Date | Panel | Item | Activity | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mendeliome v1.2426 | SPAG6 |
Zornitza Stark gene: SPAG6 was added gene: SPAG6 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SPAG6 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SPAG6 were set to 35232447; 38073178; 32124190 Phenotypes for gene: SPAG6 were set to Spermatogenic failure, MONDO:0004983, SPAG6-related Review for gene: SPAG6 was set to GREEN Added comment: i) PMID: 35232447- two homozygous variants (F1 II-1: p. A103D; F2 II-1:p. K196Sfs*6) in two unrelated Han Chinese men with nonsyndromic asthenoteratozoospermia with severe multiple morphological abnormalities of the sperm flagella. Immunostaining and WB showed lower SPAG6 expression in spermatozoa of both affected males. The couple with the missense variant as able to conceive successfully after undergoing ICSI. ii) PMID: 38073178- a homozygous missense p.R310W in three brothers (two brothers with both asthenozoospermia and oligozoospermia, third brother with azoospermia) iii) PMID: 32124190- a novel compound heterozygous variant (c.143_145del: p.48_49del, c.585delA: p.Lys196Serfs*6) in an infertile PCD patient with severe with asthenoteratozoospermia, presented with morphological defects of sperm flagella and lower mRNA and protein expression in mutant sperm. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2351 | CFAP47 | Chirag Patel changed review comment from: 3 individuals with bilateral kidney cysts with mild enlargement of kidneys (mean age at Dx ~70yrs). They were all undergoing treatment for hypertension, had mean eGFR of ~31, None of them had any liver cysts or any family history of cystic kidney disease. WGS after negative clinical diagnostic testing, identified 3 missense variants in CFAP47 gene [p.(Arg870Gln), p.(Phe516Cys), and p.(Gly6Asp)]. The variants were rare in gnomAD but had equivocal in silico prediction scores, and would be reported as VUS using ACMG criteria. Segregation was not possible as their mothers were deceased. CFAP47 encodes cilia and flagella associated protein 47 a protein that plays a role in the formation and function of cilia and flagella. It is is expressed in primary cilia of human kidney tubules. Knockout (KO) mice exhibited larger kidneys with vacuolation of tubular cells and tubular dilation, providing evidence that CFAP47 is a causative gene involved in cyst formation.; to: 3 Japanese individuals with bilateral kidney cysts with mild enlargement of kidneys (mean age at Dx ~70yrs). They were all undergoing treatment for hypertension, had mean eGFR of ~31, None of them had any liver cysts, infertility, or any family history of cystic kidney disease. WGS after negative clinical diagnostic testing, identified 3 missense variants in CFAP47 gene [p.(Arg870Gln), p.(Phe516Cys), and p.(Gly6Asp)]. The variants were rare in gnomAD but had equivocal in silico prediction scores, and would be reported as VUS using ACMG criteria. Segregation was not possible as their mothers were deceased. CFAP47 encodes cilia and flagella associated protein 47 a protein that plays a role in the formation and function of cilia and flagella. It is is expressed in primary cilia of human kidney tubules. Knockout (KO) mice exhibited larger kidneys with vacuolation of tubular cells and tubular dilation, providing evidence that CFAP47 is a causative gene involved in cyst formation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2292 | PDGFRB | Zornitza Stark Phenotypes for gene: PDGFRB were changed from Basal ganglia calcification, idiopathic, 4, MIM# 615007; Kosaki overgrowth syndrome, MIM# 616592; Myeloproliferative disorder with eosinophilia, MIM# 131440; Myofibromatosis, infantile, 1, MIM# 228550; Premature ageing syndrome, Penttinen type, MIM# 601812 to Basal ganglia calcification, idiopathic, 4, MIM# 615007; Kosaki overgrowth syndrome, MIM# 616592; Myeloproliferative disorder with eosinophilia, MIM# 131440; Myofibromatosis, infantile, 1, MIM# 228550; Premature ageing syndrome, Penttinen type, MIM# 601812; Ocular pterygium-digital keloid dysplasia syndrome, MIM# 621091 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2291 | PDGFRB | Zornitza Stark edited their review of gene: PDGFRB: Added comment: Single family reported with OPDKD phenotype characterised by aggressive circumferential ingrowth of conjunctiva beginning in early childhood that is resistant to treatment, ultimately covering the cornea and resulting in loss of vision. Digital keloid formation after minor trauma, which can become extensive and cause flexion contractures; hardened auricles. RED for this association.; Changed publications: 33450762; Changed phenotypes: Ocular pterygium-digital keloid dysplasia syndrome, MIM# 621091, Basal ganglia calcification, idiopathic, 4, MIM# 615007, Kosaki overgrowth syndrome, MIM# 616592, Myeloproliferative disorder with eosinophilia, MIM# 131440, Myofibromatosis, infantile, 1, MIM# 228550, Premature ageing syndrome, Penttinen type, MIM# 601812 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2164 | RAB35 |
Bryony Thompson changed review comment from: PMID: 38432637 - a single case with a neurodevelopmental disorder and a homozygous missense variant (c.80G>A; p.R27H) and supporting in vitro functional assays. PMID: 36928819 - Posterior probability association (PPA) 0.955 for familial hypercholesterolaemia under a dominant MOI in the 100,000 Genomes project “Rareservoir” using a Bayesian statistical method - BeviMed. 469 FH cases and 55,033 controls used in BeviMed analysis. A nonsense variant and frameshift enriched in the FH cohort (n=6). Sources: Literature; to: PMID: 38432637 - a single case with a neurodevelopmental disorder and a homozygous missense variant (c.80G>A; p.R27H) and supporting in vitro functional assays. PMID: 36928819 - Posterior probability association (PPA) 0.955 for familial hypercholesterolaemia under a dominant MOI in the 100,000 Genomes project “Rareservoir” using a Bayesian statistical method - BeviMed. 469 FH cases and 55,033 controls used in BeviMed analysis. A nonsense variant and frameshift enriched in the FH cohort (n=6). Cosegergation in 1 affected relative also reported. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2113 | ME2 |
Bryony Thompson gene: ME2 was added gene: ME2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ME2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ME2 were set to 39401966 Phenotypes for gene: ME2 were set to inborn disorder of energy metabolism MONDO:0019243 Review for gene: ME2 was set to RED Added comment: A single individual with a homozygous frameshift variant from a consanguineous family. The phenotype included developmental delay, microcephaly, mild brain atrophy, peripheral hypotonia, subtle dysmorphic features, ectopic kidney, and mild lactate elevation. Deletion of yeast ortholog of the gene resulted in growth arrest (which could be rescued). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1765 | SLC6A20 | Bryony Thompson reviewed gene: SLC6A20: Rating: RED; Mode of pathogenicity: None; Publications: 19033659, 36820062, 24816252; Phenotypes: Hyperglycinuria MONDO:0007677; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1717 | RNU4-2 |
Zornitza Stark changed review comment from: Emerging evidence that de novo variants in this gene cause ID. Sources: Literature; to: Over 100 individuals with ID found to have de novo variants in this gene. Please note difficult to identify on ES. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1678 | RNU4-2 |
Zornitza Stark gene: RNU4-2 was added gene: RNU4-2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RNU4-2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: RNU4-2 were set to Neurodevelopmental disorder, MONDO:0700092, RNU4-2 related Review for gene: RNU4-2 was set to GREEN Added comment: Emerging evidence that de novo variants in this gene cause ID. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1616 | FHL2 |
