Date | Panel | Item | Activity | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mendeliome v1.2426 | SPAG6 |
Zornitza Stark gene: SPAG6 was added gene: SPAG6 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SPAG6 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SPAG6 were set to 35232447; 38073178; 32124190 Phenotypes for gene: SPAG6 were set to Spermatogenic failure, MONDO:0004983, SPAG6-related Review for gene: SPAG6 was set to GREEN Added comment: i) PMID: 35232447- two homozygous variants (F1 II-1: p. A103D; F2 II-1:p. K196Sfs*6) in two unrelated Han Chinese men with nonsyndromic asthenoteratozoospermia with severe multiple morphological abnormalities of the sperm flagella. Immunostaining and WB showed lower SPAG6 expression in spermatozoa of both affected males. The couple with the missense variant as able to conceive successfully after undergoing ICSI. ii) PMID: 38073178- a homozygous missense p.R310W in three brothers (two brothers with both asthenozoospermia and oligozoospermia, third brother with azoospermia) iii) PMID: 32124190- a novel compound heterozygous variant (c.143_145del: p.48_49del, c.585delA: p.Lys196Serfs*6) in an infertile PCD patient with severe with asthenoteratozoospermia, presented with morphological defects of sperm flagella and lower mRNA and protein expression in mutant sperm. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2400 | SVBP | Zornitza Stark edited their review of gene: SVBP: Added comment: PMID 39412222: 6 individuals from 3 families with spastic paraplegia and the same homozygous missense (L49P). Presented from birth or childhood with DD/ID and spastic paraplegia. Additional features: verbal apraxia, axonal neuropathy, ataxia, nystagmus, epilepsy, and aggressive behaviour. Brain MRIs were performed in 3 individuals and showed thinning of the corpus callosum, cerebellar atrophy, and ventriculomegaly; frontal ventricular hyperintensities suggestive of the 'ear of the lynx' sign in 2. Three individuals had a history of cancer of epithelial origin, including adenocarcinoma (patient 1), colonic tubular adenoma (patient 2), and breast cancer (patient 3).; Changed publications: 31363758, 30607023, 39412222; Changed phenotypes: Neurodevelopmental disorder with ataxia, hypotonia, and microcephaly, MIM #618569, Spastic paraplegia 94, autosomal recessive, MIM# 621150 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2363 | SLC25A25 |
Zornitza Stark gene: SLC25A25 was added gene: SLC25A25 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SLC25A25 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: SLC25A25 were set to 34346195 Phenotypes for gene: SLC25A25 were set to Nephrolithiasis MONDO:0008171,SLC25A25 related Penetrance for gene: SLC25A25 were set to Incomplete Review for gene: SLC25A25 was set to RED Added comment: SLC25A25 encodes mitochondrial ATP-Mg/Pi carrier 3 A single missense variant was reported in 2 families with renal stones in 2021 by Jabalameli et al (PMID: 3436195). In family 1 there was 4 affected individuals who shared the same heterozygous variant NM_001330988.2 c.1083G>C|p.Gln361His, however this variant was also seen in 7 individuals in the family without stones In family 2 there were 7 affected individuals who also had p.Gln361His however this variant was also seen in 3 family members without stones. This variant is located within the mitochondrial carrier domain and functional studies were performed looking at uptake of radioactive ATP compared to wild type. These studies demonstrated the variant protein had approximately 21% activity compared to wild type. The variant was proposed to have incomplete penetrance and it should be noted there is 4352 heterozygotes in gnomad 4. At this time there is insufficient evidence for a gene disease association between SLC25A25 and nephrolithiasis. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2268 | MGA |
Zornitza Stark gene: MGA was added gene: MGA was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MGA was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: MGA were set to 39600096; 20044811; 39545409 Phenotypes for gene: MGA were set to Syndromic disease, MONDO:0002254, MGA-related; Premature ovarian failure 26, MIM# 621065 Review for gene: MGA was set to AMBER Added comment: Association with syndromic disease: Three individuals with de novo LoF variants reported in individuals with ID and congenital anomalies. Zebrafish model supports role of this transcription factor in organogenesis. Note there are previous, less clear reports of association with NDD/CHD. Gene is constrained for LoF variants in gnomad v4; however, note there are ~30 individuals with LoF variants present. Borderline Green/Amber. Association with POF: LoF variants enriched in a large POF cohort. Familial testing in a small number of families performed. Mouse model supportive. Also borderline Amber/Green. Amber rating until phenotypes and mechanisms of disease for these two associations clarified. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2111 | TSHZ3 |
Bryony Thompson gene: TSHZ3 was added gene: TSHZ3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TSHZ3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: TSHZ3 were set to 27668656; 34919690; 36553458; 39420202 Phenotypes for gene: TSHZ3 were set to congenital anomaly of kidney and urinary tract MONDO:0019719 Review for gene: TSHZ3 was set to AMBER Added comment: More evidence for the gene-disease association is required PMID: 27668656 - TSHZ3 is included in the region deleted in chromosome 19q13.11 Deletion Syndrome, which includes intellectual disability and behavioural issues, congenital anomalies of the kidney and urinary tract (CAKUT) PMID: 34919690 - haploinsufficient mouse model leads to kidney defects PMID: 36553458 - heterozygous frameshift variant c.119_120dup p.Pro41SerfsTer79 in a case with intellectual disability, behavioural issues, pyelocaliceal dilatation, and mild urethral stenosis. PMID: 39420202 - 12 CAKUT patients from 9/301 (3%) families carried 5 different rare heterozygous TSHZ3 missense variants. However, 1 of the variants (p.Ser58Gly) present in 5 of the families is more common in gnomAD v4.1 than you would expect for a dominant disease including 5 homozygotes (1,408/1,612,114 alleles, 5 hom, AF=0.0008734). The authors state this is not unexpected in a condition, such as CAKUT. However, the different missense variants are inherited from unaffected parents in at least 2/9 families (there was no phenotype information available for an additional 3 parents). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2089 | IRAK2 |
Chirag Patel changed review comment from: 2 individuals with sequential or repeated invasive infections with 2 different variants in IRAK2 gene found on WES testing. The IRAK kinases function as downstream signal transductors following the activation of pathogen recognition receptors. IRAK4 gene has been associated with susceptibility to severe infections by common pyogenic bacteria. Individual 1 had herpes simplex virus-triggered hemophagocytic lymphohistiocytosis with tuberculosis, and a homozygous missense variant (L78P). There are no homozygous individuals in gnomAD (MAF 0.003%). No segregation testing reported. Individual 2 had Streptococcus pneumoniae bacteremia with candidemia, and a heterozygous missense variant (R506W) which straddles between the kinase and TRAF6-binding CTD of IRAK2. There are 15 heterozygous individuals in gnomAD for this rare variant with no homozygotes (MAF 0.012%). No segregation testing reported. Both patients’ peripheral blood mononuclear cells showed tendencies for TNFα hypo-responsiveness to representative bacterial, fungal and viral ligands, in line with subjects with IRAK defects. Immunoprecipitation platform assay to pull down TRAF6 revealed that possession of L78P or R506W variants led to reduced TRAF6 ubiquitination. The led to TRAF6 accumulation and in turn decreased TNFα production (an inflammatory cytokine to invading pathogens). Paper does not comment on reasons for disease in biallelic and mono-allelic form. Sources: Literature; to: PMID: 39299377 2 individuals with sequential or repeated invasive infections with 2 different variants in IRAK2 gene found on WES testing. The IRAK kinases function as downstream signal transductors following the activation of pathogen recognition receptors. IRAK4 gene has been associated with susceptibility to severe infections by common pyogenic bacteria. Individual 1 had herpes simplex virus-triggered hemophagocytic lymphohistiocytosis with tuberculosis, and a homozygous missense variant (L78P). There are no homozygous individuals in gnomAD (MAF 0.003%). No segregation testing reported. Individual 2 had Streptococcus pneumoniae bacteremia with candidemia, and a heterozygous missense variant (R506W) which straddles between the kinase and TRAF6-binding CTD of IRAK2. There are 15 heterozygous individuals in gnomAD for this rare variant with no homozygotes (MAF 0.012%). No segregation testing reported. Both patients’ peripheral blood mononuclear cells showed tendencies for TNFα hypo-responsiveness to representative bacterial, fungal and viral ligands, in line with subjects with IRAK defects. Immunoprecipitation platform assay to pull down TRAF6 revealed that possession of L78P or R506W variants led to reduced TRAF6 ubiquitination. The led to TRAF6 accumulation and in turn decreased TNFα production (an inflammatory cytokine to invading pathogens). Paper does not comment on reasons for disease in biallelic and mono-allelic form. Preprint paper: 2 individuals with immune dysregulation (1 x systemic lupus erythematosus and 1 x autoinflammatory disease) with same homozgyous exon 2 deletion in IRAK2 gene found on WES testing and confirmed with Sanger sequencing. Unaffected family members in trio were heterozygous for variant. Exon 2 encodes a proportion of the death domain, a critical protein domain for Myddosome assembly. The patients exhibited aberrantly upregulated type I interferon (IFN) response following LPS stimulation, which was further confirmed in bone marrow-derived macrophages (BMDMs) in mice. RNA sequencing analysis indicated that PBMCs from the two patients consistently exhibited defects in activating NFkb signaling in response to LPS or R848 stimulation, as well as impaired activation of the MAPK signaling pathway. RNA sequencing demonstrated that BMDMs from Irak2 ∆ex2/∆ex2 mice exhibited defects in NFkb and MAPK signaling pathways, similar to patients’ PBMCs. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2013 | IFIH1 | Sangavi Sivagnanasundram reviewed gene: IFIH1: Rating: GREEN; Mode of pathogenicity: Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments; Publications: 24686847, 24995871, 25620204, 30219631, 31898846; Phenotypes: IFIH1-related type 1 interferonopathy MONDO:0700262; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1978 | JPH1 |
Sangavi Sivagnanasundram changed review comment from: 4 unrelated probands presented with congenital myopathy with prominent facial and ocular involvement. All individuals had presence of 4 different LoF variants identified in JPH1. p.(Asp125Thrfs*30), p.(Tyr118*), p.(Leu580Trpfs*16) and p.(Glu504Serfs*3) - all variants were absent from gnomADv4.1 Sources: Other; to: 4 unrelated probands presented with congenital myopathy with facial weakness and ocular involvement. All individuals had presence of 4 different LoF variants identified in JPH1. p.(Asp125Thrfs*30), p.(Tyr118*), p.(Leu580Trpfs*16) and p.(Glu504Serfs*3) - all variants were absent from gnomADv4.1 Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1978 | JPH1 |
Sangavi Sivagnanasundram gene: JPH1 was added gene: JPH1 was added to Mendeliome. Sources: Other Mode of inheritance for gene: JPH1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: JPH1 were set to 39209426 Phenotypes for gene: JPH1 were set to Congenital myopathy MONDO:0019952 Review for gene: JPH1 was set to GREEN Added comment: 4 unrelated probands presented with congenital myopathy with prominent facial and ocular involvement. All individuals had presence of 4 different LoF variants identified in JPH1. p.(Asp125Thrfs*30), p.(Tyr118*), p.(Leu580Trpfs*16) and p.(Glu504Serfs*3) - all variants were absent from gnomADv4.1 Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1974 | ATP6V1C1 |
Ain Roesley gene: ATP6V1C1 was added gene: ATP6V1C1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ATP6V1C1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: ATP6V1C1 were set to 39210597 Review for gene: ATP6V1C1 was set to AMBER gene: ATP6V1C1 was marked as current diagnostic Added comment: 1x de novo missense p.Glu289Lys (absent in v4 gnomad). Manual inspection of IGV found the dad was mosaic 7% VAF and he shared some of the clinical features (minor digit anomalies). Some functional studies using patient fibroblasts were performed, demonstrating similar effects as known pathogenic variants in ATP6V1B2. - lysosomal morphology - autophagic flux dysregulation - increased acidification of lysosome borderline red/amber Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1973 | REPS2 |
Mark Cleghorn gene: REPS2 was added gene: REPS2 was added to Mendeliome. Sources: Other Mode of inheritance for gene: REPS2 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Phenotypes for gene: REPS2 were set to complex neurodevelopmental disorder MONDO:0100038; Cerebral palsy HP:0100021 Penetrance for gene: REPS2 were set to unknown Review for gene: REPS2 was set to AMBER Added comment: REPS2 Hao Hu, Guangzhou Women and Children’s MC ESHG talk 1/6/24, unpublished Proposed X-linked cerebral palsy + NDD gene 4 unrelated males with predicted deleterious hemizygous REPS2 variants, 2 PTC, 2 missense. 2 de novo, 2 maternally inherited Phenotypes: 2 w CP + moderate ID/ASD, 2 w NDD NOS Variants described: c.1050_1052delGAA;p.K351del c.1040T>C; p.I347T c.962C>G; p.S321C c.1736delA; p.N579Tfs*17 In vitro assay of above 4 variants suggest reduced REPS2 protein stability Zebrafish model: REPS2 expressed in neuronal cells, REPS2 knock down have reduced motor activity and abN neuronal morphology Mouse model hemizygous w one of above variants (not specified): reduced performance in cognitive tasks, abnormal neuronal migration pattern on post mortem examination Mechanism may relate to dopamine signalling? Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1952 | REXO2 |
Zornitza Stark gene: REXO2 was added gene: REXO2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: REXO2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: REXO2 were set to 39107301 Phenotypes for gene: REXO2 were set to Type 1 interferonopathy of childhood, MONDO:0957408, REXO2-related Review for gene: REXO2 was set to AMBER Added comment: Female infant of Chinese ancestry, presented at 2 years of age with whole-body rash with histological features of hyperkeratosis, parakeratosis and acanthosis with elongated rete ridges, focal liquefaction and degeneration of the basal layers of epidermis, vascular proliferation in the superficial dermis, infiltration of lymphocytes and eosinophils around small blood vessels in the dermis. She has recurrent infections (frequent and severe pneumonia). Extensive functional validation demonstrating heterozygous de novo mutation (p.T132A) impairs REXO2’s ability to cleave RNA leading to activation of the dsRNA sensor MDA5 leading to a Type 1 interferonopathy. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1847 | GRXCR2 | Zornitza Stark edited their review of gene: GRXCR2: Added comment: PMID:33528103 reported another family and an unrelated individual from Cameroon with a different homozygous variant (c.251delC/ p.Ile85SerfsTer33).; Changed rating: GREEN; Changed publications: 24619944, 33528103 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1829 | ERF | Zornitza Stark Phenotypes for gene: ERF were changed from Craniosynostosis 4, MIM# 600775; Chitayat syndrome, MIM# 617180 to Craniosynostosis 4, MIM# 600775; Chitayat syndrome, MIM# 617180; Noonan syndrome-like, MONDO:0018997, with or without craniosynostosis, ERF-related | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1828 | ERF | Zornitza Stark edited their review of gene: ERF: Changed phenotypes: Craniosynostosis 4, MIM# 600775, Chitayat syndrome, MIM# 617180, Noonan syndrome-like, MONDO:0018997, with or without craniosynostosis, ERF-related | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1817 | PISD | Sangavi Sivagnanasundram reviewed gene: PISD: Rating: GREEN; Mode of pathogenicity: None; Publications: 38801004; Phenotypes: Liberfarb syndrome MONDO:0030045; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1813 | ERF | Chirag Patel reviewed gene: ERF: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 38824261; Phenotypes: Noonan syndrome-like with or without craniosynostosis; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1749 | IL27RA |
Ain Roesley gene: IL27RA was added gene: IL27RA was added to Mendeliome. Sources: Literature Mode of inheritance for gene: IL27RA was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: IL27RA were set to 38509369 Phenotypes for gene: IL27RA were set to Epstein-Barr virus infection MONDO:0005111 , IL27RA-related Review for gene: IL27RA was set to AMBER gene: IL27RA was marked as current diagnostic Added comment: 3 children from 2 families with severe acute EBV infection. fam1: homozygous for p.(Gln96*) (NMD-pred) fam2: chet for p.(Arg446Gly) and c.1142-2A>C the splice variant in fam2 was found to to result in an in-frame deletion p.(Gln381_Ala395del) the missense in fam2 is hypothesised to be a hypomorphic allele: - out of 15 Homs in the Finnish database, 2 had hospital diagnoses of EBV IM - expression of this variant on its own results in a weak but detectable IL-27RA expression associated with significant increase in STAT1/3 phosphorus in response to IL-27 stimulation borderline amber/green due to functional studies performed Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1696 | PTCRA |
Achchuthan Shanmugasundram gene: PTCRA was added gene: PTCRA was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PTCRA was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PTCRA were set to 38422122 Phenotypes for gene: PTCRA were set to Autoimmunity, HP:0002960; lymphopenia, MONDO:0003783 Review for gene: PTCRA was set to GREEN Added comment: PMID:38422122 reported the identification of 10 individuals from seven kindreds from four different ethnicities with biallelic PTCRA variants (homozygous in five kindreds and compound heterozygous in two kindreds). Six of these 10 patients were clinically asymptomatic at their most recent evaluation, while other four patients displayed infection, lymphoproliferation, and/or autoimmunity with an onset during their teens or in adulthood. One of these patients died from SARS-CoV-2 pneumonia at the age of 24 years. Patient 9 had a small thymus on MRI at the age of 2 years, whereas P5 and P6 had no visible thymus at the ages of 13 and 8 years, respectively. Three of the nine patients with pLOF PTCRA variants tested were found to produce autoantibodies, several of which were associated with clinical manifestations. Anti-thyroid autoantibodies and/or clinically overt thyroiditis were found in three of the nine patients. P7, who suffered from recurrent herpes infections, had autoantibodies against type I interferons. Two of those identified variants are hypomorphic and are associated with autoimmunity. In addition, there is extensive functional and epidemiological data available. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1664 | PLXNB2 | Zornitza Stark Phenotypes for gene: PLXNB2 were changed from Amelogenesis imperfecta MONDO:0019507, PLXNB2 -related; Sensorineural hearing loss disorder MONDO:0020678, PLXNB2 -related to Syndromic disease MONDO:0002254, PLXNB2 -related | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1656 | FRYL |
Ain Roesley gene: FRYL was added gene: FRYL was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FRYL was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: FRYL were set to 38479391 Phenotypes for gene: FRYL were set to neurodevelopmental disorder MONDO:0700092, FRYL-related Review for gene: FRYL was set to GREEN gene: FRYL was marked as current diagnostic Added comment: 14 individuals, all de novo except 1x duo testing (not present in tested father) 5x missense + 8x fs/stopgain + 1x canonical splice 13/13 with ID/DD (1x deceased) 4/14 seizures 7/14 with cardiac anomalies such as PDA, TOF, VSD, dextrocardia 1x also has a de novo fs variant in SF3B4 1x also has a de novo stop gain variant in SDHA functional studies using flies were performed Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1649 | PLXNB2 |
Chirag Patel gene: PLXNB2 was added gene: PLXNB2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PLXNB2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PLXNB2 were set to PMID: 38458752 Phenotypes for gene: PLXNB2 were set to Amelogenesis imperfecta MONDO:0019507, PLXNB2 -related; Sensorineural hearing loss disorder MONDO:0020678, PLXNB2 -related Review for gene: PLXNB2 was set to GREEN gene: PLXNB2 was marked as current diagnostic Added comment: 8 individuals from 6 families with core features of amelogenesis imperfecta and sensorineural hearing loss. Intellectual disability, ocular disease, ear developmental abnormalities and lymphoedema were also present in multiple cases. WES and WGS identified biallelic pathogenic variants in PLXNB2 (missense, nonsense, splice and a multiexon deletion variants). Variants segregated with disease. PLXNB2 is a large transmembrane semaphorin receptor protein, and semaphorin-plexin signalling controls cellular interactions that are critical during development as well as in adult life stages. Plxnb2 expression was detected in differentiating ameloblasts in mice. Human phenotype overlaps with that seen in Plxnb2 knockout mice. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1646 | SASS6 |
Ain Roesley commented on gene: SASS6: PMID: 38501757 1x compound het for a fs and +3 splice variant. Using cDNA RT-ed from mother's RNA, exons 13-15 were amplified and exon 14 was found to be skipped resulting in c.1546_1674del and p.516_558del PMID: 36739862 1x family, compound het for 2 missense Functional studies not performed |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1633 | USP14 |
Zornitza Stark gene: USP14 was added gene: USP14 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: USP14 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: USP14 were set to 38469793; 35066879 Phenotypes for gene: USP14 were set to Syndromic disease MONDO:0002254, USP14-related Review for gene: USP14 was set to GREEN Added comment: PMID 35066879: 3 fetuses from 2 different branches of a consanguineous family, presenting with distal arthrogryposis, underdevelopment of the corpus callosum, and dysmorphic facial features. Exome sequencing identified a biallelic 4-bp deletion (c.233_236delTTCC; p.Leu78Glnfs*11) in USP14, and sequencing of family members showed segregation with the phenotype. Ubiquitin-specific protease 14 (USP14) encodes a major proteasome-associated deubiquitinating enzyme with an established dual role as an inhibitor and an activator of proteolysis, maintaining protein homeostasis. Usp14-deficient mice show a phenotype similar to lethal human multiple congenital contractures phenotypes, with callosal anomalies, muscle wasting, and early lethality, attributed to neuromuscular junction defects due to decreased monomeric ubiquitin pool. RT-qPCR experiment in an unaffected heterozygote revealed that mutant USP14 was expressed, indicating that abnormal transcript escapes nonsense-mediated mRNA decay. PMID 38469793: biallelic USP14 variants in four individuals from three unrelated families: one fetus, a newborn with a syndromic NDD, and two siblings affected by a progressive neurological disease. Specifically, the two siblings from the latter family carried two compound heterozygous variants c.8T>C p.(Leu3Pro) and c.988C>T p.(Arg330*), while the fetus had a homozygous frameshift c.899_902del p.(Lys300Serfs*24) variant and the newborn patient harbored a homozygous frameshift c.233_236del p.(Leu78Glnfs*11) variant. The fetus and the newborn had extensive brain malformations. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1558 | STAB1 | Zornitza Stark Phenotypes for gene: STAB1 were changed from Iron metabolism disease (MONDO:0002279), STAB1-related to Hyperferritinemia, MIM# 620729 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1557 | STAB1 | Zornitza Stark reviewed gene: STAB1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Hyperferritinemia, MIM# 620729; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1502 | SH2B3 |
Ain Roesley commented on gene: SH2B3: PMID:37206266 2x families - hom missense variant Val402Met: functional performed on patient's fibroblasts demonstrated increased basal pSTAT5, pSTAT3 and increased pJAK2 + pSTAT5 after stimulation with IL-3, GH, GM-CSF and EPO - hom fs Arg148Profs*40 functional performed in zebrafish demonstrated increased number of macrophages and thrombocytes PMID:23908464; 1 fam with 2 affecteds with dev delay + autoimmunity + (1x) ALL, hom for Asp231Gly fs*3 PMID:38152053; JMML cohort - 2x hom missense + 2x het PTCs |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1502 | SAMD7 |
