for gene: RNU12 was set to GREEN
Added comment: 5 CDAGS syndrome families with biallelic variants all including NC_000022.10:g.43011402C>T and another variant on the second allele. Whole transcriptome sequencing analysis of patient lymphoblastoid cells identified differentially expressed genes, and differential alternative splicing analysis indicated there was an enrichment of alternative splicing events. Also, limited evidence for an association with cerebellar ataxia with a single large consanguineous family reported with a homozygous variant.
Sources: Literature
Mendeliome v0.8029 EFL1 Zornitza Stark Phenotypes for gene: EFL1 were changed from to Shwachman-Diamond syndrome 2, MIM# 617941
Mendeliome v0.8026 EFL1 Zornitza Stark reviewed gene: EFL1: Rating: GREEN; Mode of pathogenicity: None; Publications: 28331068, 31151987; Phenotypes: Shwachman-Diamond syndrome 2, MIM# 617941; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7926 COL9A3 Zornitza Stark Phenotypes for gene: COL9A3 were changed from Epiphyseal dysplasia, multiple, 3, with or without myopathy, MIM# 600969; Stickler syndrome; Deafness to Epiphyseal dysplasia, multiple, 3, with or without myopathy, MIM# 600969; Stickler syndrome AR; Deafness AD; Peripheral vitreoretinal degeneration and retinal detachment, AD
Mendeliome v0.7891 COL9A3 Kristin Rigbye reviewed gene: COL9A3: Rating: GREEN; Mode of pathogenicity: None; Publications: 33633367; Phenotypes: Epiphyseal dysplasia, multiple, 3, with or without myopathy, AD, MIM# 600969, Stickler syndrome, AR, Deafness, AD, Peripheral vitreoretinal degeneration and retinal detachment, AD; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6365 CHMP1A Zornitza Stark Marked gene: CHMP1A as ready
Mendeliome v0.6365 CHMP1A Zornitza Stark Gene: chmp1a has been classified as Green List (High Evidence).
Mendeliome v0.6365 CHMP1A Zornitza Stark Phenotypes for gene: CHMP1A were changed from to Pontocerebellar hypoplasia, type 8, MIM# 614961
Mendeliome v0.6364 CHMP1A Zornitza Stark Publications for gene: CHMP1A were set to
Mendeliome v0.6363 CHMP1A Zornitza Stark Mode of inheritance for gene: CHMP1A was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6362 CHMP1A Zornitza Stark reviewed gene: CHMP1A: Rating: GREEN; Mode of pathogenicity: None; Publications: 23023333; Phenotypes: Pontocerebellar hypoplasia, type 8, MIM# 614961; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5315 ZFHX4 Bryony Thompson changed review comment from: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 16 de novo variants (5 frameshift, 5 missense, 4 stopgain, 2 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature; to: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 16 de novo variants (5 frameshift, 5 missense, 4 stopgain, 2 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
PMID: 24038936 - a single case with developmental delay, macrocephaly, ventriculomegaly, hypermetropia, recurrent
infections, dysmorphism and a de novo deletion of the last 7 exons of the gene.
Sources: Literature
Mendeliome v0.5315 ZFHX4 Bryony Thompson gene: ZFHX4 was added
gene: ZFHX4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZFHX4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ZFHX4 were set to 33057194
Phenotypes for gene: ZFHX4 were set to Developmental disorders
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 16 de novo variants (5 frameshift, 5 missense, 4 stopgain, 2 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5313 UPF1 Bryony Thompson gene: UPF1 was added
gene: UPF1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UPF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: UPF1 were set to 33057194
Phenotypes for gene: UPF1 were set to Developmental disorders
Review for gene: UPF1 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 16 de novo variants (1 frameshift, 11 missense, 4 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5311 U2AF2 Bryony Thompson gene: U2AF2 was added
gene: U2AF2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: U2AF2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: U2AF2 were set to 33057194
Phenotypes for gene: U2AF2 were set to Developmental disorders
Review for gene: U2AF2 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 10 de novo variants (1 in-frame, 8 missense, 1 synoymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5304 SRRM2 Bryony Thompson gene: SRRM2 was added
gene: SRRM2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SRRM2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SRRM2 were set to 33057194
Phenotypes for gene: SRRM2 were set to Developmental disorders
Review for gene: SRRM2 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 28 de novo variants (11 frameshift, 7 missense, 1 splice acceptor, 5 stopgain, 4 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5302 SPEN Bryony Thompson gene: SPEN was added
gene: SPEN was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SPEN was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SPEN were set to 33057194
Phenotypes for gene: SPEN were set to Developmental disorders
Review for gene: SPEN was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 25 de novo variants (6 frameshift, 1 in-frame, 7 missense, 8 stopgain, 3 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5300 SATB1 Bryony Thompson gene: SATB1 was added
gene: SATB1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SATB1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SATB1 were set to 33057194