Zornitza Stark gene: FHL2 was added gene: FHL2 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: FHL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: FHL2 were set to 36854411; 25358972 Phenotypes for gene: FHL2 were set to Cardiomyopathy, MONDO:0004994, FHL2-related Review for gene: FHL2 was set to AMBER Added comment: Emerging evidence that variants in this gene may be associated with cardiomyopathy. Reports of HCM and DCM. c.391C>T (p.Arg131Cys) may be recurrent in early-onset DCM. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1500 | ERG | Zornitza Stark Phenotypes for gene: ERG were changed from Lymphatic malformation 14, MIM# 620602 to Lymphatic malformation 14, MIM# 620602; Myelodysplasia syndrome, MONDO:0018881, ERG-related | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1499 | ERG | Zornitza Stark edited their review of gene: ERG: Changed rating: AMBER; Changed publications: s://ash.confex.com/ash/2023/webprogram/Paper191986.html; Changed phenotypes: Myelodysplasia syndrome, MONDO:0018881, ERG-related; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1457 | SPIN4 |
Belinda Chong gene: SPIN4 was added gene: SPIN4 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SPIN4 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: SPIN4 were set to 36927955 Phenotypes for gene: SPIN4 were set to Lui-Jee-Baron syndrome MIM#301114 Review for gene: SPIN4 was set to AMBER Added comment: PMID 36927955 * Single family, hemizygous frameshift variant (NM_001012968.3, c.312_313AGdel) identified in a male individual with generalized overgrowth of prenatal onset, variant also present in the mother and grandmother (both had adult heights 2 SDS greater than their midparental heights). * In vitro shows loss of function and mice studies recapitulated the human phenotype with generalized overgrowth, including increased longitudinal bone growth. Sources: Literature Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1369 | ERG | Zornitza Stark Phenotypes for gene: ERG were changed from primary lymphoedema MONDO#0019175, ERG-related to Lymphatic malformation 14, MIM# 620602 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1319 | PTPN4 |
Bryony Thompson changed review comment from: >3 unrelated probands and supporting mouse model PMID: 17953619 - knockout mouse model has impaired motor learning and cerebellar synaptic plasticity PMID: 25424712 - twins with a de novo whole gene deletion and a Rett-like neurodevelopmental disorder PMID: 30238967 - mosaic de novo variant (p.Leu72Ser) identified in a child with developmental delay, autistic features, hypotonia, increased immunoglobulin E and dental problems. Also supporting mouse assays demonstrating loss of protein expression in dendritic spines DOI: https://doi.org/10.1016/j.xhgg.2021.100033 - missense and truncating variants in six unrelated individuals with varying degrees of intellectual disability or developmental delay. 5 were able to undergo segregation analysis and found to be de novo. Sources: Literature; to: >3 unrelated probands and supporting mouse model PMID: 17953619 - knockout mouse model has impaired motor learning and cerebellar synaptic plasticity PMID: 25424712 - twins with a de novo whole gene deletion and a Rett-like neurodevelopmental disorder PMID: 30238967 - mosaic de novo variant (p.Leu72Ser) identified in a child with developmental delay, autistic features, hypotonia, increased immunoglobulin E and dental problems. Also supporting mouse assays demonstrating loss of protein expression in dendritic spines PMID: 34527963 - missense and truncating variants in six unrelated individuals with varying degrees of intellectual disability or developmental delay. 5 were able to undergo segregation analysis and found to be de novo. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1283 | MCM9 | Natalie Tan changed review comment from: Emerging association in individuals with biallelic variants of a combined phenotype of primary ovarian insufficiency and a Lynch-like syndrome/early-onset colorectal cancer (PMID: 26806154, 34556653). Monoallelic carriers have also been reported with a Lynch-like syndrome (32841224). Association of primary ovarian insufficiency with other malignancies is less clear (32613604, 34556653). See PMID 37378315 for review of literature to April 2023.; to: Emerging association in individuals with biallelic variants of a combined phenotype of primary ovarian insufficiency and a Lynch-like syndrome/early-onset colorectal cancer (PMID: 26806154, 34556653). Monoallelic carriers have also been reported with a Lynch-like syndrome (32841224). Association of primary ovarian insufficiency with other malignancies is less clear (32613604, 34556653). See PMID 37378315 for review of literature to April 2023. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1269 | STAT6 | Zornitza Stark Phenotypes for gene: STAT6 were changed from Allergic disease, MONDO:0005271, STAT6-related; early-onset multiorgan allergies to Hyper-IgE syndrome 6, autosomal dominant, with atopy and allergies, MIM# 620532 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1268 | STAT6 | Zornitza Stark edited their review of gene: STAT6: Changed phenotypes: Hyper-IgE syndrome 6, autosomal dominant, with atopy and allergies, MIM# 620532 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1140 | SOX11 | Zornitza Stark edited their review of gene: SOX11: Added comment: Over 40 additional individuals reported, e.g. PMID 35341651. The phenotype that has emerged over time is distinct from patients with mutations in ARID1B (614556) and Coffin-Siris syndrome-1 (135900). Patients with IDDMOH tend to be microcephalic and have ocular motor apraxia, abnormal eye morphology, or hypogonadotropic hypogonadism.; Changed publications: 29459093, 24886874, 33086258, 33785884, 35642566, 35341651 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1130 | CRELD1 | Zornitza Stark edited their review of gene: CRELD1: Added comment: Emerging association between bi-alleic variants in CRELD1 and DEE.; Changed rating: GREEN; Changed phenotypes: Developmental and epileptic encephalopathy, MONDO:0100062, CRELD1-related, Atrioventricular septal defect, partial, with heterotaxy syndrome, MIM# 606217; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1125 | STAT5B |
Zornitza Stark changed review comment from: Both bi-allelic and mono allelic (GoF) inheritance reported. AD GoF phenotype: increased IgE, growth failure, eczema but no immune defects compared to AR phenotype (modestly decreased T cells, reduced Tregs and function, hypergammaglobulinaemia, increased IgE).; to: Both bi-allelic and mono allelic (GoF) inheritance reported. AD GoF phenotype: increased IgE, growth failure, eczema but no immune defects compared to AR phenotype (modestly decreased T cells, reduced Tregs and function, hypergammaglobulinaemia, increased IgE). Somatic variants also reported. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.985 | GPATCH11 |
Chirag Patel gene: GPATCH11 was added gene: GPATCH11 was added to Mendeliome. Sources: Other Mode of inheritance for gene: GPATCH11 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: GPATCH11 were set to Leber congenital amaurosis and developmental delay Review for gene: GPATCH11 was set to GREEN gene: GPATCH11 was marked as current diagnostic Added comment: ESHG 2023: 3 families with 8 individuals with leber congenital amaurosis, developmental delay, language disorder, and behavioural issues. GPATCH11 localises to nucleus and basal body of primary cilium (similar to other LCA genes). Biallelic variants found in GPATCH11 - 1 splice variant common to all 3 families (1 other variant in 3rd family). Splice variant leads to loss of exon 4 (mRNA studies). Mouse models showed i) abnormal rod/cone responses on ERG; ii) decreased outer nuclear layer in retina, and iii) abnormal associate/episodic memory Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.956 | RPH3A |