Paul De Fazio gene: SAMD7 was added gene: SAMD7 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SAMD7 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SAMD7 were set to 38272031 Phenotypes for gene: SAMD7 were set to Macular dystrophy, retinal, SAMD7-related MONDO:0031166 Review for gene: SAMD7 was set to GREEN gene: SAMD7 was marked as current diagnostic Added comment: Five biallelic variants were identified in eight individuals from six families with macular dystrophy with or without cone dysfunction. Three families were consanguineous. Mean age at first presentation was 34.8 years, range 14 to 51. Four variants affected splicing, while one missense variant impaired the repressive activity of SAMD7. All functional work was performed using in vitro assays. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1423 | KIF5B | Zornitza Stark Phenotypes for gene: KIF5B were changed from Skeletal dysplasia, MONDO:0018230, KIF5B-related; Kyphomelic dysplasia to osteogenesis imperfecta, MONDO:0019019; Skeletal dysplasia, MONDO:0018230, KIF5B-related; Kyphomelic dysplasia | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1421 | KIF5B | Zornitza Stark edited their review of gene: KIF5B: Added comment: Four additional patients with three distinct de-novo missense variants and features consistent with osteogenesis imperfecta. All variants are in the Kinesin motor domain (~50% of the protein). Functional data in C. Elegans and cell lines shows impaired protein function. Not clear what distinguishes OI causing variants from other phenotypes for this gene at this stage. Dominant negative effect proposed but not conclusively proven.; Changed publications: 37934770; Changed phenotypes: Skeletal dysplasia, MONDO:0018230, osteogenesis imperfecta, MONDO:0019019 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1408 | CEP192 |
Chern Lim gene: CEP192 was added gene: CEP192 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CEP192 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: CEP192 were set to 37981762 Phenotypes for gene: CEP192 were set to microcephaly, short stature, limb-extremity dysplasia, and reduced testicular size Review for gene: CEP192 was set to RED gene: CEP192 was marked as current diagnostic Added comment: PMID: 37981762: - In one family, chet missense p.His638Tyr and p.Asn1917Ser segregated with microcephaly, short stature, limb-extremity dysplasia, and reduced testicular size in two affected siblings. Both sibs also fulfilled dx for mosaic variegated aneuploidy (MVA) syndrome and have tetraploidy. - A lower but substantial proportion of MVA/tetraploidy cells was observed in II-1, II-2, and II-4 (who are het for one of the variants). - In the same family, each variants in heterozygous state segregated with infertility and/or reduced testicular size in the proband’s father and maternal uncle. - Variant screening of CEP192 coding regions performed for 1264 unrelated males with idiopathic infertility. - Asn1917Ser was also detected in three additional unrelated infertile males with reduced testicular volumes. - Two other missense and two synonymous variants were repeatedly detected in infertile males. - qPCR showed CEP192 expression was decreased in individuals with c.1912C>T His638Tyr, mini-gene assay showed that c.1912C>T His638Tyr led to the skipping of exon 14, predicted to result in NMD. - Epithelial cells cultured in vitro from patients with biallelic variants showed the number of cells arrested during the prophase increased because of the failure of spindle formation. - Embyronic mouse lethality in Cep192-/- (hom for His638Tyr), Cep192M/M (hom for Asn1917Ser) and Cep192-/M (chet). - Embryos of Cep192M/M mice had significant increase of MVA and tetraploidy cells. - Number of apoptotic cells increased in Cep192M/M embryos compared with that of Cep192+/+, similar result in Cep192-/- embryos. - Male mice with Cep192 heterozygous variants replicated infertility Conclusions: - Association of this gene with autosomal recessive disease has not been established. - Association of monoallelic variants in this gene with infertility is not well established: - Two variants with some supportive evidence from mouse model. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1400 | COL17A1 | Zornitza Stark Phenotypes for gene: COL17A1 were changed from Epidermolysis bullosa, junctional 4, intermediate MIM#619787; Epithelial recurrent erosion dystrophy MIM#122400 to Epidermolysis bullosa, junctional 4, intermediate MIM#619787; Epithelial recurrent erosion dystrophy MIM#122400; Amelogenesis imperfecta MONDO:0019507, COL17A1-related | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1398 | COL17A1 | Zornitza Stark reviewed gene: COL17A1: Rating: GREEN; Mode of pathogenicity: None; Publications: 37979963; Phenotypes: Amelogenesis imperfecta MONDO:0019507, COL17A1-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1386 | PHLDB1 | Zornitza Stark Phenotypes for gene: PHLDB1 were changed from osteogenesis imperfecta, MONDO:0019019 to Osteogenesis imperfecta, type XXIII, MIM# 620639 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1385 | PHLDB1 | Zornitza Stark reviewed gene: PHLDB1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Osteogenesis imperfecta, type XXIII, MIM# 620639; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1254 | CFAP20 |
Sarah Pantaleo gene: CFAP20 was added gene: CFAP20 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CFAP20 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CFAP20 were set to PMID:36329026 Phenotypes for gene: CFAP20 were set to Retinitis pigmentosa (MONDO:0019200) Review for gene: CFAP20 was set to GREEN Added comment: CFAP20 is a ciliopathy candidate. Demonstrate in zebrafish that cfap20 is required for motile cilia function, and in C. elegans, CFAP-20 maintains the structural integrity of non-motile cilia inner junctions, influencing sensory-dependent signalling and development. Human patients and zebrafish with CFAP20 mutations both exhibit retinal dystrophy (retinitis pigments). Hence, CFAP20 functions within a structural./functional hub centred on the inner junction that is shared between motile and non-motile cilia, and is distinct from other ciliopathy-associaetd domains or macromolecular complexes. Describe 8 individuals from 4 independent families with damaging biallelic variants (homozygous or compound heterozygous) in CFAP20 that segregate with retinal dystrophy. All variants cluster to one side of the protein, with two of the residues directly contacting alpha-tubullin. Family 1 - consanguineous set of 3 siblings from Sudan, homozygous for CFAP20 c.305G>A; p.Arg102His (they also had a homozygous variant in DYNC1LI2 however CFAP20 was considered the better candidate. Family 2 - 3 siblings from Spain, 2 with retinal dystrophy, 1 genetically tested and has c.337C>T; p.(Arg113Trp) and c.397delC; p.(Gln133Serfs*5) Family 3 - single affected family member compound het for c.164+1G>A and c.457A>G; p.(Arg153Gly). Family 4 - 3 affected siblings with generalised retinopathy and variable neurological deficits with c.164+1G>A and c.257G>A; p.(Tyr86Cys) For all families, no individuals had signs of polycystic kidney disease; however, not all individuals had kidney imaging. Visual defecit phenotype presented between adolescence and adulthood (17-56 years old). Used HEK293T cell expression studies to demonstrate a statistically significant decline of mutated CFAP20 protein levels (with the exception of p.Arg102His). To test the specific variants, they used the C.elegans orthologues. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1247 | ZBTB47 |
Elena Savva gene: ZBTB47 was added gene: ZBTB47 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ZBTB47 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: ZBTB47 were set to 37743782 Phenotypes for gene: ZBTB47 were set to Neurodevelopmental disorder (MONDO#0700092), ZBTB47-related Review for gene: ZBTB47 was set to GREEN Added comment: PMID 37743782: - 5 patients with de novo missense, 4/5 have a recurring p.Gly477Lys. Probands have intellectual disability (5/5), seizures (5/5), hypotonia (5/5), gait abnormalities, and variable movement abnormalities (5/5). - Missense variants are positioned close to His and Cys residues involved in forming C2H2 zinc fingers. - No functional studies performed - Minimal PTCs in gnomAD Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1116 | DDRGK1 |
Ain Roesley gene: DDRGK1 was added gene: DDRGK1 was added to Mendeliome. Sources: Literature founder tags were added to gene: DDRGK1. Mode of inheritance for gene: DDRGK1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: DDRGK1 were set to 28263186; 35377455; 35670300; 36243336 Phenotypes for gene: DDRGK1 were set to Spondyloepimetaphyseal dysplasia, Shohat type (MIM#602557) Review for gene: DDRGK1 was set to GREEN gene: DDRGK1 was marked as current diagnostic Added comment: RNA and protein studies performed for the splice variant. These two variants likely represents founder variants PMID:28263186 reported six individuals from three different families of Iraqi Jewish descent (three patients from family 1 and one individual each from families 2-4) identified with homozygous c.408+1G>A donor splice site loss-of-function mutation in DDRGK1 and presented with Shohat-type spondyloepimetaphyseal dysplasia (SEMD). It is a skeletal dysplasia that affects cartilage development. PMID: 35670300 reported two unrelated cases of Moroccan descent identified with homozygous missense variant c.406G>A and presented with SEMD. PMID:36243336 reported an Omani female patient identified with the same homozygous variant as the Iraqi cases and was reported with SEMD. In addition, studies on both zebrafish and mouse models confirms the physiological role of DDRGK1 in the development and maintenance of the growth plate cartilage and deficiency of DDRGK1 recapitulate the clinical phenotype of short stature and joint abnormalities observed in patients with Shohat type SEMD (PMID:28263186; PMID:35377455). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1064 | STAB1 |
Chern Lim gene: STAB1 was added gene: STAB1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: STAB1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: STAB1 were set to 37490907; 28052375 Phenotypes for gene: STAB1 were set to Iron metabolism disease (MONDO:0002279), STAB1-related Review for gene: STAB1 was set to GREEN gene: STAB1 was marked as current diagnostic Added comment: PMID: 37490907 - Biallelic variants identified in 10 individuals from 7 families with unexplained hyperferritinaemia without iron overload. All of them were in good health and had no dysmorphologies, psycho-motor development abnormalities, hearing or vision disorders, or other pathologies. - Homozygous/compound heterozygous variants: missense, frameshift, stopgain, inframe del of 3 AAs, one synonymous. - Samples from three of the patients from two families showed no immunoreactivity with anti-stabilin-1 compared to control liver where high signal was detected in the liver sinusoids (immunohistochemistry analysis). - Patients’ peripheral monocytes and monocyte-derived macrophages showed very little expression of stabilin-1 on CD14+ monocytes and macrophages compared to control subjects (flow cytometry analysis). - These families have also been published in PMID: 28052375. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1062 | NAA30 |
Sarah Pantaleo gene: NAA30 was added gene: NAA30 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NAA30 was set to Unknown Publications for gene: NAA30 were set to PMID: 37387332 Penetrance for gene: NAA30 were set to unknown Added comment: Report a de novo heterozygous NAA30 nonsense variant c.244C>T, p.(Gln82*) in a 5yo boy with GDD, ASD, hypotonia, seizures, tracheal cleft and recurrent respiratory infections. Seizures resolved after two weeks of life. Family history of ASD in older sister. Epilepsy in mother, childhood onset. Biochemical studies performed to assess the functional impact of the premature stop codon on catalytic activity. The variant was found to completely disrupt N-terminal acetyltransferase activity using an in vitro acetylation assay. Variant de novo, “in a gene sensitive to loss of heterozygosity”. Limitation of study - have not established whether this gene variant acts in a dominant or recessive manner. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1060 | SENP7 |
Elena Savva gene: SENP7 was added gene: SENP7 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SENP7 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SENP7 were set to PMID: 37460201 Phenotypes for gene: SENP7 were set to Arthrogryposis multiplex congenita, MONDO:0015168, SENP7-related Review for gene: SENP7 was set to AMBER Added comment: PMID: 37460201 - 1 family (4 affecteds, sibling pair and 1st cousin) with fatal arthrogryposis multiplex congenita, early respiratory failure and neutropenia. Fetus could not be tested, so 3 confirmed genetically. - Homozygous for a PTC, decreased mRNA from one sample supports an NMD outcome. - Additional studies performed supporting downstream proteins expression being affected - Neutropenia observed in 2/3 patients Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.961 | ARPC5 |
Paul De Fazio gene: ARPC5 was added gene: ARPC5 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ARPC5 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ARPC5 were set to 37349293; 37382373 Phenotypes for gene: ARPC5 were set to Combined immunodeficiency, ARPC5-related MONDO:0015131 Review for gene: ARPC5 was set to GREEN gene: ARPC5 was marked as current diagnostic Added comment: 4 individuals from 3 families reported with homozygous LoF variants. All had recurrent and severe infections. Other developmental anomalies were present but seemed variable. PMID:37349293 reports 2 unrelated patients. Both had scoliosis. One had neurodevelopmental delay and brain atrophy. Patient 1 died at 15yo after a sudden episode of hemoptysis and hematochezia. Patient 2 died at 1yo because of progressive neurologic and respiratory disease; an autopsy was not performed. PMID:37382373 reports 2 patients from the same family. One had multiple congenital anomalies including a congenital heart defect (CHD) (patent foramen ovale), cleft palate, and hypoplastic corpus callosum. The sibling also had CHD (moderate pulmonary stenosis and atrial septal defect). Functional studies and a mouse model were supportive of the disease association. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.958 | DCAF13 |
Michelle Torres gene: DCAF13 was added gene: DCAF13 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: DCAF13 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: DCAF13 were set to 36797467 Phenotypes for gene: DCAF13 were set to Neuromuscular disease (MONDO#0019056), DCAF13-related Review for gene: DCAF13 was set to RED Added comment: One consanguineous family, 4x individuals homozygous NM_015420.7(DCAF13)c.907 G > A; p.(Asp303Asn) (3x via WES and 1x via Sanger) with a neuromuscular disorder characterized by a waddling gait, limb deformities, muscular weakness and facial palsy. In silicos analysis of mutant DCAF13 suggests that the amino acid change is deleterious and affects a ß-hairpin turn, within a WD40 domain of the protein which may decrease protein stability. Functional studies were not performed. Previously, a heterozygous variant in DCAF13 with or without a heterozygous missense variant in CCN3, was suggested to cause inherited cortical myoclonic tremor with epilepsy. In addition, a heterozygous DCAF13 variant has been associated with autism spectrum disorder. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.956 | RAB34 |
Sarah Pantaleo gene: RAB34 was added gene: RAB34 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RAB34 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: RAB34 were set to PMID: 37384395 Phenotypes for gene: RAB34 were set to Clefting; corpus callosum; short bones; hypertelorism; polydactyly; cardiac defects; anorectal anomalies Penetrance for gene: RAB34 were set to Complete Review for gene: RAB34 was set to GREEN Added comment: Oral-facial-digital syndromes (OFDS) are a group of clinically and genetically heterogenous disorders characterised by defects in the development of the face and oral cavity along with digit anomalies. Pathogenic variants in >20 genes encoding ciliary proteins have been found to cause OFDS. Identified by WES biallelic missense variants in a novel disease-causing ciliary gene RAB34 in four individuals from three unrelated families (aided by GeneMatcher). Affected individuals presented a novel form of OFDS accompanied by cardiac, cerebral, skeletal (eg. Shortening of long bones), and anorectal defects. RAB34 encodes a member of the Lab GTPase superfamily and was recently identified as a key mediator of ciliary membrane formation. Protein products of pathogenic variants clustered near the RAB34 C-terminus exhibit a strong loss of function. Onset is prenatal (multiple developmental defects including short femur, polydactyly, heart malformations, kidney malformations, brain malformations), resulting in medical termination for three probands. In the fourth, the only one alive at birth, proband born at 39+5 weeks, normal growth parameters after pregnancy with polyhydramnios, corpus callosum agenesis and polydactyly. Respiratory distress at birth. All four probands presented typical features of ciliopathy disorders, overlapping with oral, facial and digital abnormalities. All with homozygous missense variants. All absent in gnomAD (in homozygous state). Sanger sequencing confirmed mode of inheritance. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.906 | NSUN6 |
Michelle Torres gene: NSUN6 was added gene: NSUN6 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NSUN6 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: NSUN6 were set to 37226891 Phenotypes for gene: NSUN6 were set to neurodevelopmental disorder MONDO:0700092, NSUN6-related Review for gene: NSUN6 was set to AMBER Added comment: Three unrelated consanguineous families with developmental delay, intellectual disability, motor delay, and behavioral anomalies. WES detected homozygous variants: - p.(Leu9Glufs*3): even though authors say is is predicted to cause NMD, it actually is NMD escape. No further studies were performed. A deceased affected sibling and parents were NOT tested. - p.(Asp323Asn): Shown to result in a misfolded protein. Methylation assay showed mutant could not catalyze m5C deposition in transcribed tRNACys and tRNAThr substrates in vitro. One of the parents and both unaffected siblings were shown to be carriers. - p.(Glu441Profs*15): truncation (full protein is 470aa) which would result in loss of residues involved in recognition and methylation. Shown to result in a misfolded protein. Parents were shown carriers. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.763 | PPCDC |
Bryony Thompson gene: PPCDC was added gene: PPCDC was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PPCDC was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PPCDC were set to 36564894 Phenotypes for gene: PPCDC were set to dilated cardiomyopathy MONDO:0005021 Review for gene: PPCDC was set to RED Added comment: Single family reported with two siblings with a fatal cardiac phenotype including dilated cardiomyopathy with biallelic variants p.Thr53Pro and p.Ala95Val. Patient-derived fibroblasts showed an absence of PPCDC protein, and nearly 50% reductions in CoA levels. The cells showed clear energy deficiency problems, with defects in mitochondrial respiration, and mostly glycolytic ATP synthesis. Functional studies performed in yeast suggest these mutations to be functionally relevant. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.719 | DPYSL2 |
Zornitza Stark gene: DPYSL2 was added gene: DPYSL2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: DPYSL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: DPYSL2 were set to 27249678; 35861646 Phenotypes for gene: DPYSL2 were set to intellectual disability, MONDO:0001071, DPYSL2-related Review for gene: DPYSL2 was set to AMBER Added comment: Two unrelated cases with monoallelic variants in DPYSL2/ CRMP2, supported by functional studies. However, the evidence is not sufficient for green rating as there are variants reported in other (but different) genes in the two patients. PMID:35861646 reported two cases identified with heterozygous variants (patient1: c.1693C>T (p.Arg565Cys); patient 2: c.42C>A (p.Ser14Arg). These patients had overlapping phenotypes including dysmorphic features, severe global developmental delay and hypoplasia of the corpus callosum. In addition, patient 2 was bed-ridden and could not roll out and had a history of myoclonic seizures and status epilepticus. It should be noted that patient 1 is compound heterozygous for 2 missense variants in the EFCAB5 gene and was hemizygous for a maternally inherited missense variant in the GPKOW gene and patient 2 had 1 de novo missense variant in the COBLL1 gene and was compound heterozygous for 2 missense variants in the POTEF gene. The severity of the phenotypes between the two cases differs significantly and the additional variants may have possibly contributed to this phenotype. Brain-specific Crmp2 knockout mice display neuronal development deficits and behavioural impairments associated with hypoplasia of the corpus callosum. In addition, functional studies performed in zebrafish and cell lines that the CRMP2 variants lead to the loss-of-function of CRMP2 protein and can cause intellectual disability. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.711 | EPHA10 |
Achchuthan Shanmugasundram changed review comment from: Comment on rating: This gene should be rated RED as this gene has been associated with post-lingual autosomal dominant non-syndromic hearing loss from a single family, and supported by functional studies. PMID:36048850 reported the identification of a heterozygous non-coding variant c.-81_-73delinsAGC cosegregating with hearing loss. Although variants have been identified in KIF17 and USP48 in several members of this family, they did not cosegregate with hearing loss. One affected member of this family had an ideal hearing restoration after cochlear implantation. Epha10 was expressed in mouse cochlea at both transcription and translation levels. In addition, EPHA10 mRNA was detected upregulated in patients compared with controls by qRT-PCR. Overexpression of Eph (the homolog of human EPHA10) altered the structure and function of chordotonal organ (equivalent to mammalian auditory organs) in fly model. These functional evidence suggests that 'gain of function' may be responsible for the hearing loss phenotype. This gene has not yet been associated with any phenotypes in OMIM or Gene2Phenotype. Sources: Literature; to: Comment on rating: This gene should be rated RED as this gene has been associated with post-lingual autosomal dominant non-syndromic hearing loss from a single family, and supported by functional studies. PMID:36048850 reported the identification of a heterozygous non-coding variant c.-81_-73delinsAGC cosegregating with hearing loss. Although variants have been identified in KIF17 and USP48 in several members of this family, they did not cosegregate with hearing loss. One affected member of this family had an ideal hearing restoration after cochlear implantation. Epha10 was expressed in mouse cochlea at both transcription and translation levels. In addition, EPHA10 mRNA was detected upregulated in patients compared with controls by qRT-PCR. Overexpression of Eph (the homolog of human EPHA10) altered the structure and function of chordotonal organ (equivalent to mammalian auditory organs) in fly model. Particularly, Eph overexpressed flies had a poorer performance compared to controls in negative geotaxis assay. These functional evidence suggests that 'gain of function' may be responsible for the hearing loss phenotype. This gene has not yet been associated with any phenotypes in OMIM or Gene2Phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.697 | AMOTL1 | Seb Lunke Phenotypes for gene: AMOTL1 were changed from Cleft lip and palate; imperforate anus; dysmorphism to Orofacial clefting syndrome, MONDO:0015335, AMOTL1 -related | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.624 | GET4 |
Elena Savva gene: GET4 was added gene: GET4 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GET4 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: GET4 were set to 32395830 Phenotypes for gene: GET4 were set to ?Congenital disorder of glycosylation,, type IIy MIM#620200 Review for gene: GET4 was set to RED Added comment: PMID: 32395830 - chet patient (missense x2), functionally shown to result in downregulation of three TRC proteins in patient cell lines. - patient phenotype included ID, DD, seizures, dysmorphism and delayed bone age. - functional studies on missense themselves not performed Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.587 | PHLDB1 |
Seb Lunke gene: PHLDB1 was added gene: PHLDB1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PHLDB1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PHLDB1 were set to 36543534 Phenotypes for gene: PHLDB1 were set to osteogenesis imperfecta, MONDO:0019019 Review for gene: PHLDB1 was set to AMBER Added comment: 5 children from two consanguineous families with recurrent fractures and/or osteopaenia, platyspondyly, short and bowed long bones, and widened metaphyses. Metaphyseal and vertebral changes regressed after early childhood, and no fractures occurred under bisphosphonate treatment. Two independent nonsense variants were identified in the families, NM_001144758.3:c.2392dup (p.Leu798Profs*4) and NM_001144758.3:c.2690_2693del (p.Leu897Glnfs*24). RT-PCR and western blot analysis confirmed loss of transcript and protein product, respectively, but no further functional data provided. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.583 | OXGR1 |