Phenotypes for gene: SATB1 were set to Developmental disorders
Review for gene: SATB1 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 12 de novo (2 frameshift, 7 missense, 1 stopgain, 2 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5298 RAB14 Bryony Thompson gene: RAB14 was added
gene: RAB14 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RAB14 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RAB14 were set to 33057194
Phenotypes for gene: RAB14 were set to Developmental disorders
Review for gene: RAB14 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 8 de novo variants (1 in-frame, 7 missense) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5296 PSMC5 Bryony Thompson gene: PSMC5 was added
gene: PSMC5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PSMC5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PSMC5 were set to 33057194
Phenotypes for gene: PSMC5 were set to Developmental disorders
Review for gene: PSMC5 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 10 de novo variants (1 in-frame, 9 missense) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5295 PRPF8 Bryony Thompson Added comment: Comment on phenotypes: Established Retinitis pigmentosa gene.
PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 29 de novo variants (2 frameshift, 19 missense, 1 stopgain, 7 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Mendeliome v0.5290 MSL2 Bryony Thompson gene: MSL2 was added
gene: MSL2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MSL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MSL2 were set to 31332282; 33057194
Phenotypes for gene: MSL2 were set to Developmental disorders; autism
Review for gene: MSL2 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 13 de novo variants (9 frameshift, 4 missense) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
PMID: 31332282 - candidate gene in a single autism study, with recurrent de novo variants in a potential oligogenic model
Sources: Literature
Mendeliome v0.5288 MMGT1 Bryony Thompson gene: MMGT1 was added
gene: MMGT1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MMGT1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MMGT1 were set to 33057194
Phenotypes for gene: MMGT1 were set to Developmental disorders
Review for gene: MMGT1 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 3 de novo missense identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5286 MIB1 Bryony Thompson Added comment: Comment on phenotypes: Established congenital cardiac disease gene.
PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 11 de novo variants (1 frameshift, 2 missense, 2 splice acceptor, 1 splice donor, 5 stopgain) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Mendeliome v0.5284 MFN2 Bryony Thompson Added comment: Comment on phenotypes: Established cause of hereditary neuropathy.
PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 9 de novo variants (8 missense, 1 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Mendeliome v0.5282 KCNK3 Bryony Thompson Added comment: Comment on phenotypes: Established pulmonary hypertension gene.
PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 8 de novo variants (7 missense, 1 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Mendeliome v0.5279 HNRNPD Bryony Thompson gene: HNRNPD was added
gene: HNRNPD was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HNRNPD was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: HNRNPD were set to 33057194
Phenotypes for gene: HNRNPD were set to Developmental disorders
Review for gene: HNRNPD was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 8 de novo variants (5 frameshift, 1 missense, 1 splice acceptor, 1 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5234 GIGYF1 Bryony Thompson gene: GIGYF1 was added
gene: GIGYF1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GIGYF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GIGYF1 were set to 33057194
Phenotypes for gene: GIGYF1 were set to Developmental disorder
Review for gene: GIGYF1 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 14 de novo variants (4 frameshift, 5 missense, 1 splice donor, 3 stopgain, 1 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5232 FBXW7 Bryony Thompson gene: FBXW7 was added
gene: FBXW7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FBXW7 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FBXW7 were set to 33057194
Phenotypes for gene: FBXW7 were set to Developmental disorder
Review for gene: FBXW7 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio developmental disorder study. 12 de novo missense and 1 de novo synonymous variant identified in ~10,000 cases with developmental disorders (no other phenotype info provided)
Sources: Literature
Mendeliome v0.5229 PRKAR1B Konstantinos Varvagiannis gene: PRKAR1B was added
gene: PRKAR1B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRKAR1B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PRKAR1B were set to https://doi.org/10.1101/2020.09.10.20190314; 25414040
Phenotypes for gene: PRKAR1B were set to Global developmental delay; Intellectual disability; Autism; Attention deficit hyperactivity disorder; Aggressive behavior; Abnormality of movement; Upslanted palpebral fissure
Penetrance for gene: PRKAR1B were set to unknown
Review for gene: PRKAR1B was set to AMBER
Added comment: Please consider inclusion of this gene with amber rating pending publication of the preprint and/or additional evidence.