Lucy Spencer gene: RPH3A was added gene: RPH3A was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RPH3A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: RPH3A were set to 37403762; 29441694 Phenotypes for gene: RPH3A were set to Neurodevelopmental disorder (MONDO#0700092), RPH3A-related Review for gene: RPH3A was set to GREEN Added comment: PMID: 37403762- 6 patients with RPH3A variant. All 6 have ID, 4 have epilepsy, 2 with obesity, 1 with dysmorphic features. All 6 have missense variants, 3 shown to be de novo, the other 3 parents were not available for testing. I patient also had language and motor impairment, breathing issues and mixed hypo/hypertonia- he also had variants in CUL4B, PRKAG2, SCN4A, none of these genes cause seizures (which he had). Patch clamp studies on 2 of the missense showed they increased either the number of NMDA receptors on neuron membrane surface or increased their conductance. Study suggests that the variants interrupt the normal role of RPH3A activity at the synaptic NMDAR complex which is needed for the induction of synaptic plasticity and NMDAR-dependant behaviours Previously this gene was reported in PMID: 29441694- 1 girl with learning disabilities, tremors, ataxia, hyperglycemia and muscle fatigability. Chet for 2 RPH3A missense. Functional analysis showed strong and marginal impairment of protein binding for each variant. this is the only biallelic report currently. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.834 | ERG | Ain Roesley Publications for gene: ERG were set to | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.833 | ERG | Ain Roesley Phenotypes for gene: ERG were changed from to primary lymphoedema MONDO#0019175, ERG-related | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.832 | ERG | Ain Roesley Mode of inheritance for gene: ERG was changed from Unknown to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.832 | ERG | Ain Roesley Classified gene: ERG as Green List (high evidence) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.832 | ERG | Ain Roesley Gene: erg has been classified as Green List (High Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.831 | ERG | Ain Roesley reviewed gene: ERG: Rating: GREEN; Mode of pathogenicity: None; Publications: 36928819; Phenotypes: primary lymphoedema MONDO#0019175, ERG-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.763 | PPCDC |
Bryony Thompson gene: PPCDC was added gene: PPCDC was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PPCDC was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PPCDC were set to 36564894 Phenotypes for gene: PPCDC were set to dilated cardiomyopathy MONDO:0005021 Review for gene: PPCDC was set to RED Added comment: Single family reported with two siblings with a fatal cardiac phenotype including dilated cardiomyopathy with biallelic variants p.Thr53Pro and p.Ala95Val. Patient-derived fibroblasts showed an absence of PPCDC protein, and nearly 50% reductions in CoA levels. The cells showed clear energy deficiency problems, with defects in mitochondrial respiration, and mostly glycolytic ATP synthesis. Functional studies performed in yeast suggest these mutations to be functionally relevant. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.697 | SLC25A36 |
Krithika Murali gene: SLC25A36 was added gene: SLC25A36 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SLC25A36 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SLC25A36 were set to 34971397; 34576089; 31036718 Phenotypes for gene: SLC25A36 were set to Hyperinsulinemic hypoglycemia, familial, 8 - MIM#620211 Review for gene: SLC25A36 was set to GREEN Added comment: Solute carrier family 25 members 33 (SLC25A33) and 36 (SLC25A36) are the only known mitochondrial pyrimidine nucleotide carriers in humans PMID: 34971397 Sharoor et al 2022 report 2 siblings with hyperinsulinism, hypoglycemia and hyperammonemia from early infancy with homozygous SLC25A36 c.284 + 3 A > T variant identified through WES. Functional studies support LoF. PMID: 34576089 report a 12-year-old patient with hypothyroidism, hyperinsulinism, hyperammonemia, chronical obstipation, short stature, along with language and general developmental delay. WES identified SLC25A36 gene homozygous c.803dupT, p.Ser269llefs*35 variant. Functional analysis of mutant SLC25A36 protein in proteoliposomes showed a virtually abolished transport activity. Immunoblotting results suggest that the mutant SLC25A36 protein in the patient undergoes fast degradation. Supplementation with uridine lead to some improvement in clinical course. PMID: 31036718 deficiencies in SLC25A36 in mouse embryonic stem cells have been associated with mtDNA depletion as well as mitochondrial dysfunction Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.667 | STAT6 |
Zornitza Stark gene: STAT6 was added gene: STAT6 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: STAT6 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: STAT6 were set to 36216080; 36758835 Phenotypes for gene: STAT6 were set to Allergic disease, MONDO:0005271, STAT6-related; early-onset multiorgan allergies Review for gene: STAT6 was set to GREEN Added comment: Two families reported with GoF variants and extensive functional data. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.626 | THBS1 |
Zornitza Stark gene: THBS1 was added gene: THBS1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: THBS1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: THBS1 were set to 36453543 Phenotypes for gene: THBS1 were set to Congenital glaucoma MONDO:0020366, THBS1-related Review for gene: THBS1 was set to GREEN Added comment: Missense alleles altering p.Arg1034, a highly evolutionarily conserved amino acid, in 3 unrelated and ethnically diverse families affected by congenital glaucoma. Thbs1R1034C-mutant mice had elevated intraocular pressure (IOP), reduced ocular fluid outflow, and retinal ganglion cell loss. Histology revealed an abundant, abnormal extracellular accumulation of THBS1 with abnormal morphology of juxtacanalicular trabecular meshwork (TM), an ocular tissue critical for aqueous fluid outflow. Functional characterization showed that the THBS1 missense alleles found in affected individuals destabilized the THBS1 C-terminus, causing protein misfolding and extracellular aggregation. Analysis using a range of amino acid substitutions at position R1034 showed that the extent of aggregation was correlated with the change in protein-folding free energy caused by variations in amino acid structure. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.554 | SETD2 |
Zornitza Stark edited their review of gene: SETD2: Added comment: PMID 32710489: 12 unrelated patients, ranging from 1 month to 12 years of age, with a multisystemic neurodevelopmental disorder associated with a specific de novo heterozygous mutation in the SETD2 gene (R1740W). Key clinical features: severely impaired global development apparent from infancy, feeding difficulties with failure to thrive, small head circumference, and dysmorphic facial features. Affected individuals have impaired intellectual development and hypotonia; they do not achieve walking or meaningful speech. Other neurologic findings may include seizures, hearing loss, ophthalmologic defects, and brain imaging abnormalities. There is variable involvement of other organ systems, including skeletal, genitourinary, cardiac, and possibly endocrine. Further 3 unrelated patients identified with mild to moderately impaired intellectual development associated with a specific de novo heterozygous mutation in the SETD2 gene (R1740Q). These are distinct clinically from Luscan-Lumish syndrome, which is characterised by overgrowth.; Changed publications: 29681085, 32710489; Changed phenotypes: Luscan-Lumish syndrome, MIM#616831, Rabin-Pappas syndrome,MIM# 620155, Intellectual developmental disorder, autosomal dominant 70, MIM# 620157 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.547 | IL2RB |
Zornitza Stark changed review comment from: Five families reported. Sources: Expert list; to: Five families reported. Affected individuals present in infancy with features of both abnormal activation of certain immune signaling pathways, resulting in lymphoid proliferation, dermatitis, enteropathy, and hypergammaglobulinemia, as well as features of immunodeficiency, such as recurrent infections and increased susceptibility to viral infections, especially CMV. Laboratory studies show increased NK cells that show impaired differentiation, as well as abnormal T cell populations or responses. Some patients may die in childhood; hematopoietic bone marrow transplantation is curative. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.395 | TOMM7 |