Sarah Pantaleo gene: OXGR1 was added gene: OXGR1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: OXGR1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: OXGR1 were set to PMID:35671463 Phenotypes for gene: OXGR1 were set to Nephrolithiasis/nephrocalcinosis MONDO:0008171, OXGR1-related Penetrance for gene: OXGR1 were set to unknown Review for gene: OXGR1 was set to AMBER Added comment: Candidate disease gene for human calcium oxalate nephrolithiasis. Performed exome sequencing and directed sequencing of the OXGR1 locus in a worldwide nephrolithiasis/nephrocalcinosis (NL/NC) cohort, and putatively deleterious rare OXGR1 variants were functionally characterised. A heterozygous OXGR1 missense variant (c.371T>G; p.Leu124Arg) co-segregated with calcium oxalate NL and/or NC disease in an autosomal dominant inheritance pattern within a multi-generational family with five affected individuals. Interrogation of the OXGR1 locus in 1,107 additional NL/NC families identified five additional deleterious dominant variants in five families with calcium oxalate NL/NC. Rare, potentially deleterious OXGR1 variants were enriched in NL/NC subjects relative to ExAC controls. Four missense variants and one frameshift variant. Four of five NL/NC-associated missense variants revealed impaired AKG-dependent calcium ion uptake, demonstrating loss of function. Rare, dominant loss-of-function OXGR1 variants are associated with recurrent calcium oxalate NL/NC disease. Six potentially deleterious variants were identified in six of 1,108 NL/NC families (0.54%). Limitations: only probands were able to be recruited for four of six families. In the future, it will be important to determine whether any of the affected family members share the identified OXGR1 variant. They also observe OXGR1 variants in 0.16% of ExAC subjects (selected on the basis of the absence of paediatric disease). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.476 | PDIA6 | Chirag Patel edited their review of gene: PDIA6: Added comment: 2nd patient with large polycystic kidneys, death and end stage renal failure at 18 months, microcephaly, bilateral inguinal hernias, umbilical hernia, developmental delay, bilateral sensorineural hearing loss, visual impairment, steatorrhea, fibrotic changes in liver, and insulin-dependent diabetes. WGS found homozygous stop-gain variant (Tyr368*) in PDIA6. Segregation not performed.; Changed rating: AMBER; Changed publications: PMID: 35856135; Changed phenotypes: Polycystic kidney disease, infancy-onset diabetes, and microcephaly | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.426 | SP6 | Zornitza Stark Phenotypes for gene: SP6 were changed from hypoplastic amelogenesis imperfecta to Amelogenesis imperfecta, type IK, MIM# 620104 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.425 | SP6 | Zornitza Stark edited their review of gene: SP6: Changed phenotypes: Amelogenesis imperfecta, type IK, MIM# 620104 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.206 | C18orf32 |
Naomi Baker gene: C18orf32 was added gene: C18orf32 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: C18orf32 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: C18orf32 were set to PMID:35107634 Phenotypes for gene: C18orf32 were set to Neurodevelopmental disorder (MONDO:0700092), C18orf32-related Review for gene: C18orf32 was set to RED Added comment: Two siblings reported as affected, although sequencing only performed in one sibling, with homozygous loss-of-function variant identified. Clinical presentation included developmental delay, recurrent lower respiratory tract infections, sparse rough hair, roving eye movements, hypotonia, bilateral ankle contractures and inverted nipples. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.134 | CCDC155 |
Melanie Marty gene: CCDC155 was added gene: CCDC155 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CCDC155 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CCDC155 were set to 35674372; 35708642; 29790874; 35587281 Phenotypes for gene: CCDC155 were set to Non-obstructive azoospermia; Premature ovarian insufficiency Review for gene: CCDC155 was set to GREEN Added comment: Current HGNC name is KASH5 Summary: 4 families reported with non-obstructive azoospermia or premature ovarian insufficiency. Functional studies have been performed and mouse models recapitulate the phenotype. PMID: 35674372 CNV and frameshift variants in KASH5 were identified in a non-obstructive azoospermia affected patient and in his infertile sister by whole-exome sequencing and CNV array. Kash5 knockout mouse displayed similar phenotypes, including a meiotic arrest at a zygotene-like stage and impaired pairing and synapsis. PMID: 35708642 Hom splice identified in KASH5 in 2 sisters with premature ovarian insufficiency. In vitro studies found the variant disturbed the nuclear membrane localization of KASH5 and its binding with SUN1. Moreover, the Kash5 C-terminal deleted mice revealed defective meiotic homolog pairing and accelerated depletion of oocytes. PMID: 29790874 2 brothers with non-obstructive azoospermia with hom missense in CCDC155 35587281 2 siblings with hom missense in CCDC155 non-obstructive azoospermia and premature ovarian insufficiency. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.114 | PNPT1 | Zornitza Stark edited their review of gene: PNPT1: Added comment: Three families reported with heterozygous variants and SCA25. Incomplete penetrance in one of the families. In the third family, the variant was inherited from an asymptomatic 80+ year old. Note bi-allelic variants in this gene cause a mitochondrial disorder. Exact mechanism through which mono-allelic variants cause SCA25 not elucidated: authors speculate abnormal accumulation of mitochondrial RNA with subsequent leakage into the cytosol that may trigger a type 1 interferon response leading to neuroinflammation with neuronal dysfunction or neuronal loss.; Changed rating: AMBER; Changed publications: 35411967; Changed phenotypes: Spinocerebellar ataxia 25, MIM# 608703; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.47 | PAN2 |
Naomi Baker gene: PAN2 was added gene: PAN2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PAN2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PAN2 were set to PMID:35304602; 29620724 Phenotypes for gene: PAN2 were set to Neurodevelopmental disorder, MONDO:0700092, PAN2-related Review for gene: PAN2 was set to GREEN Added comment: PMID:35304602 reports five individuals from 3 families with biallelic (homozygous) loss-of-function variants. Clinical presentation incudes mild-moderate intellectual disability, hypotonia, sensorineural hearing loss, EEG abnormalities, congenital heart defects (tetralogy of Fallot, septal defects, dilated aortic root), urinary tract malformations, ophthalmological anomalies, short stature with other skeletal anomalies, and craniofacial features including flat occiput, ptosis, long philtrum, and short neck. PMID:29620724 reports one individual with biallelic (homozygous) loss-of-function variant who presented with global developmental delay, mild hypotonia, craniosynostosis, severe early-onset scoliosis, imperforate anus, and double urinary collecting system. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.34 | TRIM47 |
Zornitza Stark gene: TRIM47 was added gene: TRIM47 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TRIM47 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: TRIM47 were set to 35511193 Phenotypes for gene: TRIM47 were set to Genetic cerebral small vessel disease MONDO:0018787 Review for gene: TRIM47 was set to RED Added comment: GWAS data: Combined evidence from summary-based Mendelian randomization studies and profiling of human loss-of-function allele carriers showed an inverse relation between TRIM47 expression in the brain and blood vessels and extensive small vessel disease severity. Observed significant enrichment of Trim47 in isolated brain vessel preparations compared to total brain fraction in mice, in line with the literature showing Trim47 enrichment in brain endothelial cells at single cell level. Functional evaluation of TRIM47 by small interfering RNAs-mediated knockdown in human brain endothelial cells showed increased endothelial permeability, an important hallmark of cerebral small vessel disease pathology. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.15 | IKBKG |
Zornitza Stark edited their review of gene: IKBKG: Added comment: X-linked systemic autoinflammatory disease (SAIDX) is characterized by the onset of systemic autoinflammation in the first months of life. Features include lymphadenopathy, hepatosplenomegaly, fever, panniculitis, and nodular skin rash. Additional manifestations may include inflammation of the optic nerve, intracranial hemorrhage, and lipodystrophy. Laboratory studies show hypogammaglobulinemia, increased or decreased white blood cell count, autoimmune cytopenias, elevated serum inflammatory markers, and a type I interferon signature. 6 unrelated boys and a girl reported. All variants resulted in absence of the domain encoded by exon 5 (NEMOdelEx5). Note variants in this gene are associated with immunodeficiency +/- ectodermal features and with IP.; Changed phenotypes: Ectodermal dysplasia and immunodeficiency 1, MIM# 300291, Immunodeficiency 33 , MIM#300636, Incontinentia pigmenti, MIM# 308300, Autoinflammatory disease, systemic, X-linked, MIM# 301081 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.3 | RDH11 | Zornitza Stark edited their review of gene: RDH11: Added comment: 2nd case reported: 1 Chinese patient with retinitis pigmentosa, juvenile cataracts, intellectual disability, and myopathy. Trio-based WES and whole genomic CNV detection found compound heterozygous variants in RDH11 (p.Leu313Pro and c.75-3C>A) with biparental inheritance. Variant c.75-3C>A was confirmed to be a splice-site mutation by cDNA sequencing. It caused exon 2 skipping, resulting in a frameshift mutation and premature translation termination (p.Lys26Serfs*38). They found mislocalization of RDH11 protein in muscle cells of the patient by using immunofluorescence staining. Retinol dehydrogenase 11 (RDH11) is an 11-cis-retinol dehydrogenase that has a well-characterized, albeit auxiliary role in the retinoid cycle. Diseases caused by mutations in the RDH11 gene are very rare, and only one affected family with eye and intelligence involvement has been reported.; Changed rating: AMBER; Changed publications: 24916380, 15634683, 30731079, 18326732, 34988992 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14742 | DSPP | Zornitza Stark Phenotypes for gene: DSPP were changed from to Deafness, autosomal dominant 39, with dentinogenesis - MIM#605594; Dentin dysplasia, type II - MIM#125420; Dentinogenesis imperfecta, Shields type II - MIM#125490; Dentinogenesis imperfecta, Shields type III - MIM#125500 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14269 | WNT1 | Zornitza Stark Phenotypes for gene: WNT1 were changed from to Osteogenesis imperfecta, type XV, MIM# 615220 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14266 | WNT1 | Zornitza Stark reviewed gene: WNT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 23499309, 23499310, 23656646, 26671912; Phenotypes: Osteogenesis imperfecta, type XV, MIM# 615220; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13991 | DSPP | Krithika Murali reviewed gene: DSPP: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Deafness, autosomal dominant 39, with dentinogenesis - MIM#605594, Dentin dysplasia, type II - MIM#125420, Dentinogenesis imperfecta, Shields type II - MIM#125490, Dentinogenesis imperfecta, Shields type III - MIM#125500; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13952 | DLX3 | Ain Roesley Phenotypes for gene: DLX3 were changed from to Amelogenesis imperfecta, type IV, MIM# 104510; Trichodontoosseous syndrome, MIM# 190320 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13951 | DLX3 | Ain Roesley reviewed gene: DLX3: Rating: GREEN; Mode of pathogenicity: None; Publications: 9467018, 15666299, 18203197; Phenotypes: Amelogenesis imperfecta, type IV, MIM# 104510, Trichodontoosseous syndrome, MIM# 190320; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13747 | CTNNA1 | Ain Roesley Phenotypes for gene: CTNNA1 were changed from to Macular dystrophy, butterfly-shaped pigmentary, 2, MIM# 608970; Familial exudative vitreoretinopathy MONDO#0019516, CTNNA1-related | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13745 | CTNNA1 | Ain Roesley reviewed gene: CTNNA1: Rating: GREEN; Mode of pathogenicity: None; Publications: 26691986, 33497368; Phenotypes: Macular dystrophy, butterfly-shaped pigmentary, 2, MIM# 608970, Familial exudative vitreoretinopathy MONDO#0019516, CTNNA1-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13656 | COL1A2 | Ain Roesley edited their review of gene: COL1A2: Changed phenotypes: Combined osteogenesis imperfecta and Ehlers-Danlos syndrome 2, MIM# 619120, Ehlers-Danlos syndrome, arthrochalasia type, 2, MIM# 617821, Ehlers-Danlos syndrome, cardiac valvular type, MIM# 225320, Osteogenesis imperfecta, type II, MIM# 166210, Osteogenesis imperfecta, type III, MIM# 259420, Osteogenesis imperfecta, type IV, MIM# 166220 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13656 | COL1A2 | Ain Roesley Phenotypes for gene: COL1A2 were changed from to Combined osteogenesis imperfecta and Ehlers-Danlos syndrome 2, MIM# 619120; Ehlers-Danlos syndrome, arthrochalasia type, 2, MIM# 617821; Ehlers-Danlos syndrome, cardiac valvular type, MIM# 225320; Osteogenesis imperfecta, type II, MIM# 166210; Osteogenesis imperfecta, type III, MIM# 259420; Osteogenesis imperfecta, type IV, MIM# 166220 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13653 | COL1A1 |
Ain Roesley changed review comment from: COL1A1 is mostly associated with osteogenesis imperfecta however, substitutions of arginine by cysteine in the triple helical domain) have been reported in individuals w/classic EDS & aneurysm & dissection of large vessels (PMID: 20301422;20301667) The mild forms are usually caused by haploinsufficiency and result in a reduced amount of normal type I collagen, the severe and lethal forms result from dominant negative variants which produce structural defects in the collagen molecule (PMID:12362985).; to: COL1A1 is mostly associated with osteogenesis imperfecta however, substitutions of arginine by cysteine in the triple helical domain) have been reported in individuals w/classic EDS & aneurysm & dissection of large vessels (PMID: 20301422;20301667) For skeletal phenotypes: The mild forms are usually caused by haploinsufficiency and result in a reduced amount of normal type I collagen, the severe and lethal forms result from dominant negative variants which produce structural defects in the collagen molecule (PMID:12362985). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13653 | COL1A1 |
Ain Roesley changed review comment from: COL1A1 is mostly associated with osteogenesis imperfecta however, substitutions of arginine by cysteine in the triple helical domain) have been reported in individuals w/classic EDS & aneurysm & dissection of large vessels (PMID: 20301422;20301667); to: COL1A1 is mostly associated with osteogenesis imperfecta however, substitutions of arginine by cysteine in the triple helical domain) have been reported in individuals w/classic EDS & aneurysm & dissection of large vessels (PMID: 20301422;20301667) The mild forms are usually caused by haploinsufficiency and result in a reduced amount of normal type I collagen, the severe and lethal forms result from dominant negative variants which produce structural defects in the collagen molecule (PMID:12362985). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13653 | COL1A1 | Ain Roesley Phenotypes for gene: COL1A1 were changed from to Caffey disease MIM#114000; Combined osteogenesis imperfecta and Ehlers-Danlos syndrome 1 MIM#619115; Ehlers-Danlos syndrome, arthrochalasia type, 1 MIM#130060; Osteogenesis imperfecta, type I MIM#166200; Osteogenesis imperfecta, type II MIM#166210; Osteogenesis imperfecta, type III MIM#259420; Osteogenesis imperfecta, type IV MIM#166220 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13652 | COL1A1 | Ain Roesley reviewed gene: COL1A1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301422, 20301667, 30071989, 28981071, 12362985, 28956891; Phenotypes: Caffey disease MIM#114000, Combined osteogenesis imperfecta and Ehlers-Danlos syndrome 1 MIM#619115, Ehlers-Danlos syndrome, arthrochalasia type, 1 MIM#130060, Osteogenesis imperfecta, type I MIM#166200, Osteogenesis imperfecta, type II MIM#166210, Osteogenesis imperfecta, type III MIM#259420, Osteogenesis imperfecta, type IV MIM#166220; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13396 | PISD | Zornitza Stark Phenotypes for gene: PISD were changed from to Liberfarb syndrome, MIM# 618889; Intellectual disability; cataracts; retinal degeneration; microcephaly; deafness; short stature; white matter abnormalities | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13393 | PISD | Zornitza Stark edited their review of gene: PISD: Changed phenotypes: Liberfarb syndrome, MIM# 618889, Intellectual disability, cataracts, retinal degeneration, microcephaly, deafness, short stature, white matter abnormalities | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13324 | CLDN16 | Ain Roesley Phenotypes for gene: CLDN16 were changed from to Hypomagnesemia 3, renal MIM#248250; amelogenesis imperfecta MONDO#0019507, CLDN16-related | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13323 | CLDN16 | Ain Roesley reviewed gene: CLDN16: Rating: GREEN; Mode of pathogenicity: None; Publications: 26426912, 16501001, 10878661, 32869508; Phenotypes: Hypomagnesemia 3, renal MIM#248250, amelogenesis imperfecta MONDO#0019507, CLDN16-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13263 | RSPH4A |
Belinda Chong changed review comment from: Radial spokes are regularly spaced along cilia, sperm, and flagella axonemes and have a multisubunit 'stalk' and 'head' that form a signal transduction scaffold between the central microtubule pair and dynein arms. RSPH4A is predicted to be a component of the radial spoke head based on homology with proteins in the biflagellate alga Chlamydomonas reinhardtii and other ciliates (Castleman et al., 2009; PMID19200523) 9 families with primary ciliary dyskinesia without situs inversus (Kott et al. 2013 (PMID:23993197), Castleman et al., 2009 (PMID19200523) and Daniels et al. 2013; (PMID:23798057)): - In affected members of 4 Pakistani families with CILD11, Castleman et al. (2009) identified a homozygous mutation in the RSPH4A gene. - In affected members of a family of northern European descent with CILD11, Castleman et al. (2009) identified compound heterozygosity for 2 mutations in the RSPH4A gene - Kott et al. (2013) identified pathogenic mutations in the RSPH4A gene in 7 (14%) of 48 families with a specific CILD. Common founder mutation: - Daniels et al. (2013) identified a common founder mutation in the RSPH4A gene in 9 patients with CILD11, all of whom had Puerto Rican ancestry. Multiple individuals in ClinVar with primary ciliary dyskinesia; to: Radial spokes are regularly spaced along cilia, sperm, and flagella axonemes and have a multisubunit 'stalk' and 'head' that form a signal transduction scaffold between the central microtubule pair and dynein arms. RSPH4A is predicted to be a component of the radial spoke head based on homology with proteins in the biflagellate alga Chlamydomonas reinhardtii and other ciliates (Castleman et al., 2009; PMID19200523) 9 families with primary ciliary dyskinesia without situs inversus (Kott et al. 2013 (PMID:23993197), Castleman et al., 2009 (PMID19200523) and Daniels et al. 2013; (PMID:23798057)): - In affected members of 4 Pakistani families with CILD11, Castleman et al. (2009) identified a homozygous mutation in the RSPH4A gene. - In affected members of a family of northern European descent with CILD11, Castleman et al. (2009) identified compound heterozygosity for 2 mutations in the RSPH4A gene - Kott et al. (2013) identified pathogenic mutations in the RSPH4A gene in 7 (14%) of 48 families with a specific CILD. Common founder mutation: - Daniels et al. (2013) identified a common founder mutation in the RSPH4A gene in 9 patients with CILD11, all of whom had Puerto Rican ancestry. Multiple individuals in ClinVar with primary ciliary dyskinesia PMID: 25789548; Frommer 2015: 8 PCD families reported, only 4 different variants identified. Functional studies performed. PMID: 22448264; Ziętkiewicz 2012: 4 additional families/variants reported. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12644 | SP7 | Zornitza Stark Phenotypes for gene: SP7 were changed from to Osteogenesis imperfecta type 12, MONDO:0013460; Osteogenesis imperfecta, type XII, OMIM:613849 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12641 | SP7 | Zornitza Stark reviewed gene: SP7: Rating: GREEN; Mode of pathogenicity: None; Publications: 20579626, 29382611, 35367406, 34091789, 32413570; Phenotypes: Osteogenesis imperfecta type 12, MONDO:0013460, Osteogenesis imperfecta, type XII, OMIM:613849; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12492 | TMEM38B | Zornitza Stark Phenotypes for gene: TMEM38B were changed from to Osteogenesis imperfecta, type XIV, MIM# 615066 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12489 | TMEM38B | Zornitza Stark reviewed gene: TMEM38B: Rating: GREEN; Mode of pathogenicity: None; Publications: 23054245; Phenotypes: Osteogenesis imperfecta, type XIV, MIM# 615066; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12381 | DVL2 |
Bryony Thompson gene: DVL2 was added gene: DVL2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: DVL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: DVL2 were set to 35047859; 33599851; 30521570 Phenotypes for gene: DVL2 were set to Robinow syndrome MONDO:0019978 Review for gene: DVL2 was set to AMBER Added comment: A single case with Robinow syndrome identified with a de novo frameshift variant in the last exon of the gene (c.2105dupC, p.Pro703Serfs*103). Also, a canine DVL2 frameshift variant has been associated with a Robinow-like syndrome in dogs, contributing to the brachycephalic phenotype and caudal vertebral anomalies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11716 | ACP4 | Elena Savva Phenotypes for gene: ACP4 were changed from Amelogenesis imperfecta, type IJ MIM#617297 to Amelogenesis imperfecta, type IJ MIM#617297 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11716 | ACP4 | Elena Savva Phenotypes for gene: ACP4 were changed from Amelogenesis imperfecta, type IJ MIM#617297 to Amelogenesis imperfecta, type IJ MIM#617297 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11715 | ACP4 | Elena Savva Phenotypes for gene: ACP4 were changed from to Amelogenesis imperfecta, type IJ MIM#617297 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11513 | CCDC134 |
Zornitza Stark gene: CCDC134 was added gene: CCDC134 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: CCDC134 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CCDC134 were set to 32181939; 34204301; 35019224 Phenotypes for gene: CCDC134 were set to Osteogenesis imperfecta, type XXII, MIM#619795 Review for gene: CCDC134 was set to GREEN Added comment: Three unrelated families reported. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11107 | AL117258.1 |
Melanie Marty changed review comment from: Gene also known as CIROP Homozygous or compound heterozygous CIROP variants identified in 12 families with congenital heart defects associated with heterotaxy. Functional tests performed on Xenopus and zebrafish embryos showed that CIROP was essential for left side symmetry and is expressed in ciliated left–right organisers. Sources: Literature; to: Gene also known as CIROP and LMLN2 Homozygous or compound heterozygous CIROP variants identified in 12 families with congenital heart defects associated with heterotaxy. Functional tests performed on Xenopus and zebrafish embryos showed that CIROP was essential for left side symmetry and is expressed in ciliated left–right organisers. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11097 | AL117258.1 |
Melanie Marty gene: AL117258.1 was added gene: AL117258.1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: AL117258.1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: AL117258.1 were set to 34903892 Phenotypes for gene: AL117258.1 were set to Heterotaxy, congenital heart defects Review for gene: AL117258.1 was set to GREEN Added comment: Gene also known as CIROP Homozygous or compound heterozygous CIROP variants identified in 12 families with congenital heart defects associated with heterotaxy. Functional tests performed on Xenopus and zebrafish embryos showed that CIROP was essential for left side symmetry and is expressed in ciliated left–right organisers. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11071 | CDX2 | Chirag Patel edited their review of gene: CDX2: Added comment: 9 families, with heterozygous variants identified with WES, presenting with congenital abnormalities affecting the development of the anus, the renal and urogenital system, the vertebrae and/or the limbs in varying sequences and severity (incl. sirenomelia and persistent cloaca). A recurrent pathogenic missense variant in the HOX domain of the protein p.(Arg237His) was found in 3 unrelated families. In the mouse cdx2 is essential for anteroposterior patterning of embryonal axis and morphogenesis of cloacal structures. Cdx2 heterozygous conditional mutant mice show a variable phenotype (including imperforate anus, sirenomelia, posterior vertebral truncations, and bladder anomalies).; Changed rating: GREEN; Changed publications: PMID: 29177441, 34671974; Changed phenotypes: Congenital abnormalities of anus, renal and urogenital system, vertebrae and/or the limbs; Set current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11071 | CHKA |