Marbach et al. (2020 - medRxiv : https://doi.org/10.1101/2020.09.10.20190314 - last author : C. Schaaf) report 6 unrelated individuals with heterozygous missense PRKAR1B variants.

All presented formal ASD diagnosis (6/6), global developmental delay (6/6) and intellectual disability (all - formal evaluations were lacking though). Additional features included neurologic anomalies (movement disorders : dyspraxia, apraxia, clumsiness in all, with tremor/dystonia or involuntary movements as single occurrences). Three displayed high pain tolerance. Regression in speech was a feature in two. Additional behavior anomalies included ADHD (4-5/6) or aggression (3/6). There was no consistent pattern of malformations, physical anomalies or facial features (with the exception of uplsanted palpebral fissures reported in 4).

3 different missense variants were identified (NM_00116470:c.1003C>T - p.Arg335Trp, c.586G>A - p.Glu196Lys, c.500_501delAAinsTT - p.Gln167Leu) with Arg355Trp being a recurrent one within this cohort (4/6 subjects). A possible splicing effect may apply for the MNV. All variants are absent from gnomAD and the SNVs had CADD scores > 24.

In all cases were parental samples were available (5/6), the variant had occurred as a de novo event.

Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes. As the authors comment, the RIβ subunit is primarily expressed in brain with higher expression in cortex and hypothalamus.

The functional consequences of the variants at cellular level were not studied.

Previous studies have demonstrated that downregulation of RIβ in murine hippocampal cultures, reduced phosphorylation of CREB, a transcription factor involved in long-term memory formation. The authors speculate that a similar effect on cAMP/PKA/CREB cascade may mediate the cognitive effects in humans. RIβ deficient mice also display diminished nociceptive pain, similar to the human phenotype. [Several refs provided].

The authors cite the study by Kaplanis et al (2020 - PMID: 33057194), where in a large sample of 31,058 trio exomes of children with developmental disorders, PRKAR1B was among the genes with significant enrichment for de novo missense variants. [The gene has a pLI score of 0.18 in gnomAD / o/e = 0.26 - so pLoF variants may not be deleterious].