Bryony Thompson gene: TOMM7 was added gene: TOMM7 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TOMM7 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TOMM7 were set to DOI:https://doi.org/10.1016/j.xhgg.2022.100148 Phenotypes for gene: TOMM7 were set to growth retardation, intellectual developmental disorder, hypotonia, and hepatopathy MONDO:0014911 Review for gene: TOMM7 was set to AMBER Added comment: A single case identified with a homozygous variant in TOMM7 (c.73T>C, p.Trp25Arg) that presented with syndromic short stature, skeletal abnormalities, muscle hypotonia, microvesicular liver steatosis, and developmental delay. A mouse model of the missense variant demonstrated a bioenergetic defect and a phenotype of mitochondrial diseases. It also strongly suggested that the variant is hypomorphic because mice homozygous for this variant showed a milder phenotype than those with a homozygous Tomm7 deletion. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.346 | TRAF3 | Zornitza Stark edited their review of gene: TRAF3: Added comment: PMID 35960817: Nine individuals from five unrelated families with childhood-onset immune diseases and recurrent infections. All patients had suffered recurrent ear and sinopulmonary infections, including pneumonias from encapsulated bacteria Streptococcus pneumoniae and Haemophilus influenza, resulting in early-onset bronchiectasis in several individuals; Changed rating: GREEN; Changed publications: 20832341, 35960817; Changed phenotypes: Autoinflammatory syndrome, TRAF3-related, MONDO:0019751, hypergammaglobulinemia, lymphadenopathy, splenomegaly, Sjögren’s syndrome, {?Encephalopathy, acute, infection-induced (herpes-specific), susceptibility to, 5}, MIM# 614849 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.325 | PPP2R5C |
Teresa Zhao changed review comment from: - ClinVar: two de novo missense variants (p.E177K and p.H188R), one has been reported for intellectual disability - PMID 25972378: inframe del (T157del) found in a de novo individual with ID, facial asymmetry, conductive HL, overgrowth - VCGS proband: additional de novo missense variant (p.K299E) found in one individual with syndromic intellectual disability; to: - ClinVar: two de novo missense variants (p.E177K and p.H188R), one has been reported for intellectual disability - PMID 25972378: inframe del (T157del) found in a de novo individual with ID, facial asymmetry, conductive HL, overgrowth - VCGS proband: additional de novo missense variant (p.K299E) found in one individual with syndromic intellectual disability |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.87 | TNNT1 | Bryony Thompson Added comment: Comment on mode of inheritance: There is emerging evidence for monoallelic mode of inheritance | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14295 | MTOR | Zornitza Stark Phenotypes for gene: MTOR were changed from to Smith-Kingsmore syndrome, MIM# 616638; Focal cortical dysplasia, type II, somatic, MIM# 607341; Overgrowth syndrome and/or cerebral malformations due to abnormalities in MTOR pathway genes, MONDO:0100283 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14292 | MTOR | Zornitza Stark reviewed gene: MTOR: Rating: GREEN; Mode of pathogenicity: Other; Publications: 28892148, 25878179, 26018084; Phenotypes: Smith-Kingsmore syndrome, MIM# 616638, Focal cortical dysplasia, type II, somatic, MIM# 607341, Overgrowth syndrome and/or cerebral malformations due to abnormalities in MTOR pathway genes, MONDO:0100283; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13884 | DCHS1 | Zornitza Stark Phenotypes for gene: DCHS1 were changed from to Van Maldergem syndrome 1, MIM# 601390 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13881 | DCHS1 | Zornitza Stark reviewed gene: DCHS1: Rating: GREEN; Mode of pathogenicity: None; Publications: 27262615, 22473091, 24056717, 29046692; Phenotypes: Van Maldergem syndrome 1, MIM# 601390; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13372 | CLEC7A | Ain Roesley Phenotypes for gene: CLEC7A were changed from to {Aspergillosis, susceptibility to} MIM#614079; candidiasis, familial, 4, autosomal recessive MIM#613108 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13370 | CLEC7A | Ain Roesley edited their review of gene: CLEC7A: Changed publications: 19864674, 20807886; Changed phenotypes: {Aspergillosis, susceptibility to} MIM#614079, candidiasis, familial, 4, autosomal recessive MIM#613108; Set current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13370 | CLEC7A |
Ain Roesley changed review comment from: Unable to find any mendelian disease association; to: Unable to find any mendelian disease association. Reports of Tyr238* and it's association with {Aspergillosis, susceptibility to} MIM#614079 leading to candidiasis, familial, 4, autosomal recessive MIM#613108 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12720 | FUZ | Anna Ritchie changed review comment from: Novel missense p.(Arg284Pro) mutation in FUZ identified in twins presenting with craniosynostosis. Loss of Fuz resulted in increased mineralisation in both in vitro embryonic primary osteoblast cultures and in fibroblasts undergoing an osteogenic challenge. No previous reports have implicated changes in human FUZ in craniosynostosis. However, variations in FUZ have been found in patients with neural tube defects.; to: Novel missense p.(Arg284Pro) mutation in FUZ identified in twins presenting with craniosynostosis. Loss of Fuz resulted in increased mineralisation in both in vitro embryonic primary osteoblast cultures and in fibroblasts undergoing an osteogenic challenge. No previous reports have implicated changes in human FUZ in craniosynostosis. However, variations in FUZ have been found in patients with neural tube defects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12467 | FAT4 | Zornitza Stark Phenotypes for gene: FAT4 were changed from to Hennekam lymphangiectasia-lymphedema syndrome 2 MIM#616006; Van Maldergem syndrome 2 MIM#615546 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12373 | SLC6A19 | Zornitza Stark Phenotypes for gene: SLC6A19 were changed from to Hartnup disorder, MIM# 234500; Hyperglycinuria, MIM# 138500; Iminoglycinuria, MIM# 242600 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12124 | CALM1 | Ain Roesley Phenotypes for gene: CALM1 were changed from to Long QT syndrome 14 MIM#616247; Ventricular tachycardia, catecholaminergic polymorphic, 4 MIM#614916 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12122 | CALM1 | Ain Roesley reviewed gene: CALM1: Rating: GREEN; Mode of pathogenicity: None; Publications: 31170290; Phenotypes: Long QT syndrome 14 MIM#616247, Ventricular tachycardia, catecholaminergic polymorphic, 4 MIM#614916; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12071 | LIAS | Alison Yeung Phenotypes for gene: LIAS were changed from to Hyperglycinemia, lactic acidosis, and seizures, MIM# 614462 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12068 | LIAS | Alison Yeung reviewed gene: LIAS: Rating: GREEN; Mode of pathogenicity: None; Publications: 22152680, 24334290, 26108146; Phenotypes: Hyperglycinemia, lactic acidosis, and seizures, MIM# 614462; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11911 | LBR | Alison Yeung Phenotypes for gene: LBR were changed from to Greenberg skeletal dysplasia, MIM# 215140 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11835 | NLGN3 | Zornitza Stark Phenotypes for gene: NLGN3 were changed from to X-linked complex neurodevelopmental disorder MONDO:0100148; {Asperger syndrome susceptibility, X-linked 1} - MIM#300494; {Autism susceptibility, X-linked 1} - MIM#300425 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11792 | SUZ12 | Zornitza Stark changed review comment from: More than 10 unrelated individuals reported.; to: More than 10 unrelated individuals reported, ID and overgrowth. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11792 | NLGN3 | Krithika Murali reviewed gene: NLGN3: Rating: ; Mode of pathogenicity: None; Publications: 28584888, 12669065, 25167861; Phenotypes: {Asperger syndrome susceptibility, X-linked 1} - MIM#300494, {Autism susceptibility, X-linked 1} - MIM#300425; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11505 | IL13 | Zornitza Stark Phenotypes for gene: IL13 were changed from to {Allergic rhinitis, susceptibility to} 607154; {Asthma, susceptibility to} 600807 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11503 | IL13 | Zornitza Stark reviewed gene: IL13: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: {Allergic rhinitis, susceptibility to} 607154, {Asthma, susceptibility to} 600807; Mode of inheritance: None | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11076 | PPP2R3C |