Konstantinos Varvagiannis gene: CHKA was added gene: CHKA was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CHKA was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CHKA were set to 35202461 Phenotypes for gene: CHKA were set to Abnormal muscle tone; Global developmental delay; Intellectual disability; Seizures; Microcephaly; Abnormality of movement; Abnormality of nervous system morphology; Short stature Penetrance for gene: CHKA were set to Complete Review for gene: CHKA was set to GREEN Added comment: Klöckner (2022 - PMID: 35202461) describe the phenotype of 6 individuals (from 5 unrelated families) harboring biallelic CHKA variants. Shared features incl. abnormal muscle tone(6/6 - hypertonia or hypotonia, 3/6 each), DD/ID (6/6,severe in 4, severe/profound in 2), epilepsy (6/6 - onset: infancy - 3y2m | epileptic spasms or GS at onset), microcephaly (6/6), movement disorders (3/6 - incl. dyskinesia, rigidity, choreoatetotic movements). 2/5 individuals exhibited MRI abnormalities, notably hypomyelination. Short stature was observed in 4/6. Eventual previous genetic testing was not discussed. Exome sequencing (quattro ES for 2 sibs, trio ES for 1 individual, singleton for 3 probands) revealed biallelic CHKA variants in all affected individuals. Sanger sequencing was performed for confirmation and segregation studies. Other variants (in suppl.) were not deemed to be causative for the neurodevelopmental phenotype. 3 different missense, 1 start-loss and 1 truncating variant were identified, namely (NM_0012772.2): - c.421C>T/p.(Arg141Trp) [3 hmz subjects from 2 consanguineous families], - c.580C>T/p.Pro194Ser [1 hmz individual born to consanguineous parents], - c.2T>C/p.(Met1?) [1 hmz individual born to related parents], - c.14dup/p.(Cys6Leufs*19) in trans with c.1021T>C/p.(Phe341Leu) in 1 individual. CHKA encodes choline kinase alpha, an enzyme catalyzing the first step of phospholipid synthesis in the Kennedy pathway. The pathway is involved in de novo synthesis of glycerophospholipids, phosphatidylcholine and phosphatidylethanolamine being the most abundant in eukaryotic membranes. CHKA with its paralog (CHKB) phosphorylates either choline or ethanolamine to phosphocholine or phosphoethanolamine respectively with conversion of ATP to ADP. As the authors comment, biallelic pathogenic variants in CHKB cause a NDD with muscular dystrophy, hypotonia, ID, microcephaly and structural mitochondrial anomalies (MIM 602541). [Prominent mitochondrial patterning was observed in a single muscle biopsy available from an individual with biallelic CHKA variants]. Other disorders of the Kennedy pathway (due to biallelic PCYT2, SELENOI, PCYT1A variants) present with overlapping features incl. variable DD/ID (no-severe), microcephaly, seizures, visual impairment etc. CHKA variants were either absent or observed once in gnomAD, affected highly conserved AAs with multiple in silico predictions in favor of a deleterious effect. In silico modeling suggests structural effects for several of the missense variants (Arg141Trp, Pro194Ser presumably affect ADP binding, Phe341 lying close to the binding site of phosphocholine). Each of the missense variants was expressed in yeast cells and W. Blot suggested expression at the expected molecular weight at comparative levels. The 3 aforementioned variants exhibited reduced catalytic activity (20%, 15%, 50% respectively). NMD is thought to underly the deleterious effect of the frameshift one (not studied). The start-loss variant is expected to result in significantly impaired expression and protein function as eventual utilization of the next possible start codon - occurring at position 123 - would remove 26% of the protein. Chka(-/-) is embryonically lethal in mice, suggesting that complete loss is not compatible with life. Reduction of choline kinase activity by 30% in heterozygous mice did not appear to result in behavioral abnormalities although this was not studied in detail (PMID cited: 18029352). Finally, screening of 1566 mouse lines identified 198 genes whose disruption yields neuroanatomical phenotypes, Chka(+/-) mice being among these (PMID cited: 31371714). There is no associated phenotype in OMIM, Gene2Phenotype or SysID. Overall this gene can be considered for inclusion in the ID and epilepsy panes with green or amber rating (>3 individuals, >3 variants, variant studies, overlapping phenotype of disorders belonging to the same pathway, etc). Consider also inclusion in the microcephaly panel (where available this seemed to be of postnatal onset). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10907 | ARR3 |
Bryony Thompson gene: ARR3 was added gene: ARR3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ARR3 was set to Other Publications for gene: ARR3 were set to 27829781; 35001458 Phenotypes for gene: ARR3 were set to Myopia 26, X-linked, female-limited MIM#301010 Review for gene: ARR3 was set to GREEN Added comment: At least 6 multi-generational families with female-limited early-onset high myopia. Only female carriers are affected and hemizygous males are unaffected. Authors hypothesise the mode of inheritance might be explained by metabolic interference due to X-inactivation. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10849 | SEZ6 |
Paul De Fazio gene: SEZ6 was added gene: SEZ6 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SEZ6 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SEZ6 were set to 34135477 Phenotypes for gene: SEZ6 were set to Nonsyndromic genetic hearing loss MONDO:0019497, SEZ6-related Review for gene: SEZ6 was set to RED gene: SEZ6 was marked as current diagnostic Added comment: Homozygous missense variant p.(Val698Ile) identified in 4 affected individuals from a single consanguineous Pakistani family by WES. 5 other genotyped unaffected individuals were heterozygous or homozygous wild-type. Variant is in gnomad (36 hets, 0 hom). RNA expression studies show the gene is expressed in the mouse inner ear, but no functional studies were performed on the variant (in silico analysis only). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10846 | ADAMTS1 |
Paul De Fazio gene: ADAMTS1 was added gene: ADAMTS1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ADAMTS1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ADAMTS1 were set to 34135477 Phenotypes for gene: ADAMTS1 were set to Nonsyndromic genetic hearing loss MONDO:0019497, ADAMTS1-related Review for gene: ADAMTS1 was set to RED gene: ADAMTS1 was marked as current diagnostic Added comment: Homozygous missense variant p.(Ser135Ala) identified in 3 affected siblings from a single consanguineous Pakistani family by WES. A fourth unaffected sibling was homozygous wild type. Variant is in gnomad (26 hets, 1 hom). RNA expression studies show the gene is expressed in the mouse inner ear, but no functional studies were performed on the variant (in silico analysis only). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10812 | PDHX |
Ain Roesley changed review comment from: >10 unrelated probands reported PDHX c.1336C>T (p.Arg446Ter) is a Roma founder variant; c.1182+2T>C (p.Ile386SerfsTer13) is a Moroccan founder variant.; to: established gene-disease association PDHX c.1336C>T (p.Arg446Ter) is a Roma founder variant; c.1182+2T>C (p.Ile386SerfsTer13) is a Moroccan founder variant. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10726 | FKBP10 | Zornitza Stark Phenotypes for gene: FKBP10 were changed from to Bruck syndrome 1, MONDO:0009806; Osteogenesis imperfecta, type XI, OMIM:610968; Osteogenesis imperfecta type 11, MONDO:0012592; Bruck syndrome 1, OMIM:259450 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10723 | FKBP10 | Zornitza Stark reviewed gene: FKBP10: Rating: GREEN; Mode of pathogenicity: None; Publications: 20696291, 20362275, 20839288, 21567934, 21567934, 23712425, 22718341; Phenotypes: Bruck syndrome 1, MONDO:0009806, Osteogenesis imperfecta, type XI, OMIM:610968, Osteogenesis imperfecta type 11, MONDO:0012592, Bruck syndrome 1, OMIM:259450; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10723 | FAM46A | Zornitza Stark Phenotypes for gene: FAM46A were changed from to Osteogenesis imperfecta, type XVIII MIM#617952 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10680 | SERPINH1 | Zornitza Stark Phenotypes for gene: SERPINH1 were changed from to Osteogenesis imperfecta, type X, MIM# 613848; Osteogenesis imperfecta type 10, MONDO:0013459 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10677 | SERPINH1 | Zornitza Stark reviewed gene: SERPINH1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20188343, 25510505, 31179625, 29520608; Phenotypes: Osteogenesis imperfecta, type X, MIM# 613848, Osteogenesis imperfecta type 10, MONDO:0013459; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10677 | SERPINF1 | Zornitza Stark Phenotypes for gene: SERPINF1 were changed from to Osteogenesis imperfecta, type VI, MIM# 613982 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10674 | SERPINF1 | Zornitza Stark reviewed gene: SERPINF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21353196, 23054245; Phenotypes: Osteogenesis imperfecta, type VI, MIM# 613982; Mode of inheritance: None | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10666 | SPARC | Zornitza Stark Phenotypes for gene: SPARC were changed from to Osteogenesis imperfecta, type XVII, MIM# 616507 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10663 | SPARC | Zornitza Stark reviewed gene: SPARC: Rating: GREEN; Mode of pathogenicity: None; Publications: 26027498, 34462290; Phenotypes: Osteogenesis imperfecta, type XVII, MIM# 616507; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10643 | FAM46A | Belinda Chong reviewed gene: FAM46A: Rating: GREEN; Mode of pathogenicity: None; Publications: 29358272; Phenotypes: Osteogenesis imperfecta, type XVIII MIM#617952; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10552 | SLC35F1 |
Ain Roesley gene: SLC35F1 was added gene: SLC35F1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SLC35F1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: SLC35F1 were set to 33821533 Phenotypes for gene: SLC35F1 were set to Rett-like syndrome Penetrance for gene: SLC35F1 were set to unknown Review for gene: SLC35F1 was set to RED gene: SLC35F1 was marked as current diagnostic Added comment: WES found a de novo heterozygous c.1037T>C; p.(I346T) (absent in gnomad v2 and v3) in a female described to have Rett-like syndrome. Global developmental delay, generalized tonic andtonic–clonic seizure, never acquired independent walking and developed spastictetraplegia in adulthood and limited speech no protein functional work was performed Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10552 | MYH1 |
Ain Roesley gene: MYH1 was added gene: MYH1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MYH1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MYH1 were set to 33755318 Phenotypes for gene: MYH1 were set to recurrent rhabdomyolysis Penetrance for gene: MYH1 were set to unknown Review for gene: MYH1 was set to RED gene: MYH1 was marked as current diagnostic Added comment: 18 yr old male from a consaguineous family. WES was performed and a homozygous c.1295A>C:p.K432T was found. Only 1 het in gnomad v2 and v3. no protein functional work was done Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10241 | ERF | Zornitza Stark Marked gene: ERF as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10241 | ERF | Zornitza Stark Gene: erf has been classified as Green List (High Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10241 | ERF | Zornitza Stark Phenotypes for gene: ERF were changed from to Craniosynostosis 4, MIM# 600775; Chitayat syndrome, MIM# 617180 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10240 | ERF | Zornitza Stark Publications for gene: ERF were set to | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10239 | ERF | Zornitza Stark Mode of inheritance for gene: ERF was changed from Unknown to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10238 | ERF | Zornitza Stark edited their review of gene: ERF: Changed phenotypes: Craniosynostosis 4, MIM# 600775, Chitayat syndrome, MIM# 617180 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10238 | ERF | Zornitza Stark reviewed gene: ERF: Rating: GREEN; Mode of pathogenicity: None; Publications: 23354439, 26097063, 32370745, 30758909, 27738187; Phenotypes: Craniosynostosis 4, MIM# 600775; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10204 | KCND2 |
Eleanor Williams gene: KCND2 was added gene: KCND2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: KCND2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: KCND2 were set to 24501278; 16934482; 29581270; 34245260 Phenotypes for gene: KCND2 were set to global developmental delay, HP:0001263; seizure, HP:0001250 Mode of pathogenicity for gene: KCND2 was set to Other Review for gene: KCND2 was set to GREEN Added comment: 6 new unrelated cases with developmental delay reported in PMID: 34245260 (Zhang et al 2021), 3 of whom had seizures. All had heterozygous missense variants of KCND2 in sites known to be critical for channel gating (E323K, P403A, two individuals, V404L, two individuals and V404M). Functional studies suggest that these missense changes cause both a partial loss-of-function (LOF) and gain-of-function (GOF). The V404 change appears to increase epileptic seizure susceptibility with the 3 patients with a V404 change showing this phenotype. PMID:24501278 - Lee et al, 2014 - reports pair of monozygotic twin boys with infantile onset severe refractory epilepsy and autism. A de novo heterozygous missense variant was identified by WES - V404M. PMID: 29581270 - Lin et al, 2018 - performed functional work that shows V404M enhances inactivation of channels that have not yet opened and dramatically impairs the inactivation of channels that have opened. PMID:16934482 - Singh et al, 2006 - reports a patient with cognative impairment who also went on to have seizures starting from age 13 with a 5 bp deletion in KCND2 leading to premature stop codon. The proband's asymptomatic father also shared this variant. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10087 | HELQ | Bryony Thompson commented on gene: HELQ: A single POI heterozygous for a frameshift variant (c.3095delA;p.Tyr1032Serfs*4), and a null mouse model (both homozygous and heterozygous) with subfertility and germ cell attrition. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10066 | SNIP1 | Zornitza Stark edited their review of gene: SNIP1: Added comment: A single (founder) variant NM_024700.4:c.1097A>G, p.(Glu366Gly) has been reported in over 30 cases of Psychomotor retardation, epilepsy, and craniofacial dysmorphism OMIM:614501 in the Amish community (PMIDs: 22279524; 34570759). Cases are homozygous for this variant and unaffected members of the families are heterozygous or wt. Overexpression of the equivalent mouse variant in mouse inner medullary collecting duct cells, resulted in a more aggregated appearance in the nucleus compared to wildtype. The variant protein maybe unstable as Western blots showed reduced levels of the variant protein (PMID: 22279524). Whole transcriptomic analysis of patient blood was performed in PMID: 34570759. This revealed 11 upregulated and 32 downregulated genes, of which 24 had previously been associated with neurological disease.; Changed rating: AMBER; Changed publications: 22279524, 34570759 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10044 | ECM1 |
Zornitza Stark changed review comment from: PMID: 11929856 - Hamada et al 2002 - looked at 6 different unrelated consanguineous families (from Saudi Arabia, Kuwait, Pakistan, The Netherlands, UK, and a group of South African families with a probable common ancestor) with a clinical diagnosis of Lipoid proteinosis (LP)/Urbach–Wiethe disease. They performed a genome-wide linkage analysis and identified a region and then looked at the expression of candidate genes in fibroblasts from patients compared to controls. ECM1 was found to have lower expression levels. 6 homozygous deletion variants were identified in the patients. In one family they established that the parents were heterozygous for the variant. PMID: 28720532 - Afifi et al 2017 - studied 12 patients from 10 unrelated consanguineous Egyptian families with a clinical diagnosis of lipoid proteinosis. The patients reported progressive hoarseness of voice and easily damaged skin by minor trauma or friction. Homozygous ECM1 variants were detected in affected members in all families: 1 family had a missense variant, 5 families had splice site variants and 4 families had indels predicted to cause frameshifts. Parents were found to be heterozygous for the variants. PMID: 33159951 - Zhu et al 2021 - a novel homozygous three-nucleotide duplication (c.506_508dupCTG) in ECM in two siblings affected with LP from a consanguineous Chinese family.; to: Lipoid proteinosis of Urbach and Wiethe is a rare autosomal recessive disorder typified by generalized thickening of skin, mucosae, and certain viscera. Classic features include beaded eyelid papules and laryngeal infiltration leading to hoarseness. The disorder is clinically heterogeneous, with affected individuals displaying differing degrees of skin scarring and infiltration, variable signs of hoarseness and respiratory distress, and in some cases neurologic abnormalities such as temporal lobe epilepsy. Histologically, there is widespread deposition of hyaline (glycoprotein) material and disruption/reduplication of basement membrane PMID: 11929856 - Hamada et al 2002 - looked at 6 different unrelated consanguineous families (from Saudi Arabia, Kuwait, Pakistan, The Netherlands, UK, and a group of South African families with a probable common ancestor) with a clinical diagnosis of Lipoid proteinosis (LP)/Urbach–Wiethe disease. They performed a genome-wide linkage analysis and identified a region and then looked at the expression of candidate genes in fibroblasts from patients compared to controls. ECM1 was found to have lower expression levels. 6 homozygous deletion variants were identified in the patients. In one family they established that the parents were heterozygous for the variant. PMID: 28720532 - Afifi et al 2017 - studied 12 patients from 10 unrelated consanguineous Egyptian families with a clinical diagnosis of lipoid proteinosis. The patients reported progressive hoarseness of voice and easily damaged skin by minor trauma or friction. Homozygous ECM1 variants were detected in affected members in all families: 1 family had a missense variant, 5 families had splice site variants and 4 families had indels predicted to cause frameshifts. Parents were found to be heterozygous for the variants. PMID: 33159951 - Zhu et al 2021 - a novel homozygous three-nucleotide duplication (c.506_508dupCTG) in ECM in two siblings affected with LP from a consanguineous Chinese family. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9903 | PPIB | Zornitza Stark Phenotypes for gene: PPIB were changed from to Osteogenesis imperfecta, type IX, MIM# 259440 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9900 | PPIB | Zornitza Stark reviewed gene: PPIB: Rating: GREEN; Mode of pathogenicity: None; Publications: 19781681, 32392875; Phenotypes: Osteogenesis imperfecta, type IX, MIM# 259440; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9818 | MBTPS2 | Zornitza Stark Phenotypes for gene: MBTPS2 were changed from to Osteogenesis imperfecta, type XIX, (MIM301014); IFAP syndrome with or without BRESHECK syndrome (MIM#308205); Keratosis follicularis spinulosa decalvans, X-linked (MIM#308800); Olmsted syndrome, X-linked (MIM#300918) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9779 | MBTPS2 | Daniel Flanagan reviewed gene: MBTPS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 27380894, 19361614, 21426410; Phenotypes: Osteogenesis imperfecta, type XIX, (MIM301014), IFAP syndrome with or without BRESHECK syndrome (MIM#308205), Keratosis follicularis spinulosa decalvans, X-linked (MIM#308800), ?Olmsted syndrome, X-linked (MIM#300918); Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9756 | P3H1 | Zornitza Stark Phenotypes for gene: P3H1 were changed from to Osteogenesis imperfecta, type VIII, MIM# 610915 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9753 | P3H1 | Dean Phelan reviewed gene: P3H1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 17277775, 19088120, 27864101, 33737016; Phenotypes: Osteogenesis imperfecta; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9747 | IFITM5 | Zornitza Stark Phenotypes for gene: IFITM5 were changed from to Osteogenesis imperfecta, type V MIM#610967 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9733 | IFITM5 | Ain Roesley reviewed gene: IFITM5: Rating: GREEN; Mode of pathogenicity: None; Publications: 22863190, 22863195, 32383316, 24519609; Phenotypes: Osteogenesis imperfecta, type V MIM#610967; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9676 | BMP1 | Zornitza Stark Phenotypes for gene: BMP1 were changed from to Osteogenesis imperfecta, type XIII , MIM#614856 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9673 | BMP1 | Zornitza Stark reviewed gene: BMP1: Rating: GREEN; Mode of pathogenicity: None; Publications: 25402547, 22052668, 22482805, 25214535; Phenotypes: Osteogenesis imperfecta, type XIII , MIM#614856; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9373 | ERGIC1 | Zornitza Stark edited their review of gene: ERGIC1: Added comment: Pehlivan et al. 2019 (PMID:31230720) identified the third case of arthrogryposis in a child who harboured a previously unreported homozygous variant (c.782G>A; p.Gly261Asp) in this gene. Parents were heterozygous carriers. Functional studies were not performed.; Changed rating: GREEN; Changed publications: 28317099, 34037256, 31230720 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9274 | CDH15 |
Zornitza Stark commented on gene: CDH15: PMID: 19012874 - 4 unrelated patients with missense variants and mild-severe ID. Only two genes checked. All variants are common in gnomAD (>20 hets each) and classified as VUS or likely benign in ClinVar (paper is from 2008, pre-dates gnomAD). Functional studies were performed showing a LOF effect, where cell adhesion was reduced. However NMD PTCs are present in gnomAD (many >=6 hets each) PMID: 12052883 - null mouse model were viable, showed no gross developmental defects. In particular, the skeletal musculature appeared essentially normal. In the cerebellum of M-cadherin-lacking mutants, typical contactus adherens junctions were present and similar in size and numbers to the equivalent junctions in wild-type animals. However, the adhesion plaques in the cerebellum of these mutants appeared to contain elevated levels of N-cadherin compared to wild-type animals. PMID: 28422132 - reviewed microdeletions spanning multiple genes including CDH15, suggests it may contribute to a more severe neurological phenotype, with particular regard to brain malformations. PMID: 26506440 - speculates low penetrance for PTCs in this gene. Acknowledges variants in ExAC, describes them as benign Note no P/LP variants in ClinVar |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9170 | ERGIC1 |
Zornitza Stark gene: ERGIC1 was added gene: ERGIC1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ERGIC1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ERGIC1 were set to 28317099; 34037256 Phenotypes for gene: ERGIC1 were set to Arthrogryposis multiplex congenita 2, neurogenic type; OMIM # 208100 Review for gene: ERGIC1 was set to AMBER Added comment: Reinstein et al. (2018) used WES in a large consanguineous Israeli Arab kindred consisting of 16 patients affected with the neurogenic type of arthrogryposis multiplex congenita. They identified a homozygous missense (V98E) mutation in ERGIC1 gene, which segregated with the disorder in the kindred, and was not found in the ExAC database or in 212 ethnically matched controls. Functional studies of the variant and studies of patient cells were not performed. ERGIC1 encodes a cycling membrane protein which has a possible role in transport between endoplasmic reticulum and Golgi. Marconi et al (2021) used genome sequencing in a consanguineous family with 2 affected siblings presenting congenital arthrogryposis and some facial dysmorphism. They identified a homozygous 22.6 Kb deletion encompassing the promoter and first exon of ERGIC1. mRNA quantification showed the complete absence of ERGIC1 expression in the two affected siblings and a decrease in heterozygous parents. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9067 | GLIS1 |
Seb Lunke changed review comment from: Functional studies in KO mice show increased intra-ocular pressure (IOT) caused by defects in the ocular drainage system. IOT is frequently associated with Glaucoma, however mice were not investigated for glaucoma, and no patients described. Sources: Literature; to: Functional studies in KO mice show increased intra-ocular pressure (IOT) caused by defects in the ocular drainage system. IOT is frequently associated with Glaucoma, however mice were not investigated for glaucoma, and no patients described. The authors did show dysregulation of GLIS1 in a human cell line study, and performed linkage analysis suggesting an association of the GLIS1 locus with Glaucoma in UK biobank samples. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8977 | SUCO |
Bryony Thompson gene: SUCO was added gene: SUCO was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SUCO was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SUCO were set to 29620724; 20440000 Phenotypes for gene: SUCO were set to Osteogenesis imperfecta Review for gene: SUCO was set to AMBER Added comment: A single case with diffuse osteopenia, multiple fractures with limb deformities, and short long bones, with biallelic variants (a missense and a splice site variant). Also, a null mouse model with acute onset skeletal defects that include impaired bone formation and spontaneous fractures. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8918 | LSM11 | Zornitza Stark Phenotypes for gene: LSM11 were changed from type I interferonopathy Aicardi–Goutières syndrome to Aicardi-Goutieres syndrome 8, MIM# 619486 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8861 | IGF2 |