Please note that a specific PRKAR1B variant (NM_002735.2:c.149T>G - p.Leu50Arg) has been previous reported to segregate with a late-onset neurodegenerative disorder characterized by dementia and/or parkinsonism within a large pedigree with 12 affected individuals [Wong et al 2014 - PMID: 25414040].
Sources: Literature
Mendeliome v0.5212 DDX23 Bryony Thompson gene: DDX23 was added
gene: DDX23 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DDX23 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DDX23 were set to 33057194
Phenotypes for gene: DDX23 were set to Developmental disorder
Review for gene: DDX23 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio developmental disorder study. 6 de novo missense identified in ~10,000 cases with developmental disorders (no other phenotype info provided)
Sources: Literature
Mendeliome v0.5210 ATP6V0A1 Bryony Thompson gene: ATP6V0A1 was added
gene: ATP6V0A1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATP6V0A1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ATP6V0A1 were set to 30842224; 33057194
Phenotypes for gene: ATP6V0A1 were set to Developmental disorder; Rett syndrome-like
Review for gene: ATP6V0A1 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio developmental disorder study. 11 de novo missense identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
PMID: 30842224 - identified a de novo missense variant in a single individual with atypical Rett syndrome phenotype
Sources: Literature
Mendeliome v0.5208 ARHGAP35 Bryony Thompson gene: ARHGAP35 was added
gene: ARHGAP35 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ARHGAP35 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ARHGAP35 were set to 33057194
Phenotypes for gene: ARHGAP35 were set to Developmental disorder
Review for gene: ARHGAP35 was set to AMBER
Added comment: Has been identified as a gene with significant de novo enrichment in a large trio developmental disorder study. 16 de novo variants (3 frameshift, 2 in-frame, 10 missense, 1 stopgain) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5207 AP2S1 Bryony Thompson Added comment: Comment on phenotypes: Established hypercalcaemia gene.
PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio developmental disorder study. 5 de novo missense identified in ~10,000 cases with developmental disorders (no other phenotype info provided)
Mendeliome v0.4229 TET2 Zornitza Stark changed review comment from: Association study (PMID 32330418) found enrichment of non-coding and LoF TET2 variants in cohort of individuals with early onset dementia, unclear if this is monogenic or polygenic contribution.; to: Mono-allelic variants: Association study (PMID 32330418) found enrichment of non-coding and LoF TET2 variants in cohort of individuals with early onset dementia, unclear if this is monogenic or polygenic contribution.
Mendeliome v0.3732 FAM50A Zornitza Stark gene: FAM50A was added
gene: FAM50A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FAM50A was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: FAM50A were set to 32703943
Phenotypes for gene: FAM50A were set to Mental retardation syndrome, X-linked, Armfield type (MIM #300261)
Review for gene: FAM50A was set to GREEN
Added comment: Lee et al (2020 - PMID: 32703943) provide evidence that Armfield X-Linked intellectual disability syndrome is caused by monoallelic FAM50A pathogenic variants. The current review is based only on this reference. The authors provide clinical details on 6 affected individuals from 5 families. Features included postnatal growth delay, DD and ID (6/6 - also evident for those without formal IQ assesment), seizures (3/6 from 2 families), prominent forehead with presence of other facial features and variable head circumference (5th to >97th %le), ocular anomalies (5/6 - strabismus/nystagmus/Axenfeld-Rieger), cardiac (3/6 - ASD/Fallot) and genitourinary anomalies (3/6). In the first of these families (Armfield et al 1999 - PMID: 10398235), linkage analysis followed by additional studies (Sanger, NGS of 718 genes on chrX, X-exome NGS - several refs provided) allowed the identification of a FAM50A variant. Variants in other families were identified by singleton (1 fam) or trio-ES (3 fam). In affected individuals from 3 families, the variant had occurred de novo. Carrier females in the other families were unaffected (based on pedigrees and/or the original publication). XCI was rather biased in most obligate carrier females from the 1st family (although this ranged from 95:5 to 60:40). Missense variants were reported in all affected subjects incl. Trp206Gly, Asp255Gly, Asp255Asn (dn), Glu254Gly (dn), Arg273Trp (dn) (NM_004699.3). Previous studies have demonstrated that FAM50A has ubiquitous expression in human fetal and adult tissues (incl. brain in fetal ones). Immunostaining suggests a nuclear localization for the protein (NIH/3T3 cells). Comparison of protein levels in LCLs from affected males and controls did not demonstrate significant differences. Protein localization for 3 variants (transfection of COS-7 cells) was shown to be similar to wt. Complementation studies in zebrafish provided evidence that the identified variants confer partial loss of function (rescue of the morpholino phenotype with co-injection of wt but not mt mRNA). The zebrafish ko model seemed to recapitulate the abnormal development of cephalic structures and was indicative of diminished/defective neurogenesis. Transcriptional dysregulation was demonstrated in zebrafish (altered levels and mis-splicing). Upregulation of spliceosome effectors was demonstrated in ko zebrafish. Similarly, mRNA expression and splicing defects were demonstrated in LCLs from affected individuals. FAM50A pulldown followed by mass spectrometry in transfected HEK293T cells demonstrated enrichment of binding proteins involved in RNA processing and co-immunoprecipitation assays (transfected U-87 cells) suggested that FAM50A interacts with spliceosome U5 and C-complex proteins. Overall aberrant spliceosome C-complex function is suggested as the underlying pathogenetic mechanism. Several other neurodevelopmental syndromes are caused by variants in genes encoding C-complex affiliated proteins (incl. EFTUD2, EIF4A3, THOC2, etc.).