Zornitza Stark gene: PPP2R3C was added gene: PPP2R3C was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PPP2R3C was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PPP2R3C were set to 30893644; 34714774; 34750818 Phenotypes for gene: PPP2R3C were set to Gonadal dysgenesis, dysmorphic facies, retinal dystrophy, and myopathy, OMIM # 618419 Review for gene: PPP2R3C was set to GREEN Added comment: Gonadal dysgenesis, dysmorphic facies, retinal dystrophy, and myopathy (GDRM) is characterized by 46,XY complete gonadal dysgenesis in association with extragonadal anomalies, low birth weight, typical facial gestalt, rod and cone dystrophy, sensorineural hearing loss, omphalocele, anal atresia, renal agenesis, skeletal abnormalities, dry and scaly skin, severe myopathy, and neuromotor delay. 11 unrelated families with syndromic complete gonadal dysgenesis. 9 families had 46,XY females with complete gonadal dysgenesis, but 2 families had 46,XX patients with hypergonadotropic hypogonadism, nonvisualized gonads, primary amenorrhea, and absence of secondary sexual characteristics. Variants segregated with disease in each family and were not found in ethnically matched controls or in public variant databases. The heterozygous fathers exhibited morphologic abnormalities of spermatozoa and reduced fertility. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10674 | PITX1 | Zornitza Stark Phenotypes for gene: PITX1 were changed from to Brachydactyly-elbow wrist dysplasia syndrome, MONDO:0008520; Clubfoot, MONDO:0007342; Liebenberg syndrome, OMIM:186550; Clubfoot, congenital, with or without deficiency of long bones and/or mirror-image polydactyly, OMIM:119800 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10671 | PITX1 | Zornitza Stark reviewed gene: PITX1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21775501, 22258522, 18950742; Phenotypes: Brachydactyly-elbow wrist dysplasia syndrome, MONDO:0008520, Clubfoot, MONDO:0007342, Liebenberg syndrome, OMIM:186550, Clubfoot, congenital, with or without deficiency of long bones and/or mirror-image polydactyly, OMIM:119800; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10637 | ANAPC7 |
Zornitza Stark gene: ANAPC7 was added gene: ANAPC7 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ANAPC7 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ANAPC7 were set to 34942119 Phenotypes for gene: ANAPC7 were set to Ferguson-Bonni neurodevelopmental syndrome, MIM# 619699 Review for gene: ANAPC7 was set to AMBER Added comment: 11 individuals of Amish heritage reported homozygous for an intragenic deletion. Clinical features included ID, hypotonia, deafness in 5, relatively small head size (but microcephaly only in 1), and occasional congenital anomalies. Supportive mouse model. Amber rating in light of this being a founder variant. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10442 | SKI | Zornitza Stark reviewed gene: SKI: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Shprintzen-Goldberg syndrome, MIM#182212; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10436 | SKI | Seb Lunke Phenotypes for gene: SKI were changed from to Shprintzen-Goldberg syndrome, MIM#182212 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10433 | SKI | Seb Lunke reviewed gene: SKI: Rating: GREEN; Mode of pathogenicity: None; Publications: 15884042, 23023332; Phenotypes: Shprintzen-Goldberg syndrome, MIM#182212; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10427 | TECRL |
Zornitza Stark gene: TECRL was added gene: TECRL was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: TECRL was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TECRL were set to 17666061; 27861123; 30790670; 33367594 Phenotypes for gene: TECRL were set to Ventricular tachycardia, catecholaminergic polymorphic, 3, MIM# 614021 Review for gene: TECRL was set to GREEN Added comment: DEFINITIVE by ClinGen Homozygous or cpd heterozygous pathogenic variants in TECRL have been identified in patients with CPVT in at least 3 families in the literature with functional evidence. - 17666061 one consanguineous family with 4 affected relatives (siblings or 1stcousins) - 27861123 consanguineous family with 8 affected relatives (siblings or 1stcousins) - 30790670 reported in a single family with one child with features of CPVT -A multi-centre review published in 2020 provided an update on these cases and described two additional CPVT cases (homozygous p.Tyr197Ter nonsense variant and homozygous exon 2 deletion) and a family with three children with sudden cardiac death, where one was homozygous for the c.331+1G>A splice donor variant, PMID 33367594 Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10404 | BRWD3 | Zornitza Stark changed review comment from: More than 10 unrelated families reported, overgrowth, and in particular macrocephaly.; to: More than 10 unrelated families reported with ID, overgrowth, and in particular macrocephaly. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10404 | BRWD3 | Zornitza Stark changed review comment from: More than 10 unrelated families reported, overgrowth, and in particular macrocephaly reported.; to: More than 10 unrelated families reported, overgrowth, and in particular macrocephaly. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10207 | FAT4 | Ain Roesley reviewed gene: FAT4: Rating: GREEN; Mode of pathogenicity: None; Publications: 29681106; Phenotypes: Hennekam lymphangiectasia-lymphedema syndrome 2 MIM#616006, Van Maldergem syndrome 2 MIM#615546; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10169 | BOLA3 | Zornitza Stark Phenotypes for gene: BOLA3 were changed from to Multiple mitochondrial dysfunctions syndrome 2 with hyperglycinemia, MIM# 614299 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10166 | BOLA3 | Zornitza Stark reviewed gene: BOLA3: Rating: GREEN; Mode of pathogenicity: None; Publications: 30302924, 29654549, 30302924; Phenotypes: Multiple mitochondrial dysfunctions syndrome 2 with hyperglycinemia, MIM# 614299; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9984 | CARD10 |
Zornitza Stark gene: CARD10 was added gene: CARD10 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: CARD10 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CARD10 were set to 32238915 Phenotypes for gene: CARD10 were set to Immunodeficiency 89 and autoimmunity, MIM# 619632 Review for gene: CARD10 was set to RED Added comment: A pair of siblings reported with adult onset of recurrent infections, allergies, microcytic anaemia, and Crohn disease. Homozygous missense variant. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9661 | B3GAT3 | Zornitza Stark changed review comment from: More than 5 unrelated families reported.; to: 26 patients from 13 families with variable phenotypes resembling Larsen, Antley-Bixler, Shprintzen-Goldberg, and Geroderma osteodysplastica syndromes. Multiple skeletal and cardiac abnormalities reported. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9586 | KSR2 |
Zornitza Stark gene: KSR2 was added gene: KSR2 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: KSR2 was set to Other Publications for gene: KSR2 were set to 29273807; 24209692 Phenotypes for gene: KSR2 were set to Obesity Review for gene: KSR2 was set to RED Added comment: PMID: 24209692 Targeted deletion of Ksr2 leads to obesity in mice, suggesting a role in energy homeostasis. PMID: 29273807 GWAS identified KSR2 (13 genes studied) implicated in extreme obesity. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9569 | KIAA0391 |
Lucy Spencer changed review comment from: Four unrelated families with multisystem disease associated with bi-allelic variants in PRORP. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes. -1 consanguineous family with homozygous missense in 3 affected sisters, het parents unaffected. Siblings had profound bilateral SNHL in infancy. In teens developed primary amenorrhea/Perrault syndrome, and hypergonadotropic hypogonadism. -1 unrelated male with compound het missense, each inherited from an unaffected parent. Hearing loss noted at 3, diagnosed at 5. -1 unrelated male compound het for a missense and a frameshift. appendicular hypertonia in infancy, mild dysmorphism. Severe global dev delay at 20 months. Normal hearing at 18 months, but at 3 years had bilateral SNHL. -an affected mother and her 2 affected children (son and daughter), homozygous for a missense. Father is heterozygous and unaffected. Son has psychotic disorder, autistic traits. Sister had intrauterine growth retardation, global developmental delay, and seizures in the first years of life. Mother presented with retrobulbar optic neuritis and tonic pupil at 39 years of age, then with asthenia, myalgias, memory loss, and frequent headaches. All variants are in p.400s. Sources: Literature; to: Four unrelated families with multisystem disease associated with bi-allelic variants in PRORP. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes. -1 consanguineous family with homozygous missense in 3 affected sisters, het parents unaffected. Siblings had profound bilateral SNHL in infancy. In teens developed primary amenorrhea/Perrault syndrome, and hypergonadotropic hypogonadism. -1 unrelated male with compound het missense, each inherited from an unaffected parent. Hearing loss noted at 3, diagnosed at 5. -1 unrelated male compound het for a missense and a frameshift. appendicular hypertonia in infancy, mild dysmorphism. Severe global dev delay at 20 months. Normal hearing at 18 months, but at 3 years had bilateral SNHL. -an affected mother and her 2 affected children (son and daughter), homozygous for a missense. Father is heterozygous and unaffected. Son has psychotic disorder, autistic traits. Sister had intrauterine growth retardation, global developmental delay, and seizures in the first years of life. Mother presented with retrobulbar optic neuritis and tonic pupil at 39 years of age, then with asthenia, myalgias, memory loss, and frequent headaches. All variants are in p.400s. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9567 | KIAA0391 |