Zornitza Stark changed review comment from: RSS phenotype.; to: Silver-Russell syndrome-3 (SRS3) is characterized by intrauterine growth retardation with relative macrocephaly, followed by feeding difficulties and postnatal growth restriction. Dysmorphic facial features include triangular face, prominent forehead, and low-set ears. Other variable features include limb defects, genitourinary and cardiovascular anomalies, hearing impairment, and developmental delay. Disruption of any gene in the HMGA2-PLAG1-IGF2 pathway results in a decrease in IGF2 expression and produces an SRS phenotype similar to that of patients carrying 11p15.5 epigenetic defects. Begemann et al. (2015) performed exome sequencing in 4 affected people with severe growth restriction in one family, and identified a heterozygous nonsense mutation in the IGF2 gene that segregated fully with the disorder. Affected individuals inherited the mutation from their healthy fathers, and it originated from the healthy paternal grandmother. Clinical features occurred only in those who inherited the variant allele through paternal transmission, consistent with maternal imprinting of IGF2. Many other cases reported since with de novo mutations in IGF2 present on the paternal allele. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8829 | ARF3 |
Zornitza Stark gene: ARF3 was added gene: ARF3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ARF3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: ARF3 were set to 34346499 Phenotypes for gene: ARF3 were set to Global developmental delay; Intellectual disability; Seizures; Morphological abnormality of the central nervous system Review for gene: ARF3 was set to AMBER Added comment: Sakamoto et al (2021 - PMID: 34346499) provide some evidence that monoallelic ARF3 pathogenic variants may be associated with a NDD with brain abnormality. Using trio exome sequencing, the authors identified 2 individuals with NDD harboring de novo ARF3 variants, namely: NM_001659.2:c.200A>T / p.Asp67Val and c.296G>T / p.Arg99Leu. Individual 1 (with Asp67Val / age : 4y10m), appeared to be more severelely affected with prenatal onset progressive microcephaly, severe global DD, epilepsy. Upon MRI there was cerebellar and brainstem atrophy. Individual 2 (Arg99Leu / 14y) had severe DD and ID (IQ of 23), epilepsy and upon MRI cerebellar hypoplasia. This subject did not exhibit microcephaly. Common facial features incl. broad nose, full cheeks, small philtrum, strabismus, thin upper lips and abnormal jaw. There was no evidence of systemic involvement in both. ARF3 encodes ADP-ribosylation factor 3. Adenosine diphosphate ribosylation factors (ARFs) are key proteins for regulation of cargo sorting at the Golgi network, with ARF3 mainly working at the trans-Golgi network. ARFs belong to the small GTP-binding protein (G protein) superfamily. ARF3 switches between an active GTP-bound form and an inactive GDP-bound form, regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) respectively. Members of the ARF superfamily regulate various aspects of membrane traffic, among others in neurons. There are 5 homologs of ARF families, divided in 3 classes. ARF3 and ARF1 belong to class I. Monoallelic ARF1 mutations are associated with Periventricular nodular heterotopia 8 (MIM 618185). In vivo, in vitro and in silico studies for the 2 variants suggest that both impair the Golgi transport system although each variant most likely exerts a different effect (gain-of-function for Arg99Leu vs loss-of-function/dominant-negative for Asp67Val). This was also reflected in somewhat different phenotype of the subjects with the respective variants. Common features included severe DD, epilepsy and brain abnormalities although Asp67Val was associated with diffuse brain atrophy as well as congenital microcephaly and Arg99Leu with cerebellar hypoplasia. Evidence to support the effect of each variant include: Arg99Leu: Had identical Golgi localization to that of wt Had increased binding activity with GGA1, a protein recruited by the GTP-bound active form of ARF3 to the TGN membrane (supporting GoF) In silico structural analysis suggested it may fail to stabilize the conformation of Asp26, resulting in impaired GTP hydrolysis (GoF). In transgenic fruit flies, evaluation of the ARF3 variant toxicity using the rough eye phenotype this variant was associated with increased severity of the r-e phenotype similar to a previously studied GoF variant (Gln71Leu) Asp67Val: Did not show a Golgi-like pattern of localization (similar to Thr31Asn a previously studied dominant-negative variant) Displayed decreased protein stability In silico structural analysis suggested that Asp67Val may lead to compromised binding of GTP or GDP (suggestive of LoF) In transgenic Drosophila eye-specific expression of Asp67Val (similar to Thr31Asn, a known dominant-negative variant) was lethal possibly due to high toxicity in very small amounts in tissues outside the eye. There is no associated phenotype in OMIM, G2P or SysID. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8824 | PLXNA2 |
Zornitza Stark gene: PLXNA2 was added gene: PLXNA2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PLXNA2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PLXNA2 were set to 34327814 Phenotypes for gene: PLXNA2 were set to Intellectual disability; Abnormality of the face; Failure to thrive; Abnormal heart morphology Review for gene: PLXNA2 was set to AMBER Added comment: Altuame et al (2021 - PMID: 34327814) describe 3 individuals from 2 consanguineous Arab families with biallelic PLXNA2 variants. The index patient from the 1st family presented with CHD (hypoplastic right ventricle, ASD), DD and moderate ID (IQ of 40), failure to thrive as well as some dysmorphic features (obtuse mandibular angle, mild overbite, synophrys with downslanting p-f, strabismus, etc). There were additional features (eg. postaxial polydactyly) which were found in other affected and unaffected family members. Exome sequencing with autozygome analysis revealed homozygosity for a PLXNA2 stopgain variant (NM_025179:c.3603C>A / p.(Cys1201*)). Sanger confirmation was carried out and segregation analyses confirmed carrier status of the unaffected parents and a sib as well as a brother homozygous for the same variant. Clinical evaluation of the latter, following this finding revealed borderline intellectual functioning, ADHD, failure to thrive. There was no mandibular anomaly or overbite and no clinical evidence of CHD (no echo performed). The index patient from the 2nd consanguineous family was evaluated for ID (IQ of 63), with previous borderline motor development, ADHD and some dysmorphic features (obtuse mandibular angle and overbite). There was no clinical evidence of CHD (no echo performed). Exome sequencing with autozygosity mapping revealed a homozygous missense PLXNA2 variant (c.3073G>A / p.(Asp1025Asn), present only once in gnomAD (htz), with rather non-concordant in silico predictions SIFT 0.22, PolyPhen 0.682 and CADD 23.5. The aa was however highly conserved. Segregation analysis confirmed carrier state of the parents and 2 unaffected sibs, with a 3rd sib homozygous for the wt allele. As the authors discuss: *PLXNA2 belongs to the plexin family of genes, encoding transmbembrane proteins functioning as semaphorin receptors. It has predominant expression in neural tissue. The protein is thought to bind semaphorin-3A, -3C or -5 followed by plexin A2 dimerization, activation of its GTPase-activating protein domain, negative regulation of Rap1B GTPase and initiation of a signal transduction cascade mediating axonal repulsion/guidance, dendritic guidance, neuronal migration. *Murine Plxna2 knockout models display structural brain defects. In addition they display congenital heart defects incl. persistent truncus arteriosus and interrupted aortic arch. *Rare CNVs in adult humans with tetralogy of Fallot have suggested a potential role of PLXNA2 in cardiac development and CHD. *Expression and the role of PLXNA2 in human chondrocytes as well as a GWAS in 240 japanese patients with mandibular prognathism where PLXNA2 was suggested as a susceptibility locus. Overall, the authors recognize some common features (as for cognitive functioning, some dysmorphic features incl. obtuse mandibular angle and overbite in 2 unrelated subjects, failure to thrive 3/3) and provide plausible explanations for the variability / discordance of others eg: - Cyanotic heart disease explaining discordance in cognitive outcome among sibs - Incomplete penetrance for CHD (and/or ID or mandibular anomaly) as for few AR disorders and/or - Additional pathogenic variants possibly explaining the CHD in the first subject. There is no associated phenotype in OMIM or G2P. SysID includes PLXNA2 among the candidate ID genes. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8807 | VPS50 |
Zornitza Stark gene: VPS50 was added gene: VPS50 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: VPS50 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: VPS50 were set to 34037727 Phenotypes for gene: VPS50 were set to Neonatal cholestatic liver disease; Failure to thrive; Profound global developmental delay; Postnatal microcephaly; Seizures; Abnormality of the corpus callosum Review for gene: VPS50 was set to AMBER Added comment: Schneeberger et al (2021 - PMID: 34037727) describe the phenotype of 2 unrelated individuals with biallelic VPS50 variants. Common features included transient neonatal cholestasis, failure to thrive, severe DD with failure to achieve milestones (last examination at 2y and 2y2m respectively), postnatal microcephaly, seizures (onset at 6m and 25m) and irritability. There was corpus callosum hypoplasia on brain imaging. Both individuals were homozygous for variants private to each family (no/not known consanguinity applying to each case). The first individual was homozygous for a splicing variant (NM_017667.4:c.1978-1G>T) and had a similarly unaffected sister deceased with no available DNA for testing. The other individual was homozygous for an in-frame deletion (c.1823_1825delCAA / p.(Thr608del)). VPS50 encodes a critical component of the endosome-associated recycling protein (EARP) complex, which functions in recycling endocytic vesicles back to the plasma membrane [OMIM based on Schindler et al]. The complex contains VPS50, VPS51, VPS52, VPS53, the three latter also being components of GARP (Golgi-associated-retrograde protein) complex. GARP contains VPS54 instead of VPS50 and is required for trafficking of proteins to the trans-golgi network. Thus VPS50 (also named syndetin) and VPS54 function in the EARP and GARP complexes, to define directional movement of their endocytic vesicles [OMIM based on Schindler et al]. The VPS50 subunit is required for recycling of the transferrin receptor. As discussed by Schneeberger et al (refs provided in text): - VPS50 has a high expression in mouse and human brain as well as throughout mouse brain development. - Mice deficient for Vps50 have not been reported. vps50 knockdown in zebrafish results in severe developmental defects of the body axis. Knockout mice for other proteins of the EARP/GARP complex (e.g. Vps52, 53 and 54) display embryonic lethality. Studies performed by Schneeberger et al included: - Transcript analysis for the 1st variant demonstrated skipping of ex21 (in patient derived fabriblasts) leading to an in frame deletion of 81 bp (r.1978_2058del) with predicted loss of 27 residues (p.Leu660_Leu686del). - Similar VPS50 mRNA levels but significant reduction of protein levels (~5% and ~8% of controls) were observed in fibroblasts from patients 1 and 2. Additionally, significant reductions in the amounts of VPS52 and VPS53 protein levels were observed despite mRNA levels similar to controls. Overall, this suggested drastic reduction of functional EARP complex levels. - Lysosomes appeared to have similar morphology, cellular distribution and likely unaffected function in patient fibroblasts. - Transferrin receptor recycling was shown to be delayed in patient fibroblasts suggestive of compromise of endocytic-recycling function. As the authors comment, the phenotype of both individuals with biallelic VPS50 variants overlaps with the corresponding phenotype reported in 15 subjects with biallelic VPS53 or VPS51 mutations notably, severe DD/ID, microcephaly and early onset epilepsy, CC anomalies. Overall, for this group, they propose the term "GARP and/or EARP deficiency disorders". There is no VPS50-associated phenotype in OMIM or G2P. SysID includes VPS50 among the ID candidate genes. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8803 | SP6 | Zornitza Stark reviewed gene: SP6: Rating: GREEN; Mode of pathogenicity: None; Publications: 33652941; Phenotypes: Hypoplastic amelogenesis imperfecta; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8803 | AMTN |
Zornitza Stark gene: AMTN was added gene: AMTN was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: AMTN was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: AMTN were set to 27412008; 25715379; 26620968 Phenotypes for gene: AMTN were set to Amelogenesis imperfecta, type IIIB Mode of pathogenicity for gene: AMTN was set to Other Review for gene: AMTN was set to RED Added comment: In a Costa Rican family segregating autosomal dominant hypomineralized amelogenesis imperfecta, Smith et al. (2016) identified a heterozygous deletion/insertion mutation in the amelotin gene that segregated with the phenotype in the family. The mutation was predicted to result in an in-frame deletion of 92 amino acids, shortening the protein from 209 to 117 amino acids. Mode of pathogenicity not established. Toxic gain of function proposed as Atmn KO and +/- mice did not recapitulate the human phenotype. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8802 | WDR72 | Zornitza Stark Phenotypes for gene: WDR72 were changed from to Amelogenesis imperfecta, type IIA3, MIM# 613211 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8799 | WDR72 | Zornitza Stark reviewed gene: WDR72: Rating: GREEN; Mode of pathogenicity: None; Publications: 21196691, 27259663, 20938048, 26502894, 23293580, 25008349, 19853237; Phenotypes: Amelogenesis imperfecta, type IIA3, MIM# 613211; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8799 | SLC24A4 | Zornitza Stark Phenotypes for gene: SLC24A4 were changed from to Amelogenesis imperfecta, type IIA5, MIM# 615887 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8796 | SLC24A4 | Zornitza Stark reviewed gene: SLC24A4: Rating: GREEN; Mode of pathogenicity: None; Publications: 23375655, 24621671, 25442250, 24532815, 26502894, 27129268; Phenotypes: Amelogenesis imperfecta, type IIA5, MIM# 615887; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8792 | RELT |
Zornitza Stark gene: RELT was added gene: RELT was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: RELT was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: RELT were set to 30506946 Phenotypes for gene: RELT were set to Amelogenesis imperfecta, type IIIC, MIM# 618386 Review for gene: RELT was set to GREEN Added comment: Amelogenesis imperfecta type IIIC is characterized by hypocalcified enamel in both the primary and secondary dentition. The enamel is rough and yellow-brown; under normal use, the enamel disintegrates from occlusal surfaces of the molars, leaving a ring of intact enamel remaining on the sides. At least 3 families and a mouse model. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8791 | LAMB3 | Zornitza Stark Phenotypes for gene: LAMB3 were changed from Epidermolysis bullosa, junctional, Herlitz type, MIM# 226700; Epidermolysis bullosa, junctional, non-Herlitz type, MIM# 226650 to Amelogenesis imperfecta, type IA, MIM# 104530; Epidermolysis bullosa, junctional, Herlitz type, MIM# 226700; Epidermolysis bullosa, junctional, non-Herlitz type, MIM# 226650 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8788 | LAMB3 | Zornitza Stark edited their review of gene: LAMB3: Changed publications: 11023379, 7706760, 23958762, 7706760, 23632796, 26502894, 27220909, 25769099, 24494736; Changed phenotypes: Amelogenesis imperfecta, type IA, MIM# 104530, Epidermolysis bullosa, junctional, Herlitz type, MIM# 226700, Epidermolysis bullosa, junctional, non-Herlitz type, MIM# 226650; Changed mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8784 | KLK4 | Zornitza Stark Phenotypes for gene: KLK4 were changed from to Amelogenesis imperfecta, type IIA1, MIM# 204700 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8781 | KLK4 | Zornitza Stark reviewed gene: KLK4: Rating: GREEN; Mode of pathogenicity: None; Publications: 15235027, 23355523, 28611678, 27066511; Phenotypes: Amelogenesis imperfecta, type IIA1, MIM# 204700; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8780 | ITGB6 |
Zornitza Stark gene: ITGB6 was added gene: ITGB6 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: ITGB6 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ITGB6 were set to 25431241; 26695873; 24305999; 24319098 Phenotypes for gene: ITGB6 were set to Amelogenesis imperfecta, type IH, MIM# 616221 Review for gene: ITGB6 was set to GREEN Added comment: At least 3 unrelated families reported. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8767 | GPR68 | Zornitza Stark Phenotypes for gene: GPR68 were changed from to Amelogenesis imperfecta, hypomaturation type, IIA6 MIM#617217 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8764 | GPR68 | Zornitza Stark reviewed gene: GPR68: Rating: GREEN; Mode of pathogenicity: None; Publications: 27693231, 32279993; Phenotypes: Amelogenesis imperfecta, hypomaturation type, IIA6 MIM#617217; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8764 | FAM83H | Zornitza Stark Phenotypes for gene: FAM83H were changed from to Amelogenesis imperfecta, type IIIA MIM#130900 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8761 | FAM83H | Zornitza Stark reviewed gene: FAM83H: Rating: GREEN; Mode of pathogenicity: None; Publications: 18484629, 19407157, 19825039, 26481691, 21702852, 20160442, 26142250, 22414746, 19828885, 19220331, 26502894, 18252228, 21597265, 21118793, 26788537, 26171361; Phenotypes: Amelogenesis imperfecta, type IIIA MIM#130900; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8761 | ENAM | Zornitza Stark Phenotypes for gene: ENAM were changed from to Amelogenesis imperfecta, type IB, MIM# 104500; Amelogenesis imperfecta, type IC, MIM# 204650 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8758 | ENAM | Zornitza Stark reviewed gene: ENAM: Rating: GREEN; Mode of pathogenicity: None; Publications: 11487571, 28334996, 14684688, 33864320; Phenotypes: Amelogenesis imperfecta, type IB, MIM# 104500, Amelogenesis imperfecta, type IC, MIM# 204650; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8758 | FAM20A | Zornitza Stark Phenotypes for gene: FAM20A were changed from to Amelogenesis imperfecta, type IG (enamel-renal syndrome) MIM#204690 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8755 | FAM20A | Zornitza Stark reviewed gene: FAM20A: Rating: GREEN; Mode of pathogenicity: None; Publications: 23434854, 23697977, 23468644, 24756937, 21549343, 24259279, 24196488, 26502894, 25827751, 21990045; Phenotypes: Amelogenesis imperfecta, type IG (enamel-renal syndrome) MIM#204690; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8755 | C4orf26 | Zornitza Stark Phenotypes for gene: C4orf26 were changed from to Amelogenesis imperfecta, type IIA4, MIM# 614832 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8752 | C4orf26 | Zornitza Stark reviewed gene: C4orf26: Rating: GREEN; Mode of pathogenicity: None; Publications: 22901946, 27558265; Phenotypes: Amelogenesis imperfecta, type IIA4, MIM# 614832; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8752 | AMELX | Zornitza Stark Phenotypes for gene: AMELX were changed from Amelogenesis imperfecta, type 1E, MIM# 301200 to Amelogenesis imperfecta, type 1E, MIM# 301200 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8752 | AMELX | Zornitza Stark Phenotypes for gene: AMELX were changed from to Amelogenesis imperfecta, type 1E, MIM# 301200 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8749 | AMELX | Zornitza Stark reviewed gene: AMELX: Rating: GREEN; Mode of pathogenicity: None; Publications: 17189466, 22243263, 7599636, 23251683, 1483698 1916828, 9188994, 15111628, 11201048, 26502894, 7782077, 11922869, 28130977, 8406474, 11839357, 25117480, 19610109; Phenotypes: Amelogenesis imperfecta, type 1E, MIM# 301200; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8749 | AMBN | Zornitza Stark Phenotypes for gene: AMBN were changed from to Amelogenesis imperfecta, type IF MIM#616270 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8746 | AMBN | Zornitza Stark reviewed gene: AMBN: Rating: GREEN; Mode of pathogenicity: None; Publications: 24858907, 26502894, 31402633, 30174330; Phenotypes: Amelogenesis imperfecta, type IF MIM#616270; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8746 | ACP4 | Zornitza Stark reviewed gene: ACP4: Rating: GREEN; Mode of pathogenicity: None; Publications: 28513613, 27843125, 33552707; Phenotypes: Amelogenesis imperfecta, type IJ MIM#617297; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8741 | TCF7L2 |
Zornitza Stark changed review comment from: 2 reviews Konstantinos Varvagiannis (Other) I don't know Dias et al (2021 - PMID: 34003604) describe the phenotype of 11 unrelated individuals harboring de novo missense/truncating TCF7L2 variants. Features included DD in childhood (motor delay in 8/11, speech delay in 11/11), intellectual abilities ranging from average cognitive functioning to mild/moderate ID (the latter observed in 5/11), myopia (6/11) , dysmorphic features, variable orthopedic findings, and neuropsychiatric comorbidities incl. ASD (4/11) / ADHD (4/11). One additional (12th) individual was excluded from this summary due to concurrent diagnosis of hypoxic-ischemic injury. TCF7L2 on 10q25 encodes transcription factor 7-like 2, a high mobility group (HMG) box-containing transcription factor. As the authors discuss, the protein mediates canonical Wnt signaling. Secreted Wnt proteins lead to release of beta-catenin (CTNNB1) which after translocation to the nucleus acts with DNA-binding factors incl. TCF7L2 to turn on Wnt-responsive target genes. As a result TCF7L2 acts with beta-catenin as a switch for transcriptional regulation. Multiple alternative spliced TCF7L2 transcripts mediate it's function and specificity of transcriptional repertoire in a variety of tissues and contexts. Dias et al provide references for its role in nervous system development incl. neurogenesis and thalamic development. Variants in all cases occurred as de novo events with pLoF (stopgain, frameshift, splicing) ones predicted to lead to NMD. Missense variants occurred in all cases in or adjacent to the HMG box domain [aa 350-417]. 5 different missense variants affecting 3 residues were reported incl. c.1142A>C, c.1143C>G (leading to Asn381Thr/Lys respectively), c.1250G>T (Trp417Leu), c.1267T>C, c.1268A>G (leading to Tyr423His/Cys) [NM_001146274.1]. The gene has a pLI of 0.99-1 gnomAD/ExAC while there is a region of missense constraint encompassing the HMG box domain (the latter is an evolutionary conserved region mediating interactions with DNA). No phenotypic differences were observed among individuals with pLoF and missense SNVs, and haploinsufficiency is presumed to be the underlying mechanism. There are no variant or other studies performed, nor any animal models discussed. In supplementary table 2, the authors provide several references to previous large scale sequencing studies with brief/incomplete descriptions of individuals de novo TCF7L2 variants and neurodevelopmental disorder (ID/ASD - Iossifov, De Rubeis, Lelieveld, McRae/DDD study and many other Refs). Heterozygous TCF7L2 variants are thought to confer susceptibility to type diabetes mellitus (MIM 125853). Individuals reported by Dias et al did not have endocrine abnormalities including DM. A study by Roychowdhury et al (2021 - PMID: 34265237) suggests that regulatory variants in TCF7L2 are associated with thoracic aneurysm. There is no other associated phenotype (notably NDD) in OMIM. G2P includes TCF7L2 in its DD panel (Disease : TC7L2-related DD, Confidence:confirmed, Monoallelic, LoF). SysID includes this gene within the autism candidate genes and current primary ID genes.; to: Dias et al (2021 - PMID: 34003604) describe the phenotype of 11 unrelated individuals harboring de novo missense/truncating TCF7L2 variants. Features included DD in childhood (motor delay in 8/11, speech delay in 11/11), intellectual abilities ranging from average cognitive functioning to mild/moderate ID (the latter observed in 5/11), myopia (6/11) , dysmorphic features, variable orthopedic findings, and neuropsychiatric comorbidities incl. ASD (4/11) / ADHD (4/11). One additional (12th) individual was excluded from this summary due to concurrent diagnosis of hypoxic-ischemic injury. TCF7L2 on 10q25 encodes transcription factor 7-like 2, a high mobility group (HMG) box-containing transcription factor. As the authors discuss, the protein mediates canonical Wnt signaling. Secreted Wnt proteins lead to release of beta-catenin (CTNNB1) which after translocation to the nucleus acts with DNA-binding factors incl. TCF7L2 to turn on Wnt-responsive target genes. As a result TCF7L2 acts with beta-catenin as a switch for transcriptional regulation. Multiple alternative spliced TCF7L2 transcripts mediate it's function and specificity of transcriptional repertoire in a variety of tissues and contexts. Dias et al provide references for its role in nervous system development incl. neurogenesis and thalamic development. Variants in all cases occurred as de novo events with pLoF (stopgain, frameshift, splicing) ones predicted to lead to NMD. Missense variants occurred in all cases in or adjacent to the HMG box domain [aa 350-417]. 5 different missense variants affecting 3 residues were reported incl. c.1142A>C, c.1143C>G (leading to Asn381Thr/Lys respectively), c.1250G>T (Trp417Leu), c.1267T>C, c.1268A>G (leading to Tyr423His/Cys) [NM_001146274.1]. The gene has a pLI of 0.99-1 gnomAD/ExAC while there is a region of missense constraint encompassing the HMG box domain (the latter is an evolutionary conserved region mediating interactions with DNA). No phenotypic differences were observed among individuals with pLoF and missense SNVs, and haploinsufficiency is presumed to be the underlying mechanism. There are no variant or other studies performed, nor any animal models discussed. In supplementary table 2, the authors provide several references to previous large scale sequencing studies with brief/incomplete descriptions of individuals de novo TCF7L2 variants and neurodevelopmental disorder (ID/ASD - Iossifov, De Rubeis, Lelieveld, McRae/DDD study and many other Refs). Heterozygous TCF7L2 variants are thought to confer susceptibility to type diabetes mellitus (MIM 125853). Individuals reported by Dias et al did not have endocrine abnormalities including DM. A study by Roychowdhury et al (2021 - PMID: 34265237) suggests that regulatory variants in TCF7L2 are associated with thoracic aneurysm. There is no other associated phenotype (notably NDD) in OMIM. G2P includes TCF7L2 in its DD panel (Disease : TC7L2-related DD, Confidence:confirmed, Monoallelic, LoF). SysID includes this gene within the autism candidate genes and current primary ID genes. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8709 | UBR1 |