Sources: Literature
Mendeliome v0.3643 NARS Zornitza Stark gene: NARS was added
gene: NARS was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NARS was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: NARS were set to 32738225
Phenotypes for gene: NARS were set to Abnormal muscle tone; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Ataxia; Abnormality of the face; Demyelinating peripheral neuropathy
Review for gene: NARS was set to GREEN
Added comment: [Please note that HGNC Approved Gene Symbol for this gene is NARS1] Manole et al (2020 - PMID: 32738225) provide evidence that both biallelic and monoallelic (de novo) pathogenic NARS1 variants cause a neurodevelopmental disorder. In total 32 individuals from 21 families are reported, with biallelic variants identified in individuals from 13 families and de novo in 8 families. Similar features were reported for AR/AD occurrences of the disorder and included microcephaly (90% - most often primary), epilepsy (23/32 or 74% - variable semiology incl. partial/myoclonic/generalized tonic-clonic seizures), DD and ID (as a universal feature), abnormal tone in several (hypotonia/spasticity), ataxia, demyelinating peripheral neuropathy (in 3 or more for each inheritance mode - or a total of 25%). Some individuals had dysmorphic features. NARS1 encodes an aminoacyl-tRNA synthetase (ARS) [asparaginyl-tRNA synthetase 1]. Aminoacyl-tRNA synthetases constitute a family of enzymes catalyzing attachment of amino-acids to their cognate tRNAs. As the authors comment, mutations in genes encoding several other ARSs result in neurological disorders ranging from peripheral neuropathy to severe multi-systemic NDD. Dominant, recessive or both modes for inheritance for mutations in the same gene (e.g. AARS1, YARS1, MARS1, etc) have been reported. Some variants were recurrent, e.g. the c.1600C>T / p.Arg534* which occurred in 6 families as a de novo event or c.1633C>T p.Arg545Cys (homozygous in 6 families). 3 different variants were reported to have occured de novo (c.965G>T - p.Arg322Leu, c.1525G>A - p.Gly509Ser, p.Arg534*) with several other variants identified in hmz/compound htz individuals. A single SNV (c.1067A>C - p.Asp356Ala) was suggested to be acting as modifier and pathogenic only when in trans with a severe variant. [NM_004539.4 used as RefSeq for all]. The authors provide several lines of evidence for a partial loss-of-function effect (e.g. reduction in mRNA expression, enzyme levels and activity in fibroblasts or iNPCs) underlying pathogenicity of the variants identified in individuals with biallelic variants. A gain-of-function (dominant-negative) effect is proposed for de novo variants (such effect also demonstrated for the p.Arg534* in a zebrafish model).
Sources: Literature
Mendeliome v0.2795 COL10A1 Zornitza Stark Phenotypes for gene: COL10A1 were changed from to Metaphyseal chondrodysplasia, Schmid type, MIM#156500
Mendeliome v0.2792 COL10A1 Zornitza Stark reviewed gene: COL10A1: Rating: GREEN; Mode of pathogenicity: None; Publications: 15880705, 31633898; Phenotypes: Metaphyseal chondrodysplasia, Schmid type, MIM#156500; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.2787 TET2 Zornitza Stark edited their review of gene: TET2: Added comment: Association study (PMID 32330418) found enrichment of non-coding and LoF TET2 variants in cohort of individuals with early onset dementia, unclear if this is monogenic or polygenic contribution.; Changed publications: 30890702, 31827242, 32330418
Mendeliome v0.2463 ATOH7 Zornitza Stark Phenotypes for gene: ATOH7 were changed from to Persistent hyperplastic primary vitreous, autosomal recessive, MIM# 221900; microphthalmia; cataract; glaucoma; congenital retinal nonattachment
Mendeliome v0.2392 ATOH7 Paul De Fazio reviewed gene: ATOH7: Rating: GREEN; Mode of pathogenicity: None; Publications: 22068589, 22645276, 31696227, 11493566, 11493566; Phenotypes: microphthalmia, cataract, glaucoma, congenital retinal nonattachment; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.0 CHMP4B Zornitza Stark gene: CHMP4B was added
gene: CHMP4B was added to Mendeliome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services
Mode of inheritance for gene: CHMP4B was set to Unknown
Mendeliome v0.0 CHMP1A Zornitza Stark gene: CHMP1A was added
gene: CHMP1A was added to Mendeliome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services
Mode of inheritance for gene: CHMP1A was set to Unknown
Mendeliome v0.0 CHM Zornitza Stark gene: CHM was added
gene: CHM was added to Mendeliome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services
Mode of inheritance for gene: CHM was set to Unknown