Lucy Spencer gene: KIAA0391 was added gene: KIAA0391 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: KIAA0391 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: KIAA0391 were set to PMID: 34715011 Added comment: Four unrelated families with multisystem disease associated with bi-allelic variants in PRORP. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes. -1 consanguineous family with homozygous missense in 3 affected sisters, het parents unaffected. Siblings had profound bilateral SNHL in infancy. In teens developed primary amenorrhea/Perrault syndrome, and hypergonadotropic hypogonadism. -1 unrelated male with compound het missense, each inherited from an unaffected parent. Hearing loss noted at 3, diagnosed at 5. -1 unrelated male compound het for a missense and a frameshift. appendicular hypertonia in infancy, mild dysmorphism. Severe global dev delay at 20 months. Normal hearing at 18 months, but at 3 years had bilateral SNHL. -an affected mother and her 2 affected children (son and daughter), homozygous for a missense. Father is heterozygous and unaffected. Son has psychotic disorder, autistic traits. Sister had intrauterine growth retardation, global developmental delay, and seizures in the first years of life. Mother presented with retrobulbar optic neuritis and tonic pupil at 39 years of age, then with asthenia, myalgias, memory loss, and frequent headaches. All variants are in p.400s. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9375 | ERGIC1 | Zornitza Stark Publications for gene: ERGIC1 were set to 28317099; 34037256 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9374 | ERGIC1 | Zornitza Stark Classified gene: ERGIC1 as Green List (high evidence) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9374 | ERGIC1 | Zornitza Stark Gene: ergic1 has been classified as Green List (High Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9373 | ERGIC1 | Zornitza Stark edited their review of gene: ERGIC1: Added comment: Pehlivan et al. 2019 (PMID:31230720) identified the third case of arthrogryposis in a child who harboured a previously unreported homozygous variant (c.782G>A; p.Gly261Asp) in this gene. Parents were heterozygous carriers. Functional studies were not performed.; Changed rating: GREEN; Changed publications: 28317099, 34037256, 31230720 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9171 | ERGIC1 | Zornitza Stark Marked gene: ERGIC1 as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9171 | ERGIC1 | Zornitza Stark Gene: ergic1 has been classified as Amber List (Moderate Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9171 | ERGIC1 | Zornitza Stark Classified gene: ERGIC1 as Amber List (moderate evidence) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9171 | ERGIC1 | Zornitza Stark Gene: ergic1 has been classified as Amber List (Moderate Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9170 | ERGIC1 |
Zornitza Stark gene: ERGIC1 was added gene: ERGIC1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ERGIC1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ERGIC1 were set to 28317099; 34037256 Phenotypes for gene: ERGIC1 were set to Arthrogryposis multiplex congenita 2, neurogenic type; OMIM # 208100 Review for gene: ERGIC1 was set to AMBER Added comment: Reinstein et al. (2018) used WES in a large consanguineous Israeli Arab kindred consisting of 16 patients affected with the neurogenic type of arthrogryposis multiplex congenita. They identified a homozygous missense (V98E) mutation in ERGIC1 gene, which segregated with the disorder in the kindred, and was not found in the ExAC database or in 212 ethnically matched controls. Functional studies of the variant and studies of patient cells were not performed. ERGIC1 encodes a cycling membrane protein which has a possible role in transport between endoplasmic reticulum and Golgi. Marconi et al (2021) used genome sequencing in a consanguineous family with 2 affected siblings presenting congenital arthrogryposis and some facial dysmorphism. They identified a homozygous 22.6 Kb deletion encompassing the promoter and first exon of ERGIC1. mRNA quantification showed the complete absence of ERGIC1 expression in the two affected siblings and a decrease in heterozygous parents. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8807 | VPS50 |
Zornitza Stark gene: VPS50 was added gene: VPS50 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: VPS50 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: VPS50 were set to 34037727 Phenotypes for gene: VPS50 were set to Neonatal cholestatic liver disease; Failure to thrive; Profound global developmental delay; Postnatal microcephaly; Seizures; Abnormality of the corpus callosum Review for gene: VPS50 was set to AMBER Added comment: Schneeberger et al (2021 - PMID: 34037727) describe the phenotype of 2 unrelated individuals with biallelic VPS50 variants. Common features included transient neonatal cholestasis, failure to thrive, severe DD with failure to achieve milestones (last examination at 2y and 2y2m respectively), postnatal microcephaly, seizures (onset at 6m and 25m) and irritability. There was corpus callosum hypoplasia on brain imaging. Both individuals were homozygous for variants private to each family (no/not known consanguinity applying to each case). The first individual was homozygous for a splicing variant (NM_017667.4:c.1978-1G>T) and had a similarly unaffected sister deceased with no available DNA for testing. The other individual was homozygous for an in-frame deletion (c.1823_1825delCAA / p.(Thr608del)). VPS50 encodes a critical component of the endosome-associated recycling protein (EARP) complex, which functions in recycling endocytic vesicles back to the plasma membrane [OMIM based on Schindler et al]. The complex contains VPS50, VPS51, VPS52, VPS53, the three latter also being components of GARP (Golgi-associated-retrograde protein) complex. GARP contains VPS54 instead of VPS50 and is required for trafficking of proteins to the trans-golgi network. Thus VPS50 (also named syndetin) and VPS54 function in the EARP and GARP complexes, to define directional movement of their endocytic vesicles [OMIM based on Schindler et al]. The VPS50 subunit is required for recycling of the transferrin receptor. As discussed by Schneeberger et al (refs provided in text): - VPS50 has a high expression in mouse and human brain as well as throughout mouse brain development. - Mice deficient for Vps50 have not been reported. vps50 knockdown in zebrafish results in severe developmental defects of the body axis. Knockout mice for other proteins of the EARP/GARP complex (e.g. Vps52, 53 and 54) display embryonic lethality. Studies performed by Schneeberger et al included: - Transcript analysis for the 1st variant demonstrated skipping of ex21 (in patient derived fabriblasts) leading to an in frame deletion of 81 bp (r.1978_2058del) with predicted loss of 27 residues (p.Leu660_Leu686del). - Similar VPS50 mRNA levels but significant reduction of protein levels (~5% and ~8% of controls) were observed in fibroblasts from patients 1 and 2. Additionally, significant reductions in the amounts of VPS52 and VPS53 protein levels were observed despite mRNA levels similar to controls. Overall, this suggested drastic reduction of functional EARP complex levels. - Lysosomes appeared to have similar morphology, cellular distribution and likely unaffected function in patient fibroblasts. - Transferrin receptor recycling was shown to be delayed in patient fibroblasts suggestive of compromise of endocytic-recycling function. As the authors comment, the phenotype of both individuals with biallelic VPS50 variants overlaps with the corresponding phenotype reported in 15 subjects with biallelic VPS53 or VPS51 mutations notably, severe DD/ID, microcephaly and early onset epilepsy, CC anomalies. Overall, for this group, they propose the term "GARP and/or EARP deficiency disorders". There is no VPS50-associated phenotype in OMIM or G2P. SysID includes VPS50 among the ID candidate genes. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8767 | SPINK5 | Danielle Ariti reviewed gene: SPINK5: Rating: ; Mode of pathogenicity: None; Publications: 33534181, 20657595; Phenotypes: Netherton syndrome MIM# 256500, Low switched and non-switched B cells, High IgE and IgA, Antibody variably decreased, Congenital ichthyosis, bamboo hair, atopic diathesis, increased bacterial infections, failure to thrive, food allergies; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8671 | RGS10 |