Zornitza Stark changed review comment from: >50 unrelated families reported, reviewed in PMID: 24599544. Common clinical features include poor growth, mental retardation, and variable dysmorphic features, including aplasia or hypoplasia of the nasal alae, abnormal hair patterns or scalp defects, and oligodontia. Other features include hypothyroidism, sensorineural hearing loss, imperforate anus, and pancreatic exocrine insufficiency.; to: >50 unrelated families reported, reviewed in PMID: 24599544. Common clinical features include poor growth, intellectual disability, and variable dysmorphic features, including aplasia or hypoplasia of the nasal alae, abnormal hair patterns or scalp defects, and oligodontia. Other features include hypothyroidism, sensorineural hearing loss, imperforate anus, and pancreatic exocrine insufficiency. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8601 | CLCN3 |
Kristin Rigbye gene: CLCN3 was added gene: CLCN3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CLCN3 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: CLCN3 were set to PMID: 34186028 Phenotypes for gene: CLCN3 were set to Neurodevelopmental disorder Mode of pathogenicity for gene: CLCN3 was set to Other Review for gene: CLCN3 was set to GREEN Added comment: 11 individuals reported, 9 that carried 8 different rare heterozygous missense variants in CLCN3, and 2 siblings that were homozygous for an NMD-predicted frameshift variant likely abolishing ClC-3 function. All missense variants were confirmed to be de novo in eight individuals for whom parental data was available. The 11 individuals in the cohort share clinical features of variable severity. All 11 have GDD or ID and dysmorphic features, and a majority has mood or behavioural disorders and structural brain abnormalities: - Structural brain abnormalities on MRI (9/11) included partial or full agenesis of the corpus callosum (6/9), disorganized cerebellar folia (4/9), delayed myelination (3/9), decreased white matter volume (3/9), pons hypoplasia (3/9), and dysmorphic dentate nuclei (3/9). Six of those with brain abnormalities also presented with seizures. - Nine have abnormal vision, including strabismus in four and inability to fix or follow in the two with homozygous loss-of-function variants. - Hypotonia ranging from mild to severe was reported in 7 of the 11 individuals. - Six have mood or behavioural disorders, particularly anxiety (3/6). - Consistent dysmorphic facial features included microcephaly, prominent forehead, hypertelorism, down-slanting palpebral fissures, full cheeks, and micrognathia. The severity of disease in the two siblings with homozygous disruption of ClC-3 is consistent with the drastic phenotype seen in Clcn3 KO mice. The disease was more severe in two siblings carrying homozygous loss-of-function variants with the presence of GDD, absent speech, seizures, and salt and pepper fundal pigmentation in both individuals, with one deceased at 14 months of age. The siblings also had significant neuroanatomical findings including diffusely decreased white matter volume, thin corpora callosa, small hippocampi, and disorganized cerebellar folia. Supporting biallelic inheritance for LoF variants, disruption of mouse Clcn3 results in drastic neurodegeneration with loss of the hippocampus a few months after birth and early retinal degeneration. Clcn3−/− mice display severe neurodegeneration, whereas heterozygous Clcn3+/− mice appear normal. Patch-clamp studies were used to investigate four of the missense variants. These suggested a gain of function in two variants with increased current in HEK cells, however they also showed reduced rectification of voltage and a loss of transient current, plus decreased current amplitude, glycosylation and surface expression when expressed in oocytes, and were suspected to interfere with channel gating and a negative feedback mechanism. These effects were also shown to vary depending on pH levels. The current of the remaining two variants did not differ from WT. For heterozygous missense variants, the disruption induced may be at least partially conferred to mutant/WT homodimers and mutant/ClC-4 heterodimers. Both loss and gain of function in this gene resulted in the same phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8522 | SYNCRIP |
Zornitza Stark gene: SYNCRIP was added gene: SYNCRIP was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SYNCRIP was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: SYNCRIP were set to 34157790; 30504930; 27479843; 23020937 Phenotypes for gene: SYNCRIP were set to Global developmental delay; Intellectual disability; Autism; Myoclonic atonic seizures; Abnormality of nervous system morphology Review for gene: SYNCRIP was set to GREEN Added comment: Semino et al (2021 - PMID: 34157790) provide clinical details on 3 unrelated individuals with de novo SYNCRIP variants and provide a review of 5 additional subjects previously identified within large cohorts in the literature and databases. Features included DD, ID (7/7 for whom this information was available), ASD or autistic features (4/7). MRI abnormalities were observed in 3 (widening of CSF spaces, periventricular nodular heterotopia, prominent lat. ventricles). Epilepsy (myoclonic-astatic epilepsy / Doose syndrome) was reported for 2(/8) individuals. The 3 patients here reported were identified following trio/singleton exome with Sanger confirmation of the variants and their de novo occurrence. Variants are in almost all cases de novo (7/7 for whom this was known) and in 5/8 cases were pLoF, in 2/8 missense SNVs while a case from DECIPHER had a 77.92 kb whole gene deletion not involving other genes with unknown inheritance. Overall the variants reported to date include [NM_006372.5]: 1 - c.858_859del p.(Gly287Leufs*5) 2 - c.854dupA p.(Asn285Lysfs*8) 3 - c.734T>C p.(Leu245Pro) 4 - chr6:85605276-85683190 deletion (GRCh38) 5 - c.629T>C p.(Phe210Ser) 6 - c.1573_1574delinsTT p.(Gln525Leu) 7 - c.1247_1250del p.(Arg416Lysfs*145) 8 - c.1518_1519insC p.(Ala507Argfs*14) [P1-3: this report, P4: DECIPHER 254774, P5-6: Guo et al 2019 - PMID: 30504930, P7: Lelieveld et al 2016 - PMID: 27479843, P8: Rauch et al 2012 - PMID: 23020937 / all other Refs not here reviewed, clinical details summarized by Semino et al in table 1] SYNCRIP (also known as HNRNPQ) encodes synaptotagmin‐binding cytoplasmic RNA‐interacting protein. As the authors note, this RNA-binding protein is involved in multiple pathways associated with neuronal/muscular developmental disorders. Several references are provided for its involvement in regulation of RNA metabolism, among others sequence recognition, pre-mRNA splicing, translation, transport and degradation. Mutations in other RNA-interacting proteins and hnRNP members (e.g. HNRNPU, HNRNPD) are associated with NDD. The missense variant (p.Leu245Pro) is within RRM2 one of the 3 RNA recognition motif (RRM) domains of the protein. These 3 domains, corresponding to the central part of the protein (aa 150-400), are relatively intolerant to variation (based on in silico predictions and/or variation in gnomAD). Leu245 localizes within an RNA binding pocket and in silico modeling suggests alteration of the tertiary structure and RNA-binding capacity of RRM2. There are no additional studies performed. Overall haploinsufficiency appears to be the underlying disease mechanism based on the truncating variants and the gene deletion. [pLI in gnomAD : 1, %HI : 2.48%] Animal models are not discussed. There is no associated phenotype in OMIM. This gene is included in the DD panel of G2P (monoallelic LoF variants / SYNCRIP-related developmental disorder). SysID also lists SYNCRIP within the current primary ID genes. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8511 | CAMK4 |
Zornitza Stark gene: CAMK4 was added gene: CAMK4 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: CAMK4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CAMK4 were set to 30262571; 33098801; 33211350 Phenotypes for gene: CAMK4 were set to Intellectual disability; Autism; Behavioral abnormality; Abnormality of movement; Dystonia; Ataxia; Chorea; Myoclonus Review for gene: CAMK4 was set to GREEN Added comment: 3 publications by Zech et al (2018, 2020 - PMIDs : 30262571, 33098801, 33211350) provide clinical details on 3 individuals, each harboring a private de novo CAMK4 variant. Overlapping features included DD, ID, behavoral issues, autism and abnormal hyperkinetic movements. Dystonia and chorea in all 3 appeared 3-20 years after initial symptoms. CAMK4 encodes Calcium/Calmodulin-dependent protein kinase IV, an important mediator of calcium-mediated activity and dynamics, particularly in the brain. It is involved in neuronal transmission, synaptic plasticity, and neuronal gene expression required for brain development and neuronal homeostasis (summary by OMIM based on Zech et al, 2018). The 473 aa enzyme has a protein kinase domain (aa 46-300) and a C-terminal autoregulatory domain (aa 305-341) the latter comprising an autoinhibitory domain (AID / aa 305-321) and a calmodulin-binding domain (CBD / aa 322-341) [NP_001735.1 / NM_001744.4 - also used below]. Variants in all 3 subjects were identified following trio-WES and were in all cases protein-truncating, mapping to exon 10 or exon 10-intron 10 junction, expected to escape NMD and cause selective abrogation of the autoinhibitory domain (aa 305-321) leading overall to gain-of-function. Variation databases include pLoF CAMK4 variants albeit in all cases usptream or downstream of this region (pLI of this gene in gnomAD: 0.51). Variants leading to selective abrogation of the autoregulatory domain have not been reported. Extensive evidence for the GoF effect of the variant has been provided in the first publication. Several previous studies have demonstrated that abrogation of the AID domain leads to consitutive activation (details below). Mouse models - though corresponding to homozygous loss of function - support a role for CAMKIV in cognitive and motor symptoms. Null mice display tremulous and ataxic movements, deficiencies in balance and sensorimotor performance associated with reduced number of Purkinje neurons (Ribar et al 2000, PMID: 11069976 - not reviewed). Wei et al (2002, PMID: 12006982 - not reviewed) provided evidence for alteration in hippocampal physiology and memory function. Heterozygous mutations in other genes for calcium/calmodulin-dependent protein kinases (CAMKs) e.g. CAMK2A/CAMK2B (encoding subunits of CAMKII) have been reported in individuals with ID. --- The proband in the first publication (PMID: 30262571) was a male with DD, ID, behavioral difficulties (ASD, autoaggression, stereotypies) and hyperkinetic movement disorder (myoclonus, chorea, ataxia) with severe generalized dystonia (onset at the age of 13y). Brain MRI demonstrated cerebellar atrophy. Extensive work-up incl. karyotyping, CMA, DYT-TOR1A, THAP1, GCH1, SCA1/2/3/6/7/8/12/17, Friedreich's ataxia and FMR1 analysis was negative.F Trio WES identified a dn splice site variant (c.981+1G>A) in the last exon-intron junction. RT-PCR followed by gel electrophoresis and Sanger in fibroblasts from an affected and control subject revealed that the proband had - as predicted by the type/location of the variant - in equal amount 2 cDNA products, a normal as well as a truncated one. Sequencing of the shortest revealed utilization of a cryptic donor splice site upstream of the mutated donor leading to a 77bp out-of-frame deletion and introduction of a premature stop codon in the last codon (p.Lys303Serfs*28). Western blot in fibroblast cell lines revealed 2 bands corresponding to the normal protein product as well as to the p.Lys303Serfs*28 although expression of the latter was lower than that of the full length protein. Several previous studies have shown that mutant CAMKIV species that lack the autoinhibitory domain are consitutively active (several Refs provided). Among others Chatila et al (1996, PMID: 8702940) studied an in vitro-engineered truncation mutant (Δ1-317 - truncation at position 317 of the protein) with functionally validated gain-of-function effect. To prove enhanced activity of the splicing variant, Zech et al assessed phosphorylation of CREB (cyclic AMP-responsive element binding protein), a downstream substrate of CAMKIV. Immunobloting revealed significant increase of CREB phosphorylation in patient fibroblasts compared to controls. Overactivation of CAMKIV signaling was reversed when cells were treated with STO-609 an inhibitor of CAMKK, the ustream activator of CAMKIV. Overall the authors demonstrated that loss of CAMKIV autoregulatory domain due to this splice variant had a gain-of-function effect. ---- Following trio-WES, Zech et al (2020 - PMID: 33098801) identified another relevant subject within cohort of 764 individuals with dystonia. This 12-y.o. male, harboring a different variant affecting the same donor site (c.981+1G>T), presented DD, ID, dystonia (onset at 3y) and additional movement disorders (myoclonus, ataxia) as well as similar behavior (ASD, autoaggression, stereotypies). [Details in suppl. p20]. ---- Finally Zech et al (2020 - PMID: 33211350) reported on a 24-y.o. woman with adolescence onset choreodystonia. Other features included DD, moderate ID, absence seizures in infancy, OCD with anxiety and later diagnosis of ASD. Trio WES revealed a dn stopgain variant (c.940C>T; p.Gln314*). Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8292 | RING1 |
Eleanor Williams gene: RING1 was added gene: RING1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RING1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: RING1 were set to 29386386 Phenotypes for gene: RING1 were set to microcephaly; intellectual disability Review for gene: RING1 was set to RED Added comment: Not associated with any phenotype in OMIM. PMID: 29386386 - Pierce et al 2018 - report a 13 yo female with a de novo RING1 p.R95Q variant and syndromic neurodevelopmental disabilities. Early motor and language development were normal but were delayed after the first year of life. Cognitive testing showed a verbal IQ of 55 and a visual performance IQ of 63. Head circumference at birth was -4.9 SD, and -4.2 SD at age 13 which falls into the severe microcephaly category. C. elegans with either the missense mutation or complete knockout of spat-3 (the suggested RING1 ortholog) were defective in monoubiquitylation of histone H2A and had defects in neuronal migration and axon guidance. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8292 | IRX5 |
Eleanor Williams changed review comment from: Associated with Hamamy syndrome #611174 (AR) in OMIM. Hamamy syndrome is characterised by craniofacial dysmorphism, hearing loss, skeletal anomalies, microcytic hypochromic anemia and congenital heart defects. Severe myopia has also been reported. Homozygous missense variants in IRX5 were reported in 2 families with this condition. Cone dystrophy ------------------- PMID: 33891002 - Khol et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments. Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected. They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae.; to: Associated with Hamamy syndrome #611174 (AR) in OMIM. Hamamy syndrome is characterised by craniofacial dysmorphism, hearing loss, skeletal anomalies, microcytic hypochromic anemia and congenital heart defects. Severe myopia has also been reported. Homozygous missense variants in IRX5 were reported in 2 families with this condition (PMID: 22581230;17230486) Duplication of gene ------------------- PMID: 33891002 - Kohl et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments. Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected. They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae. Loss of function/gene --------- PMID: 28041643 - Carss et al 2017 - screened a cohort of 722 individuals with inherited retinal disease using WES/WGS. 1 case reported with a biallelic deletion in IRX5 reported which leads to a frameshift ENST00000394636.4; c.1362_1366delTAAAG, p.Lys455ProfsTer19 in a patient with retinitis pigmentosa. PMID: 32045705 - Apuzzo et al 2020 - report 2 cases of loss of a region in 16q12.1q21 which encompasses IRX5 and IRX6 and many other genes, which together with 3 other previous reports of deletions in this region help define a syndrome with features that include dysmorphic features, short stature, microcephaly, global developmental delay/intellectual disability, autism spectrum disorder (ASD) and ocular abnormalities (nystagmus and strabismus). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8292 | IRX6 |
Eleanor Williams changed review comment from: Not associated with any disorder in OMIM or Gene2Phenotype. PMID: 33891002 - Khol et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments. Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected. They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae. Sources: Literature; to: Not associated with any disorder in OMIM or Gene2Phenotype. PMID: 33891002 - Kohl et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments. Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected. They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8264 | IRX6 |
Eleanor Williams gene: IRX6 was added gene: IRX6 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: IRX6 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: IRX6 were set to 33891002 Phenotypes for gene: IRX6 were set to cone dystrophy, MONDO:0000455 Mode of pathogenicity for gene: IRX6 was set to Other Review for gene: IRX6 was set to GREEN Added comment: Not associated with any disorder in OMIM or Gene2Phenotype. PMID: 33891002 - Khol et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments. Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected. They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8040 | SLC13A5 | Zornitza Stark Phenotypes for gene: SLC13A5 were changed from to Developmental and epileptic encephalopathy 25, with amelogenesis imperfecta MIM#615905; MONDO:0014392 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8037 | SLC13A5 | Zornitza Stark reviewed gene: SLC13A5: Rating: GREEN; Mode of pathogenicity: None; Publications: 24995870, 26384929; Phenotypes: Developmental and epileptic encephalopathy 25, with amelogenesis imperfecta MIM#615905, MONDO:0014392; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7749 | MCM7 |
Arina Puzriakova gene: MCM7 was added gene: MCM7 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MCM7 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MCM7 were set to 33654309; 34059554 Phenotypes for gene: MCM7 were set to Meier-Gorlin syndrome; Microcephaly; Intellectual disability; Lipodystrophy; Adrenal insufficiency Review for gene: MCM7 was set to AMBER Added comment: MCM7 is a component of the MCM complex, a DNA helicase which is essential for DNA replication. Other components have been linked to disease with phenotypes including microcephaly and ID. MCM7 is not associated with any phenotype in OMIM or G2P at present. ------ Currently there are 3 unrelated pedigrees in literature with different biallelic MCM7 variants associated with disease (see below). Although there is some functional data in support of variant-level deleteriousness or gene-level pathogenicity, the clinical gestalt is very different between the 3 families. - PMID: 33654309 (2021) - Two unrelated individuals with different compound het variants in MCM7 but disparate clinical features. One patient had typical Meier-Gorlin syndrome (including growth retardation, microcephaly, congenital lung emphysema, absent breast development, microtia, facial dysmorphism) whereas the second case had a multi-system disorder with neonatal progeroid appearance, lipodystrophy and adrenal insufficiency. While small at birth, the second patient did not demonstrate reduced stature or microcephaly at age 14.5 years. Both individuals had normal neurodevelopment. Functional studies using patient-derived fibroblasts demonstrate that the identified MCM7 variants were deleterious at either transcript or protein levels and through interfering with MCM complex formation, impact efficiency of S phase progression. - PMID: 34059554 (2021) - Homozygous missense variant identified in three affected individuals from a consanguineous family with severe primary microcephaly, severe ID and behavioural abnormalities. Knockdown of Mcm7 in mouse neuroblastoma cells lead to reduced cell viability and proliferation with increased apoptosis, which were rescued by overexpression of wild-type but not mutant MCM7. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7464 | VPS41 |
Kristin Rigbye changed review comment from: "Five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function."; to: "Five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function." "Affected individuals were born after uneventful pregnancies and presented in most cases early in life with developmental delay. Various degrees of ataxia, hypotonia, and dystonia were present in all affected individuals, preventing independent ambulation. Likewise, nystagmus was commonly described. In addition, all affected individuals displayed intellectual disability and speech delay. Two siblings further presented with therapy-resistant epilepsy. No major dysmorphic features were found. In two individuals, retinal pigment alterations were noticed. Brain MRI revealed mild cerebellar atrophy and vermian atrophy without other major structural abnormalities in most affected individuals while in one case (Subject 9) bilateral hyperintensities at the nucleus caudatus area were noted. No hearing or vision problems were noted and in cases where nerve conduction studies were performed, these were normal. Transmission electron microscopy (TEM) on peripheral blood lymphocytes from Subject 2 and lymphoblastoid cells from Subject 3 revealed more multilayered vesicles compared to control cells." |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7147 | MIA3 |
Zornitza Stark changed review comment from: Odontochondrodysplasia-2 with hearing loss and diabetes (ODCD2) is characterized by growth retardation with proportionate short stature, dentinogenesis imperfecta, sensorineural hearing loss, insulin-dependent diabetes, and mild intellectual disability. Four affected siblings reported. Mouse model has absence of bone mineralization. Sources: Expert list; to: Odontochondrodysplasia-2 with hearing loss and diabetes (ODCD2) is characterized by growth retardation with proportionate short stature, dentinogenesis imperfecta, sensorineural hearing loss, insulin-dependent diabetes, and mild intellectual disability. Four affected siblings reported, homozygous variant affecting splicing. Mouse model has absence of bone mineralization. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7147 | MIA3 |
Zornitza Stark gene: MIA3 was added gene: MIA3 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: MIA3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MIA3 were set to 32101163; 33778321 Phenotypes for gene: MIA3 were set to Ondontochondrodysplasia 2 with hearing loss and diabetes , MIM#619269 Review for gene: MIA3 was set to AMBER Added comment: Odontochondrodysplasia-2 with hearing loss and diabetes (ODCD2) is characterized by growth retardation with proportionate short stature, dentinogenesis imperfecta, sensorineural hearing loss, insulin-dependent diabetes, and mild intellectual disability. Four affected siblings reported. Mouse model has absence of bone mineralization. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7084 | FBN2 |
Zornitza Stark edited their review of gene: FBN2: Added comment: The association between mono-allelic variants in FBN2 and CCA is well established. Recent report of bi-allelic variants, Kloth (2021): biallelic FBN2 variants (PTC/missense) in a teenager with severe CCA, including cardiac defects, mild scoliosis and muscular involvement. Carrier parents both "healthy/unaffected". Phenotype matches mouse K/O. Authors performed a lit review and identified an additional 2 homozygous patients (both missense variants) with - fetal akinesia, brain ischemia and neonatal death - severe muscle weakness with bilateral clubfeet, a pronounced gait disturbance, recurrent patellar dislocations, flexion contractures, camptodactyly, widespread striae and an unusual myofibrillar disorganization, variation in fiber size and atrophic fibers in muscle biopsy. Evidence for association with Macular degeneration, early-onset MIM#616118 is limited. One family reported, plus some rare variants reported in cohort studies. The familial variant p.Glu1144Lys is present in 11 hets in gnomad and has benign in silicos. The second variant reported in the paper, p.Met1247Thr is present in >20 hets.; Changed rating: GREEN; Changed publications: 33571691; Changed phenotypes: Contractural arachnodactyly, congenital MIM#121050, Macular degeneration, early-onset MIM#616118; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7084 | MMP20 | Bryony Thompson Phenotypes for gene: MMP20 were changed from to Amelogenesis imperfecta, type IIA2 MIM#612529 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7081 | MMP20 | Bryony Thompson reviewed gene: MMP20: Rating: GREEN; Mode of pathogenicity: None; Publications: 15744043, 33600052; Phenotypes: Amelogenesis imperfecta, type IIA2 MIM#612529; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6808 | SATB1 | Zornitza Stark edited their review of gene: SATB1: Added comment: Kohlschutter-Tonz syndrome-like (KTZSL) is characterized by global developmental delay with moderately to severely impaired intellectual development, poor or absent speech, and delayed motor skills. Although the severity of the disorder varies, many patients are nonverbal and have hypotonia with inability to sit or walk. Early-onset epilepsy is common and may be refractory to treatment, leading to epileptic encephalopathy and further interruption of developmental progress. Most patients have feeding difficulties with poor overall growth and dysmorphic facial features, as well as significant dental anomalies resembling amelogenesis imperfecta. This phenotype was reported in 28 patients (patients 13 to 40, PMID 33513338), including 9 patients from 3 families. Most variants were de novo, though some were inherited, suggestive of incomplete penetrance and variable expressivity.; Changed phenotypes: Developmental delay with dysmorphic facies and dental anomalies, MIM# 619228, Kohlschutter-Tonz syndrome-like, MIM# 619229 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6742 | UBAP1 |
Zornitza Stark changed review comment from: PMID 31696996: Five unrelated families reported with childhood-onset HSP. A recurrent two‐base pair deletion (c.426_427delGA, p.K143Sfs*15) in the UBAP1 gene was found in four families, and a similar variant (c.475_476delTT, p.F159*) was detected in a fifth family. The variant was confirmed to be de novo in two families and inherited from an affected parent in two other families. RNA studies performed in lymphocytes from one patient with the de novo c.426_427delGA variant demonstrated escape of nonsense‐mediated decay of the UBAP1 mutant transcript, suggesting the generation of a truncated protein. Both variants identified are predicted to result in truncated proteins losing the capacity of binding to ubiquitinated proteins, hence appearing to exhibit a dominant‐negative effect on the normal function of the endosome‐specific endosomal sorting complexes required for the transport‐I complex.; to: PMID 31696996: Five unrelated families reported with childhood-onset HSP. A recurrent two‐base pair deletion (c.426_427delGA, p.K143Sfs*15) in the UBAP1 gene was found in four families, and a similar variant (c.475_476delTT, p.F159*) was detected in a fifth family. The variant was confirmed to be de novo in two families and inherited from an affected parent in two other families. RNA studies performed in lymphocytes from one patient with the de novo c.426_427delGA variant demonstrated escape of nonsense‐mediated decay of the UBAP1 mutant transcript, suggesting the generation of a truncated protein. Both variants identified are predicted to result in truncated proteins losing the capacity of binding to ubiquitinated proteins, hence appearing to exhibit a dominant‐negative effect on the normal function of the endosome‐specific endosomal sorting complexes required for the transport‐I complex. PMID 32934340: additional 7 families. Median age of onset 10yrs. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6398 | MVD |
Zornitza Stark gene: MVD was added gene: MVD was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: MVD was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: MVD were set to 30942823; 33491095 Phenotypes for gene: MVD were set to Porokeratosis 7, multiple types, MIM# 614714 Review for gene: MVD was set to GREEN Added comment: Porokeratoses are a heterogeneous group of keratinization disorders. For linear porokeratosis and disseminated superficial actinic porokeratosis, a heterozygous pathogenic germline variant in a mevalonate pathway gene and a postzygotic second hit mutation present in affected skin have been shown to be the patho-genetic mechanism for the development of the lesions. At least 5 individuals reported. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6221 | DDX58 | Zornitza Stark edited their review of gene: DDX58: Added comment: Prasov et al. 2021 (PMID: 33495304) - A heterozygous DDX58 variant (c.1529A>T) was identified in 5 individuals from 2 unrelated families from different ethnic backgrounds. Phenotypes varied with some being severely affected by systemic features and others solely with glaucoma.Functional analysis demonstrated the variant confers a dominant gain-of-function effect on interferon activity.; Changed mode of pathogenicity: Other; Changed publications: 25620203, 33495304 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6167 | ENO1 |
Kristin Rigbye gene: ENO1 was added gene: ENO1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ENO1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: ENO1 were set to 32488097 Phenotypes for gene: ENO1 were set to Polymicrogyria Review for gene: ENO1 was set to RED Added comment: ENO1 identified as a polymicrogyria candidate gene from the smallest case of 1p36 duplication reported to date, in a 35yo F (onset at 8mo) presenting intellectual disability, microcephaly, epilepsy and perisylvian polymicrogyria. The duplication only encompassed 2 genes, ENO1 and RERE, and gene expression analysis performed using the patient cells revealed reduced expression, mimicking haploinsufficiency. Eno1 inactivation in rats was shown to cause a brain development defect. According to OMIM, ENO1 is deleted in glioblastoma, which is tolerated by the expression of ENO2. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6095 | TMEM251 |
Bryony Thompson gene: TMEM251 was added gene: TMEM251 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TMEM251 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TMEM251 were set to 33252156 Phenotypes for gene: TMEM251 were set to Dysostosis multiplex‐like skeletal dysplasia; severe short stature Review for gene: TMEM251 was set to AMBER Added comment: Two unrelated consanguineous families with homozygous variants (c.133C>T; p.Arg45Trp and c.215dupA; p.Tyr72Ter), with co-segregation data in one family. Preliminary in vitro functional assays conducted - Tmem251 knockdown by small interfering RNA induced dedifferentiation of rat primary chondrocytes. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5914 | LSM11 |
Ee Ming Wong gene: LSM11 was added gene: LSM11 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: LSM11 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: LSM11 were set to PMID: 33230297 Phenotypes for gene: LSM11 were set to type I interferonopathy Aicardi–Goutières syndrome Review for gene: LSM11 was set to AMBER gene: LSM11 was marked as current diagnostic Added comment: - Two affected siblings from a consanguineous family carrying a homozygous variant in LSM11 - Compared to control fibroblasts, patient fibroblasts were enriched for misprocessed forms of replication-dependent histone (RDH) mRNAs - Knockdown of LSM11 in THP-1 cells results in an increase in misprocessed RDH mRNA and interferon signaling Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5778 | KDELR2 | Zornitza Stark Phenotypes for gene: KDELR2 were changed from Increased susceptibility to fractures; joint hypermobility; Scoliosis; Bowing of the legs; Bowing of the arms to Osteogenesis imperfecta 21, MIM# 619131; Increased susceptibility to fractures; joint hypermobility; Scoliosis; Bowing of the legs; Bowing of the arms | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5777 | KDELR2 | Zornitza Stark edited their review of gene: KDELR2: Changed phenotypes: Osteogenesis imperfecta 21, MIM# 619131, Increased susceptibility to fractures, joint hypermobility, Scoliosis, Bowing of the legs, Bowing of the arms | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5507 | FKBP8 |
Eleanor Williams gene: FKBP8 was added gene: FKBP8 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FKBP8 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: FKBP8 were set to 32969478 Phenotypes for gene: FKBP8 were set to spina bifida HP:0002414 Review for gene: FKBP8 was set to AMBER Added comment: Not associated with a phenotype in OMIM. PMID: 32969478 - Tian et al 2020 - performed Sanger sequencing of FKBP8 on DNA samples from 472 spina bifida (SB) affected fetuses and 565 unaffected controls. 5 different rare heterozygous variants (MAF ≤ 0.001) were identified among the SB patients, while no deleterious rare variants were identified in the controls. 4 of the variants are missense, the other is a stop-gain. 2 cases were in white-Hispanic patients while the other 3 were non-white Hispanic. Functional studies showed that p.Glu140* affected FKBP8 localization to the mitochondria and impaired its interaction with BCL2 ultimately leading to an increase in cellular apoptosis. p.Ser3Leu, p.Lys315Asn and p.Ala292Ser variants decreased FKBP8 protein level. Gene expression was studied in mouse Fkbp8-/- embryos and found to be abnormal. Previous mouse models have shown neural tube defects. Sufficient cases to rate green, but only the FKBP8 gene looked at so perhaps some caution required while further evidence is gathered. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5493 | SLC10A7 | Zornitza Stark Phenotypes for gene: SLC10A7 were changed from to Short stature, amelogenesis imperfecta, and skeletal dysplasia with scoliosis, MIM# 618363 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5490 | SLC10A7 | Zornitza Stark reviewed gene: SLC10A7: Rating: GREEN; Mode of pathogenicity: None; Publications: 30082715, 29878199, 31191616; Phenotypes: Short stature, amelogenesis imperfecta, and skeletal dysplasia with scoliosis, MIM# 618363; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5422 | CRTAP | Zornitza Stark Phenotypes for gene: CRTAP were changed from to Osteogenesis imperfecta, type VII MIM#610682 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5407 | CRTAP | Paul De Fazio reviewed gene: CRTAP: Rating: GREEN; Mode of pathogenicity: None; Publications: 21955071, 19846465, 17192541; Phenotypes: Osteogenesis imperfecta, type VII MIM#610682; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5240 | AMOTL1 |
Zornitza Stark gene: AMOTL1 was added gene: AMOTL1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: AMOTL1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: AMOTL1 were set to 33026150 Phenotypes for gene: AMOTL1 were set to Cleft lip and palate; imperforate anus; dysmorphism Review for gene: AMOTL1 was set to RED Added comment: Two unrelated families reported. In one, the variant was identified in parent and child who had orofacial cleft and cardiac abnormalities. Second report in PMID 33026150, de novo missense variant and cleft lip/palate, imperforate anus and dysmorphism. Mouse model does not recapitulate phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5197 | KDELR2 |
Zornitza Stark gene: KDELR2 was added gene: KDELR2 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: KDELR2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: KDELR2 were set to 33053334 Phenotypes for gene: KDELR2 were set to Increased susceptibility to fractures; joint hypermobility; Scoliosis; Bowing of the legs; Bowing of the arms Review for gene: KDELR2 was set to GREEN Added comment: 4 families with osteogenesis imperfecta reported with functional studies. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5168 | SLC35A3 | Zornitza Stark edited their review of gene: SLC35A3: Added comment: Third unrelated family reported in PMID 28777481 with prenatally diagnosed anomalous vertebrae, including butterfly, and hemivertebrae throughout the spine, as well as cleft palate, micrognathia, patent foramen ovale, patent ductus arteriosus, posterior embryotoxon, short limbs, camptodactyly, talipes valgus, rocker bottom feet, and facial dysmorphism including proptosis, nevus flammeus, and a cupped left ear. Unclear if this is a distinct phenotype (note Holstein cows with variants in this gene have a skeletal phenotype) or part of a spectrum for a CDG. However, abnormal protein glycosylation, consistent with a defective Golgi UDP-GlcNAc transporter demonstrated, so overall, promoted to Green for CDG.; Changed rating: GREEN; Changed publications: 28777481, 28328131, 24031089; Changed phenotypes: Arthrogryposis, mental retardation, and seizures OMIM #615553, Skeletal dysplasia, Congenital disorder of glycosylation; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5102 | PRKACB |
Konstantinos Varvagiannis gene: PRKACB was added gene: PRKACB was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PRKACB was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: PRKACB were set to 33058759 Phenotypes for gene: PRKACB were set to Postaxial hand polydactyly; Postaxial foot polydactyly; Common atrium; Atrioventricular canal defect; Narrow chest; Abnormality of the teeth; Intellectual disability Penetrance for gene: PRKACB were set to unknown Mode of pathogenicity for gene: PRKACB was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments Review for gene: PRKACB was set to GREEN Added comment: Palencia-Campos et al (2020 - PMID: 33058759) report on the phenotype of 3 individuals heterozygous for PRKACA and 4 individuals heterozygous for PRKACB pathogenic variants. The most characteristic features in all individuals with PRKACA/PRKACB mutation, included postaxial polydactyly of hands (6/7 bilateral, 1/7 unilateral) and feet (4/7 bilateral, 1/7 unilateral), brachydactyly and congenital heart defects (CHD 5/7) namely a common atrium or AVSD. Two individuals with PRKACA variant who did not have CHD had offspring with the same variant and an AVSD. Other variably occurring features included short stature, limbs, narrow chest, abnormal teeth, oral frenula, nail dysplasia. One individual with PRKACB variant presented tumors. Intellectual disability was reported in 2/4 individuals with PRKACB variant (1/4: mild, 1/4: severe). The 3 individuals with PRKACA variant did not present ID. As the phenotype was overall suggestive of Ellis-van Creveld syndrome (or the allelic Weyers acrofacial dysostosis), although these diagnoses were ruled out following analysis of EVC and EVC2 genes. WES was carried out in all. PRKACA : A single heterozygous missense variant was identified in 3 individuals from 3 families (NM_002730.4:c.409G>A / p.Gly137Arg) with 1 of the probands harboring the variant in mosaic state (28% of reads) and having 2 similarly affected offspring. The variant was de novo in one individual and inherited in a third one having a similarly affected fetus (narrow thorax, postaxial polyd, AVSD). PRKACB : 4 different variants were identified (NM_002731.3: p.His88Arg/Asn, p.Gly235Arg, c.161C>T - p.Ser54Leu). One of the individuals was mosaic for the latter variant, while in all other cases the variant had occurred de novo. Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes. The authors provide evidence that the variants confer increased sensitivity of PKA holoenzymes to activation by cAMP (compared to wt). By performing ectopic expression of wt or mt PRKACA/B (variants studied : PRKACA p.Gly137Arg / PRKACB p.Gly235Arg) in NIH 3T3 fibroblasts, the authors demonstrate that inhibition of hedgehog signaling likely underlyies the developmental defects observed in affected individuals. As for PRKACA, the authors cite another study where a 31-month old female with EvC syndrome diagnosis was found to harbor the aforementioned variant (NM_001304349.1:c.637G>A:p.Gly213Arg corresponding to NM_002730.4:c.409G>A / p.Gly137Arg) as a de novo event. Without additional evidence at the time, the variant was considered to be a candidate for this subject's phenotype (Monies et al 2019 – PMID: 31130284). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5102 | PRKACA |
Konstantinos Varvagiannis gene: PRKACA was added gene: PRKACA was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PRKACA was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: PRKACA were set to 33058759; 31130284 Phenotypes for gene: PRKACA were set to Postaxial hand polydactyly; Postaxial foot polydactyly; Common atrium; Atrioventricular canal defect; Narrow chest; Abnormality of the teeth; Intellectual disability Penetrance for gene: PRKACA were set to unknown Mode of pathogenicity for gene: PRKACA was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments Review for gene: PRKACA was set to GREEN Added comment: Palencia-Campos et al (2020 - PMID: 33058759) report on the phenotype of 3 individuals heterozygous for PRKACA and 4 individuals heterozygous for PRKACB pathogenic variants. The most characteristic features in all individuals with PRKACA/PRKACB mutation, included postaxial polydactyly of hands (6/7 bilateral, 1/7 unilateral) and feet (4/7 bilateral, 1/7 unilateral), brachydactyly and congenital heart defects (CHD 5/7) namely a common atrium or AVSD. Two individuals with PRKACA variant who did not have CHD had offspring with the same variant and an AVSD. Other variably occurring features included short stature, limbs, narrow chest, abnormal teeth, oral frenula, nail dysplasia. One individual with PRKACB variant presented tumors. Intellectual disability was reported in 2/4 individuals with PRKACB variant (1/4: mild, 1/4: severe). The 3 individuals with PRKACA variant did not present ID. As the phenotype was overall suggestive of Ellis-van Creveld syndrome (or the allelic Weyers acrofacial dysostosis), although these diagnoses were ruled out following analysis of EVC and EVC2 genes. WES was carried out in all. PRKACA : A single heterozygous missense variant was identified in 3 individuals from 3 families (NM_002730.4:c.409G>A / p.Gly137Arg) with 1 of the probands harboring the variant in mosaic state (28% of reads) and having 2 similarly affected offspring. The variant was de novo in one individual and inherited in a third one having a similarly affected fetus (narrow thorax, postaxial polyd, AVSD). PRKACB : 4 different variants were identified (NM_002731.3: p.His88Arg/Asn, p.Gly235Arg, c.161C>T - p.Ser54Leu). One of the individuals was mosaic for the latter variant, while in all other cases the variant had occurred de novo. Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes. The authors provide evidence that the variants confer increased sensitivity of PKA holoenzymes to activation by cAMP (compared to wt). By performing ectopic expression of wt or mt PRKACA/B (variants studied : PRKACA p.Gly137Arg / PRKACB p.Gly235Arg) in NIH 3T3 fibroblasts, the authors demonstrate that inhibition of hedgehog signaling likely underlyies the developmental defects observed in affected individuals. As for PRKACA, the authors cite another study where a 31-month old female with EvC syndrome diagnosis was found to harbor the aforementioned variant (NM_001304349.1:c.637G>A:p.Gly213Arg corresponding to NM_002730.4:c.409G>A / p.Gly137Arg) as a de novo event. Without additional evidence at the time, the variant was considered to be a candidate for this subject's phenotype (Monies et al 2019 – PMID: 31130284). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4998 | CSNK1G1 |
Zornitza Stark gene: CSNK1G1 was added gene: CSNK1G1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CSNK1G1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CSNK1G1 were set to 33009664 Phenotypes for gene: CSNK1G1 were set to Global developmental delay; Intellectual disability; Autism; Seizures Review for gene: CSNK1G1 was set to GREEN Added comment: Borderline Green/Amber rating. Gold et al (2020 - PMID: 33009664) report 5 individuals with CSNK1G1 variants, including updated information on a previously reported subject (Martin et al 2014 - PMID: 24463883). Features included DD (5/5) with associated expressive language delay, ASD (in at least 3/5), seizures (2/5), dysmorphic facial features (4/5 arched eyebrows, 3/5 prominent central incisors, 2/5 epicanthus) and limb anomalies (2/5 - proximally placed thumb, 5th f. clinodactyly, asymmetric overgrowth - the other individual had tapering fingers). GI problems were observed in 4/5. Two individuals had macrocephaly and one had microcephaly. There was no formal developmental assessment although ID might be implied in at least 3 individuals (p1: 20y - single words/regression in walking following a seizure episode, p2: 8y - first words at 5y, assistance to feed, dress and bathe, ASD, p4: 13y - regression, assistance to feed and dress). CSNK1G1 encodes the gamma-1 isoform of casein kinase 1, a protein involved in growth and cell morphogenesis. The gene has ubiquitous expression, incl. brain. As commented, in brain it regulates phosphorylation of NMDA receptors, playing a role in synaptic transmission (4 articles cited). One individual had a 1.2 kb deletion spanning exon 3 of CSNK1G1 [chr15:64550952-64552120 - GRCh37]. Parental samples were unavailable for this individual. Four individuals were found to harbor de novo CSNK1G1 variants [NM_022048.3: c.688C>T - p.(Arg230Trp) dn | c.1255C>T - p.(Gln419*) dn | c.1214+5G>A dn with in silico predictions in favor of splice disruption | c.419C>T - p.(Thr140Met) dn]. Arg230Trp is however present once in gnomAD. The stopgain variant is located in the last exon and predicted to skip NMD. There were no variant studies performed. The Drosophila gish gene encodes a CK1γ homolog with preferential expression in the mushroom body. Heterozygous and homozygous mutants exhibit impairment in memory retention, more severe in homozygous flies. gish was also identified as a seizure modifier in a fly epilepsy model (heterozygous para mt flies). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4874 | ITFG2 |
Zornitza Stark gene: ITFG2 was added gene: ITFG2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ITFG2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ITFG2 were set to 28397838; https://doi.org/10.1038/s41525-020-00150-z Phenotypes for gene: ITFG2 were set to Neurodevelopmental abnormality; Intellectual disability; Developmental regression; Ataxia Review for gene: ITFG2 was set to AMBER Added comment: ITFG2 was suggested to be a candidate gene for autosomal recessive ID in the study by Harripaul et al (2018 - PMID: 28397838). The authors performed microarray and exome sequencing in 192 consanguineous families and identified a homozygous ITGF2 stopgain variant (NM_018463.3:c.472G>T / p.Glu158*) along with 3 additional variants segregating with ID within an investigated family (PK51). Cheema et al (2020 - https://doi.org/10.1038/s41525-020-00150-z) report briefly on a male, born to consanguineous parents presenting with NDD, seizures, regression and ataxia. There was a similarly affected female sibling. Evaluation of ROH revealed a homozygous ITFG2 nonsense variant [NM_018463.3:c.361C>T / p.(Gln121*)]. Families in this study were investigated by trio WES or WGS. Evaluation of data of the same lab revealed 3 additional unrelated subjects with overlapping phenotypes, notably NDD and ataxia. These individuals were - each - homozygous for pLoF variants [NM_018463.3:c.848-1G>A; NM_018463.3:c.704dupC, p.(Ala236fs), NM_018463.3:c.1000_1001delAT, p.(Ile334fs)]. As discussed in OMIM, ITFG2 encodes a subunit of the KICSTOR protein complex, having a role in regulating nutrient sensing by MTOR complex-1 (Wolfson et al 2017 - PMID : 28199306). Rated Amber as Cheema et al report on diagnostic outcomes and multiple candidate genes as part of a heterogenous cohort and details are therefore limited. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4872 | SHMT2 |