Zornitza Stark gene: RGS10 was added gene: RGS10 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RGS10 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: RGS10 were set to 34315806; 34339853 Phenotypes for gene: RGS10 were set to Immunodeficiency; short stature Review for gene: RGS10 was set to RED Added comment: Three affected siblings with short stature and immunodeficiency and segregating biallelic variants in RGS10 (c.489_491del:p.E163del and c.G511T:p.A171S). The affected individuals had recurrent infections, hypergammaglobulinaemia, profoundly reduced lymphocyte chemotaxis, abnormal lymph node architecture, and short stature due to growth hormone deficiency. Limited functional data presented. Further experimental data linking RGS10 to immune function presented in PMID 34339853. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8533 | DOCK8 | Zornitza Stark Phenotypes for gene: DOCK8 were changed from to Hyper-IgE recurrent infection syndrome, autosomal recessive MIM# 243700; T cell Lymphopaenia; decraese T/B/NK cells; Eosinophilia; low IgM; elevated IgE; recurrent cutaneous/ viral/ bacterial/ fungal/ infections; severe atopy/allergic disease; autoimmune haemolytic anaemia; eczema; cancer diathesis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8527 | DOCK8 | Danielle Ariti reviewed gene: DOCK8: Rating: GREEN; Mode of pathogenicity: None; Publications: 19776401, 20622910, 21931011, 26659092, 19898472, 25422492; Phenotypes: Hyper-IgE recurrent infection syndrome, autosomal recessive MIM# 243700, T cell Lymphopaenia, decraese T/B/NK cells, Eosinophilia, low IgM, elevated IgE, recurrent cutaneous/ viral/ bacterial/ fungal/ infections, severe atopy/allergic disease, autoimmune haemolytic anaemia, eczema, cancer diathesisc; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8284 | ERGIC3 | Seb Lunke Marked gene: ERGIC3 as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8284 | ERGIC3 | Seb Lunke Gene: ergic3 has been classified as Amber List (Moderate Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8284 | ERGIC3 | Seb Lunke Classified gene: ERGIC3 as Amber List (moderate evidence) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8284 | ERGIC3 | Seb Lunke Gene: ergic3 has been classified as Amber List (Moderate Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8201 | ERGIC3 |
Elena Savva gene: ERGIC3 was added gene: ERGIC3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ERGIC3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ERGIC3 were set to PMID: 33710394; 31585110 Phenotypes for gene: ERGIC3 were set to Intellectual disability Review for gene: ERGIC3 was set to AMBER Added comment: PMID: 33710394 - two homozygous sibs with mild ID, a novel canonical splice (c.717+1G>A). Absent in gnomAD, no splice studies. Classed as a VUS. PMID: 31585110 - 1 hom (p.Gln233Argfs*10) in a male 8yo with Growth retardation, Microcephaly, Learning disability, Facial dysmorphism, Abnormal pigmentation. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8130 | C21orf2 |
Zornitza Stark changed review comment from: Axial spondylometaphyseal dysplasia (SMDAX) is characterized by postnatal growth failure, including rhizomelic short stature in early childhood that evolves into short trunk in late childhood, and thoracic hypoplasia that may cause mild to moderate respiratory problems in the neonatal period and later susceptibility to airway infection. Impaired visual acuity comes to medical attention in early life and vision rapidly deteriorates. Retinal changes are diagnosed as retinitis pigmentosa or pigmentary retinal degeneration on funduscopic examination and as cone-rod dystrophy on ERG. Radiologic hallmarks include short ribs with flared and cupped anterior ends, mild spondylar dysplasia, lacy iliac crests, and metaphyseal irregularities essentially confined to the proximal femora. At least 7 unrelated families reported. 7 families also reported with isolated retinal dystrophy.; to: Axial spondylometaphyseal dysplasia (SMDAX) is characterized by postnatal growth failure, including rhizomelic short stature in early childhood that evolves into short trunk in late childhood, and thoracic hypoplasia that may cause mild to moderate respiratory problems in the neonatal period and later susceptibility to airway infection. Impaired visual acuity comes to medical attention in early life and vision rapidly deteriorates. Retinal changes are diagnosed as retinitis pigmentosa or pigmentary retinal degeneration on funduscopic examination and as cone-rod dystrophy on ERG. Radiologic hallmarks include short ribs with flared and cupped anterior ends, mild spondylar dysplasia, lacy iliac crests, and metaphyseal irregularities essentially confined to the proximal femora. At least 7 unrelated families reported. 7 families also reported with isolated retinal dystrophy. New HGNC approved name is CFAP410. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8037 | GATA2 | Zornitza Stark Phenotypes for gene: GATA2 were changed from to Immunodeficiency 21, MIM# 614172; GATA2 deficiency with susceptibility to MDS/AML MONDO:0042982; Emberger syndrome, MIM# 614038; Deafness-lymphoedema-leukaemia syndrome MONDO:0013540 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8034 | GATA2 | Zornitza Stark reviewed gene: GATA2: Rating: GREEN; Mode of pathogenicity: None; Publications: 21670465, 21242295, 21892158; Phenotypes: Immunodeficiency 21, MIM# 614172, GATA2 deficiency with susceptibility to MDS/AML MONDO:0042982, Emberger syndrome, MIM# 614038, Deafness-lymphoedema-leukaemia syndrome MONDO:0013540; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7897 | PRKD1 |
Zornitza Stark edited their review of gene: PRKD1: Added comment: Additional publications supporting association with bi-allelic disease: PMID: 33919081: Three sisters with pulmonary stenosis, truncus arteriosis, and atrial septal defect were homozygous for c.265-1G>T. Their asymptomatic father was also homozygous, however he had two affected sisters (not genotyped), raising the possibility that PRKD1 may undergo autosomal recessive inheritance mode with gender limitation. PMID: 25713110: Two sisters with truncus arteriosis were homozygous for R618X.; Changed publications: 27479907, 32817298, 25713110, 33919081; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7740 | LHCGR | Zornitza Stark Phenotypes for gene: LHCGR were changed from to Luteinizing hormone resistance, female, (MIM#238320); Leydig cell hypoplasia with pseudohermaphroditism, (MIM#238320); Leydig cell hypoplasia with hypergonadotropic hypogonadism, (MIM#238320); Precocious puberty, male, (MIM#176410) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7735 | LHCGR | Ain Roesley reviewed gene: LHCGR: Rating: GREEN; Mode of pathogenicity: None; Publications: 11041448; Phenotypes: Luteinizing hormone resistance, female, (MIM#238320), Leydig cell hypoplasia with pseudohermaphroditism, (MIM#238320), Leydig cell hypoplasia with hypergonadotropic hypogonadism, (MIM#238320), Precocious puberty, male, (MIM#176410); Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7652 | TBC1D2B | Zornitza Stark Phenotypes for gene: TBC1D2B were changed from Global developmental delay; Intellectual disability; Seizures; Gingival overgrowth; Behavioral abnormality; Abnormality of the mandible; Abnormality of brain morphology; Abnormality of the eye; Hearing abnormality to Neurodevelopmental disorder with seizures and gingival overgrowth (NEDSGO), MIM#619323; Global developmental delay; Intellectual disability; Seizures; Gingival overgrowth; Behavioral abnormality; Abnormality of the mandible; Abnormality of brain morphology; Abnormality of the eye; Hearing abnormality | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7651 | TBC1D2B | Zornitza Stark edited their review of gene: TBC1D2B: Changed phenotypes: Neurodevelopmental disorder with seizures and gingival overgrowth (NEDSGO), MIM#619323, Global developmental delay, Intellectual disability, Seizures, Gingival overgrowth, Behavioral abnormality, Abnormality of the mandible, Abnormality of brain morphology, Abnormality of the eye, Hearing abnormality | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7509 | PTPN4 |