Zornitza Stark gene: SHMT2 was added gene: SHMT2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SHMT2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SHMT2 were set to 33015733 Phenotypes for gene: SHMT2 were set to Congenital microcephaly; Infantile axial hypotonia; Spastic paraparesis; Global developmental delay; Intellectual disability; Abnormality of the corpus callosum; Abnormal cortical gyration; Hypertrophic cardiomyopathy; Abnormality of the face; Proximal placement of thumb; 2-3 toe syndactyly Review for gene: SHMT2 was set to GREEN Added comment: García‑Cazorla et al. (2020 - PMID: 33015733) report 5 individuals (from 4 families) with a novel brain and heart developmental syndrome caused by biallelic SHMT2 pathogenic variants. All affected subjects presented similar phenotype incl. microcephaly at birth (5/5 with OFC < -2 SD though in 2/5 cases N OFC was observed later), DD and ID (1/5 mild-moderate, 1/5 moderate, 3/5 severe), motor dysfunction in the form of spastic (5/5) paraparesis, ataxia/dysmetria (3/4), intention tremor (in 3/?) and/or peripheral neuropathy (2 sibs). They exhibited corpus callosum hypoplasia (5/5) and perisylvian microgyria-like pattern (4/5). Cardiac problems were reported in all, with hypertrophic cardiomyopathy in 4/5 (from 3 families) and atrial-SD in the 5th individual (1/5). Common dysmorphic features incl. long palpebral/fissures, eversion of lateral third of lower eylids, arched eyebrows, long eyelashes, thin upper lip, short Vth finger, fetal pads, mild 2-3 toe syndactyly, proximally placed thumbs. Biallelic variants were identified following exome sequencing in all (other investigations not mentioned). Identified variants were in all cases missense SNVs or in-frame del, which together with evidence from population databases and mouse model might suggest a hypomorphic effect of variants and intolerance/embryonic lethality for homozygous LoF ones. SHMT2 encodes the mitohondrial form of serine hydroxymethyltransferase. The enzyme transfers one-carbon units from serine to tetrahydrofolate (THF) and generates glycine and 5,10,methylene-THF. Mitochondrial defect was suggested by presence of ragged red fibers in myocardial biopsy of one patient. Quadriceps and myocardial biopsies of the same individual were overall suggestive of myopathic changes. While plasma metabolites were within N range and SHMT2 protein levels not significantly altered in patient fibroblasts, the authors provide evidence for impaired enzymatic function eg. presence of the SHMT2 substrate (THF) in patient but not control (mitochondria-enriched) fibroblasts , decrease in glycine/serine ratios, impared folate metabolism. Patient fibroblasts displayed impaired oxidative capacity (reduced ATP levels in a medium without glucose, diminished oxygen consumption rates). Mitochondrial membrane potential and ROS levels were also suggestive of redox malfunction. Shmt2 ko in mice was previously shown to be embryonically lethal attributed to severe mitochondrial respiration defects, although there was no observed brain metabolic defect. The authors performed Shmt2 knockdown in motoneurons in Drosophila, demonstrating neuromuscular junction (# of satellite boutons) and motility defects (climbing distance/velocity). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4668 | BLOC1S5 |
Zornitza Stark gene: BLOC1S5 was added gene: BLOC1S5 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: BLOC1S5 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: BLOC1S5 were set to 32565547 Phenotypes for gene: BLOC1S5 were set to Hermansky–Pudlak syndrome Review for gene: BLOC1S5 was set to GREEN Added comment: 2 unrelated patients with mild oculocutaneous albinism, moderate bleeding diathesis, platelet aggregation deficit, and a dramatically decreased number of platelet dense granules, all signs compatible with HPS. Identified distinct homozygous variants in the BLOC1S5 gene (patient 1: deletion of exons 3 and 4, patient 2: 1-bp deletion in exon 4). Parental segregation confirmatory in patient 1, quantitative PCR analysis confirmatory in patient 2). Functional tests performed on platelets of one patient displayed an absence of the obligate multisubunit complex BLOC-1, showing that the variant disrupts BLOC1S5 function and impairs BLOC-1 assembly. Expression of the patient-derived BLOC1S5 deletion in nonpigmented murine Bloc1s5-/- melan-mu melanocytes failed to rescue pigmentation, the assembly of a functional BLOC-1 complex, and melanosome cargo trafficking, unlike the wild-type allele. Pathogenic variants in the genes encoding three other BLOC-1 subunits (DTNBP1, BLOC1S3, and BLOC1S6) underlie HPS types 7, 8, and 9 respectively. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4496 | FNIP1 |
Arina Puzriakova gene: FNIP1 was added gene: FNIP1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FNIP1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: FNIP1 were set to 32181500; 32905580 Phenotypes for gene: FNIP1 were set to Hypertrophic Cardiomyopathy; Primary Immunodeficiency; Agammaglobulinemia; Neutropenia Review for gene: FNIP1 was set to GREEN Added comment: - PMID: 32181500 (2020) - Three patients from two independent consanguineous families with homozygous variants (c.3353G>A, p.Ser1118Asn and c.1289delA, p.His430Profs7*) in the FNIP1 gene. Both variants segregated with the disease phenotype in each family. Clinically, patients presented with combined immunodeficiency, cardiac findings (hypertrophic cardiomyopathy, Wolff‐Parkinson‐White syndrome), and myopathy of skeletal muscles with motor DD. Authors note phenotypic overlap with the murine model of FNIP1 deficiency, but no functional analyses of the variants or patient cells were performed. - PMID: 32905580 (2020) - Three cases from unrelated families, all harbouring novel biallelic variants in FNIP1. Clinical manifestations in all patients include hypertrophic cardiomyopathy, severe and/or recurrent infections, absent circulating B-cells, and agammaglobulinemia; as well as either severe or intermittent neutropenia in two cases. Functional studies showed impairment of B-cell metabolism, including disruptions to mitochondrial numbers/activity and the PI3K/AKT pathway. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3823 | KRT2 | Zornitza Stark Phenotypes for gene: KRT2 were changed from to Superficial epidermolytic ichthyosis (SEI) (MIM#146800) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3820 | KRT2 | Zornitza Stark reviewed gene: KRT2: Rating: GREEN; Mode of pathogenicity: None; Publications: 26581228, 22612346; Phenotypes: Superficial epidermolytic ichthyosis (SEI) (MIM#146800); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3645 | NCKAP1L |
Michelle Torres gene: NCKAP1L was added gene: NCKAP1L was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NCKAP1L was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: NCKAP1L were set to 32647003 Phenotypes for gene: NCKAP1L were set to Immunodeficiency Review for gene: NCKAP1L was set to GREEN Added comment: 5 patients from 4 families with recurrent bacterial and viral skin infections, severe respiratory tract infections leading to pneumonia and bronchiectasis. Functional of the 4 missense reported were performed. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3590 | ANO1 |
Arina Puzriakova changed review comment from: PMID: 32487539 (2020) - Two affected sibs presenting in early infancy with impaired intestinal peristalsis, intestinal pneumatosis and dysmorphic features. Delayed motor and language development was reported in one sibling, however, the other sibling died at 5 months from cardiac arrest and therefore a psychomotor assessment was performed. Exome sequencing identified a homozygous truncating variant (c.897+3_897+6delAAGT, p.L300Vfs*58) in ANO1 which segregated with disease in the family. Functional data revealed that the variant led to lack of expression of functional TMEM16A in patient cells, which in turn abolished calcium-activated Cl- currents. Also supportive mouse model. Sources: Literature; to: PMID: 32487539 (2020) - Two affected sibs presenting in early infancy with impaired intestinal peristalsis, intestinal pneumatosis and dysmorphic features. Delayed motor and language development was reported in one sibling, however, the other sibling died at 5 months from cardiac arrest and therefore a psychomotor assessment was not performed. Exome sequencing identified a homozygous truncating variant (c.897+3_897+6delAAGT, p.L300Vfs*58) in ANO1 which segregated with disease in the family. Functional data revealed that the variant led to lack of expression of functional TMEM16A in patient cells, which in turn abolished calcium-activated Cl- currents. Also supportive mouse model. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3590 | ANO1 |
Arina Puzriakova gene: ANO1 was added gene: ANO1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ANO1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ANO1 were set to 32487539 Added comment: PMID: 32487539 (2020) - Two affected sibs presenting in early infancy with impaired intestinal peristalsis, intestinal pneumatosis and dysmorphic features. Delayed motor and language development was reported in one sibling, however, the other sibling died at 5 months from cardiac arrest and therefore a psychomotor assessment was performed. Exome sequencing identified a homozygous truncating variant (c.897+3_897+6delAAGT, p.L300Vfs*58) in ANO1 which segregated with disease in the family. Functional data revealed that the variant led to lack of expression of functional TMEM16A in patient cells, which in turn abolished calcium-activated Cl- currents. Also supportive mouse model. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3450 | DACT1 |
Natalie Tan gene: DACT1 was added gene: DACT1 was added to Mendeliome. Sources: NHS GMS Mode of inheritance for gene: DACT1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: DACT1 were set to PMID: 28054444; 22610794; 19701191 Phenotypes for gene: DACT1 were set to ?Townes-Brocks syndrome 2 (OMIM #617466) Review for gene: DACT1 was set to RED Added comment: Webb et al. (2017) reported 6 affected members of a 3-generation family with ?Townes-Brocks syndrome-2, identified heterozygosity for a nonsense mutation in the DACT1 gene that segregated with disease. Clinical features include imperforate anus, rectovaginal fistula, crossed fused renal ectopia, vesicoureteral reflux, unilateral microtia, overfolded helices and cupped ears. One family member (proband's mother) with scoliosis and spina bifida occulta. Neural tube defects reported in a study of human fetuses (PMID: 22610794) and a mouse model (PMID: 19701191). Listed in Decipher v10.0 for an individual with abnormalities of (i) head or neck (ii) nervous system (iii) skeletal system. Unlike the gene SALL1 that causes Townes-Brocks syndrome 1, there is no information specifically relating to DACT1 with radial dysplasia, as these were not observed in the family with ?Townes-Brocks syndrome 2 (PMID: 28054444). Sources: NHS GMS |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3325 | TBC1D2B |
Zornitza Stark gene: TBC1D2B was added gene: TBC1D2B was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: TBC1D2B was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TBC1D2B were set to 32623794 Phenotypes for gene: TBC1D2B were set to Global developmental delay; Intellectual disability; Seizures; Gingival overgrowth; Behavioral abnormality; Abnormality of the mandible; Abnormality of brain morphology; Abnormality of the eye; Hearing abnormality Review for gene: TBC1D2B was set to GREEN Added comment: Harms et al (2020 - PMID: 32623794) report on 3 unrelated individuals with biallelic pLoF TBC1D2B variants. Features included cognitive impairment (mild ID in one case, regression at the age of 12y in another, hypotonia and delayed milestones in a third aged 8m), seizures (3/3 - variable age of onset) and/or gingival overgrowth (2/3 - prior to initiation of AEDs). Other findings included behavioral abnormalities, mandibular anomalies, abnormal brain imaging and ophthalmologic or (rarely) audiometric evaluations. All were born to non-consanguineous couples and additional investigations were performed in some. Variants were identified by WES or trio WGS, with Sanger confirmation/compatible segregation analyses. In line with the pLoF variants, mRNA studies in fibroblasts from 2 unrelated affected individuals demonstrated significantly reduced (~80-90%) TBC1C2D mRNA levels compared to controls, restored following cycloheximide treatment. Protein was absent in patient fibroblasts. TBC-domain containing GTPase activating proteins are known as key regulators of RAB GTPase activity. TBC1D2B was shown to colocalize with RAB5-positive endocytic vesicles. CRISPR/Cas9-mediated ko of TBC1D2B in HeLa cells suggested a role in EGF receptor endocytosis and decreased cell viability of TBC1D2B-deficient HeLa cells upon serum deprivation. Genes encoding other TBC domain-containg GTPase-activating proteins, e.g. TBC1D7 and TBC1D20, TBC1D24 are associated with recessive neurodevelopmental disorders (with ID and/or seizures) and the pathophysiological defect in TBC1D2B-related disorder (deficit in vesicle trafficking and/or cell survival) is proposed to be similar to that of TBC1D24. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3308 | SGMS2 |
Bryony Thompson gene: SGMS2 was added gene: SGMS2 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: SGMS2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: SGMS2 were set to 30779713; 32028018 Phenotypes for gene: SGMS2 were set to Calvarial doughnut lesions with bone fragility with or without spondylometaphyseal dysplasia MIM#126550 Review for gene: SGMS2 was set to GREEN Added comment: 12 patients from 6 unrelated families with the same stopgain variant (p.Arg50*), with osteoporosis that resembles osteogenesis imperfecta. In vitro over-expression assays of the variant demonstrate protein that was completely mislocalized in the cytosolic and nuclear compartments. 2 unrelated families were heterozygous for 2 missense (p.Ile62Ser, p.Met64Arg) with bone fragility and severe short stature, and spondylometaphyseal dysplasia. In vitro assays of each variant demonstrated an enhanced rate of de novo sphingomyelin production by blocking export of a functional enzyme from the endoplasmic reticulum. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3189 | EMILIN1 |
Naomi Baker changed review comment from: Missense mutations identified in two families. First family, proband presented with ascending and descending aortic aneurysms, bilateral lower leg and foot sensorimotor peripheral neuropathy, arthropathy, and increased skin elasticity. Variant segregated with disease in the affected proband, mother, and son. Second family, father and three affected children showed amyotrophy and weakness of the distal lower limbs, dating back to early childhood. Some functional studies performed in patient fibroblasts and zebrafish, however these were not conclusive as the two missense mutations are at different locations within the protein. Sources: Literature; to: Missense mutations identified in two families. First family, proband presented with ascending and descending aortic aneurysms, bilateral lower leg and foot sensorimotor peripheral neuropathy, arthropathy, and increased skin elasticity. Variant segregated with disease in the affected proband, mother, and son. Second family, father and three affected children showed amyotrophy and weakness of the distal lower limbs, dating back to early childhood. Some functional studies performed in patient fibroblasts and zebrafish, however these were not conclusive as the two missense mutations are at different locations within the protein. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3189 | EMILIN1 |
Naomi Baker gene: EMILIN1 was added gene: EMILIN1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: EMILIN1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: EMILIN1 were set to PMID: 31978608; 26462740. Phenotypes for gene: EMILIN1 were set to peripheral neuropathy Penetrance for gene: EMILIN1 were set to unknown Review for gene: EMILIN1 was set to AMBER Added comment: Missense mutations identified in two families. First family, proband presented with ascending and descending aortic aneurysms, bilateral lower leg and foot sensorimotor peripheral neuropathy, arthropathy, and increased skin elasticity. Variant segregated with disease in the affected proband, mother, and son. Second family, father and three affected children showed amyotrophy and weakness of the distal lower limbs, dating back to early childhood. Some functional studies performed in patient fibroblasts and zebrafish, however these were not conclusive as the two missense mutations are at different locations within the protein. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3185 | SP6 |
Eleanor Williams gene: SP6 was added gene: SP6 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SP6 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: SP6 were set to 32167558; 18156176; 18297738; 22676574 Phenotypes for gene: SP6 were set to hypoplastic amelogenesis imperfecta Review for gene: SP6 was set to AMBER Added comment: PMID: 32167558 - Smith et al 2020 - report a 2 bp variant c.817_818GC>AA in SP6 in a Caucasian family with autosomal dominant hypoplastic AI which results in a missense change. Report that mice and rat knockouts also show a dental phenotype (PMID: 18156176, 18297738, 22676574 ) Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2842 | B9D1 |
Zornitza Stark changed review comment from: Two unrelated individuals with JS and bi-allelic variants in this gene, plus one individual with a more severe Meckel phenotype described. Intellectual disability is part of the phenotype. Sources: Expert list; to: Two unrelated individuals with JS and bi-allelic variants in this gene, plus one individual with a more severe Meckel phenotype described. This latter individual had a splice site variant and a deletion. Splice variant proven to result in exon skipping -> PTC, but the deletion spans a large region including 18 other genes. Patient also had an additional variant in CEP290 called LP. Authors perform functional studies on patient cells but given the large deletion/CEP290 variant i dont see the results are usable PMID: 25920555 - another report of digenic inheritance - not usable, patient was only heterozygous for a single B9D1 variant. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2790 | PRKD1 | Kristin Rigbye changed review comment from: Only 3 pathogenic missense reported to date, although two of these are recurring in unrelated individuals (ClinVar, Decipher, PMID: 27479907). No functional studies performed.; to: Only 3 pathogenic missense reported to date in unrelated individuals (ClinVar, Decipher, PMID: 27479907). No functional studies performed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2574 | IQCE |
Zornitza Stark gene: IQCE was added gene: IQCE was added to Mendeliome. Sources: Literature Mode of inheritance for gene: IQCE was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: IQCE were set to 31549751; 28488682 Phenotypes for gene: IQCE were set to Postaxial polydactyly Review for gene: IQCE was set to GREEN Added comment: Four families reported with bi-allelic variants in this gene. The c.895_904del (p.Val301Serfs*8) was found in three of the families without sharing a common haplotype, suggesting a recurrent mechanism. RNA expression analysis on patients’ fibroblasts showed that the dysfunction of IQCE leads to the dysregulation of genes associated with the hedgehog‐signaling pathway, and zebrafish experiments demonstrated a full spectrum of phenotypes linked to defective cilia: Body curvature, kidney cysts, left–right asymmetry, misdirected cilia in the pronephric duct, and retinal defects. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2470 | ABCC1 |
Zornitza Stark gene: ABCC1 was added gene: ABCC1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ABCC1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: ABCC1 were set to 31273342 Phenotypes for gene: ABCC1 were set to Nonsyndromic hearing loss Review for gene: ABCC1 was set to AMBER Added comment: Total of 3 variants reported in 3 families, including 1 which segregates in a large family (10 affected) PMID: 31273342; Li 2019: Reported 3 different het missense in 3 families with postlingual ADNSHL. 1 missense segregated in a large Chinese family. This variant is present in gnomAD (10 hets), but onset noted to be in 2nd or 3rd decade of life. Functional studies performed. Other 2 variants reported absent in gnomAD. Amber rating in light of gnomad frequency of one of the reported variants. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2439 | CREB3L1 | Zornitza Stark Phenotypes for gene: CREB3L1 were changed from to Osteogenesis imperfecta, type XVI, MIM#616229 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2376 | CREB3L1 | Kristin Rigbye reviewed gene: CREB3L1: Rating: GREEN; Mode of pathogenicity: None; Publications: 24079343, 28817112, 29936144, 30657919; Phenotypes: Osteogenesis imperfecta, type XVI, 616229; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2371 | CNNM4 | Zornitza Stark Phenotypes for gene: CNNM4 were changed from to Jalili syndrome 217080; amelogenesis imperfecta, cone-rod dystrophy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2361 | CNNM4 | Ain Roesley reviewed gene: CNNM4: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 30705057; Phenotypes: Jalili syndrome (amelogenesis imperfecta, cone-rod dystrophy); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1435 | WDR81 | Kristin Rigbye changed review comment from: A few homozygous families reported to date. Variants are expected to results in a loss of function, although functional studies have not been performed.; to: A homozygous and compound heterozygous nonsense and missense variants reported. Variants shown to result in a loss of function (PMID: 28969387). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.786 | TRMT1 |
Zornitza Stark gene: TRMT1 was added gene: TRMT1 was added to Mendeliome_VCGS. Sources: Expert list Mode of inheritance for gene: TRMT1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TRMT1 were set to 30289604; 26308914; 21937992 Phenotypes for gene: TRMT1 were set to Mental retardation, autosomal recessive 68; OMIM #618302 Review for gene: TRMT1 was set to GREEN Added comment: 4 families reported: -1 consanguineous Iranian family with 5 individuals with nonsyndromic moderate to severe impaired intellectual development. -1 consanguineous Iranian family with 3 adult brothers with global developmental delay and moderately delayed intellectual development -2 unrelated Pakistani families with 4 patients with impaired intellectual development. All with homozygous mutations in the TRMT1 gene which segregated with the disorder in the families, but functional studies of the variants were not performed. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.778 | KIAA1161 |
Zornitza Stark gene: KIAA1161 was added gene: KIAA1161 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: KIAA1161 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: KIAA1161 were set to 30656188; 30649222; 30460687; 29910000 Phenotypes for gene: KIAA1161 were set to Basal ganglia calcification, idiopathic, 7, autosomal recessive; OMIM #618317 Review for gene: KIAA1161 was set to GREEN Added comment: Total 9 families, but no functional evidence: 12 patients from 6 unrelated Chinese families reported by Yao et al. (2018) and homozygous or compound heterozygous mutations in the MYORG gene. Functional studies of the variants and studies of patient cells were not performed, but the presence of nonsense mutations suggested a loss of function. 1 Chinese woman identified with homozygous nonsense mutation in the MYORG gene, segregated with the disorder in the family. Functional studies of the variant and studies of patient cells were not performed. 2 unrelated Middle Eastern families with homozygous mutations in the MYORG gene, which segregated with the disorder in the families. Functional studies of the variants were not performed. 4 sibs from one Turkish family with homozygous missense mutation in the MYORG gene, which segregated with the disorder in the family. Functional studies of the variant and studies of patient cells were not performed. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.742 | MESD |
Zornitza Stark gene: MESD was added gene: MESD was added to Mendeliome_VCGS. Sources: Other Mode of inheritance for gene: MESD was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MESD were set to 31564437 Phenotypes for gene: MESD were set to Osteogenesis imperfecta, type XX, MIM# 618644 Review for gene: MESD was set to GREEN Added comment: Five families reported. Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.308 | PISD | Zornitza Stark commented on gene: PISD: 4 individuals in 2 unrelated but consanguineous families from Portugal and Brazil affected by early-onset retinal degeneration, sensorineural hearing loss, microcephaly, intellectual disability, and skeletal dysplasia with scoliosis and short stature (Liberfarb syndrome). Affected individuals shared a homozygous 10-bp deletion immediately upstream of the last exon of the PISD gene. In HEK293T cells, this variant led to aberrant splicing of PISD transcripts. 1 family with 2 sisters with congenital cataracts, short stature, and white matter changes identified compound heterozygous variants in the PISD gene. Decreased conversion of phosphatidylserine to PE in patient fibroblasts is consistent with impaired phosphatidylserine decarboxylase (PISD) enzyme activity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.307 | PIGB |
Zornitza Stark gene: PIGB was added gene: PIGB was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: PIGB was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PIGB were set to 31256876 Phenotypes for gene: PIGB were set to Epileptic encephalopathy, early infantile, 80; OMIM #618580 Review for gene: PIGB was set to GREEN Added comment: 10 unrelated families with biallelic mutations in PIGB, with global DD and/or ID, and seizures. Two had polymicrogyria, 4 had a peripheral neuropathy, and 2 had a clinical diagnosis of DOORS syndrome. Patient lymphocytes and fibroblasts showed variably decreased levels of cell surface GPI-anchored proteins, including CD16 and CD59. In vitro functional expression studies performed with some of the mutations in PIGB-null CHO cells showed that the mutant proteins were unable to fully restore expression of GPI-anchored surface proteins, consistent with a loss of function, although the mutations had variable effects. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.0 | ERF |
Zornitza Stark gene: ERF was added gene: ERF was added to Mendeliome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services Mode of inheritance for gene: ERF was set to Unknown |