Bryony Thompson gene: PTPN4 was added gene: PTPN4 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PTPN4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: PTPN4 were set to 17953619; 25424712; 30238967; DOI: https://doi.org/10.1016/j.xhgg.2021.100033 Phenotypes for gene: PTPN4 were set to Intellectual disability; developmental delay Review for gene: PTPN4 was set to GREEN Added comment: >3 unrelated probands and supporting mouse model PMID: 17953619 - knockout mouse model has impaired motor learning and cerebellar synaptic plasticity PMID: 25424712 - twins with a de novo whole gene deletion and a Rett-like neurodevelopmental disorder PMID: 30238967 - mosaic de novo variant (p.Leu72Ser) identified in a child with developmental delay, autistic features, hypotonia, increased immunoglobulin E and dental problems. Also supporting mouse assays demonstrating loss of protein expression in dendritic spines DOI: https://doi.org/10.1016/j.xhgg.2021.100033 - missense and truncating variants in six unrelated individuals with varying degrees of intellectual disability or developmental delay. 5 were able to undergo segregation analysis and found to be de novo. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7493 | PDGFRB | Zornitza Stark Phenotypes for gene: PDGFRB were changed from Premature aging syndrome, Penttinen type, 601812 to Basal ganglia calcification, idiopathic, 4, MIM# 615007; Kosaki overgrowth syndrome, MIM# 616592; Myeloproliferative disorder with eosinophilia, MIM# 131440; Myofibromatosis, infantile, 1, MIM# 228550; Premature ageing syndrome, Penttinen type, MIM# 601812 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7491 | PDGFRB | Zornitza Stark reviewed gene: PDGFRB: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Basal ganglia calcification, idiopathic, 4, MIM# 615007, Kosaki overgrowth syndrome, MIM# 616592, Myeloproliferative disorder with eosinophilia, MIM# 131440, Myofibromatosis, infantile, 1, MIM# 228550, Premature ageing syndrome, Penttinen type, MIM# 601812; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7437 | PPP2R5C |
Sue White gene: PPP2R5C was added gene: PPP2R5C was added to Mendeliome. Sources: Research Mode of inheritance for gene: PPP2R5C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: PPP2R5C were set to macrocephaly; intellectual disability Penetrance for gene: PPP2R5C were set to Complete Review for gene: PPP2R5C was set to AMBER Added comment: Emerging unpublished evidence of monoallelic missense variants causing intellectual disability and macrocephaly Sources: Research |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7346 | GCGR |
Zornitza Stark gene: GCGR was added gene: GCGR was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: GCGR was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: GCGR were set to 19657311; 25695890; 27933176; 30032256; 30294546 Phenotypes for gene: GCGR were set to Mahvash disease, MIM# 619290 Review for gene: GCGR was set to GREEN Added comment: Mahvash disease (MVAH) is caused by inactivating mutations in the glucagon receptor, leading to alpha-cell hyperplasia of the pancreas, hyperglucagonaemia without glucagonoma syndrome, and occasional hypoglycaemia. The disease may lead to glucagonomas and/or primitive neuroectodermal tumours. More than 5 unrelated families reported. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6924 | CD4 | Zornitza Stark changed review comment from: Single individual reported, functional data, emerging gene.; to: Two individuals reported, functional data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6878 | FLII |
Zornitza Stark changed review comment from: Two unrelated families reported with homozygous missense variants. Emerging evidence. Sources: Literature; to: Two unrelated families reported with homozygous missense variants. Emerging evidence: aware of two more families. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6801 | FLII |
Zornitza Stark gene: FLII was added gene: FLII was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FLII was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: FLII were set to 32870709 Phenotypes for gene: FLII were set to Dilated cardiomyopathy Review for gene: FLII was set to AMBER Added comment: Two unrelated families reported with homozygous missense variants. Emerging evidence. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6793 | MPEG1 |
Zornitza Stark gene: MPEG1 was added gene: MPEG1 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: MPEG1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: MPEG1 were set to 33224153; 33692780; 28422754 Phenotypes for gene: MPEG1 were set to Immunodeficiency 77, MIM# 619223 Review for gene: MPEG1 was set to GREEN Added comment: Immunodeficiency-77 (IMD77) is an immunologic disorder characterized by recurrent and persistent polymicrobial infections with multiple unusual organisms. Skin and pulmonary infections are the most common, consistent with increased susceptibility to epithelial cell infections. The age at onset is highly variable: some patients have recurrent infections from childhood, whereas others present in late adulthood. The limited number of reported patients are all female, suggesting incomplete penetrance or a possible sex-influenced trait. Patient cells, mainly macrophages, show impaired killing of intracellular bacteria and organisms, including nontubercular mycobacteria, although there is also impaired killing of other organisms, such as Pseudomonas, Candida, and Aspergillus. Four individuals reported, functional data, including animal model. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6775 | ESCO2 | Zornitza Stark Phenotypes for gene: ESCO2 were changed from to Juberg-Hayward syndrome, MIM# 216100; Roberts-SC phocomelia syndrome, MIM#268300 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6772 | ESCO2 | Zornitza Stark reviewed gene: ESCO2: Rating: GREEN; Mode of pathogenicity: None; Publications: 32977150; Phenotypes: Juberg-Hayward syndrome, MIM# 216100, Roberts-SC phocomelia syndrome, MIM#268300; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6289 | SLC36A2 | Zornitza Stark Phenotypes for gene: SLC36A2 were changed from to Hyperglycinuria MIM#138500; Iminoglycinuria, digenic MIM#242600; Disorders of amino acid transport | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6285 | SLC36A2 | Zornitza Stark reviewed gene: SLC36A2: Rating: AMBER; Mode of pathogenicity: None; Publications: 19033659, 26141664, 27604308; Phenotypes: Hyperglycinuria MIM#138500, Iminoglycinuria, digenic MIM#242600, Disorders of amino acid transport; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6161 | SLC6A20 | Zornitza Stark Phenotypes for gene: SLC6A20 were changed from to Hyperglycinuria, MIM# 138500 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6158 | SLC6A20 | Zornitza Stark reviewed gene: SLC6A20: Rating: GREEN; Mode of pathogenicity: None; Publications: 24816252, 19033659; Phenotypes: Hyperglycinuria, MIM# 138500; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5222 | MPP5 |
Konstantinos Varvagiannis gene: MPP5 was added gene: MPP5 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MPP5 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: MPP5 were set to 33073849 Phenotypes for gene: MPP5 were set to Global developmental delay; Intellectual disability; Delayed speech and language development; Developmental regression; Behavioral abnormality Penetrance for gene: MPP5 were set to unknown Review for gene: MPP5 was set to GREEN Added comment: Sterling et al (2020 - PMID: 33073849) provide information on the phenotype of 3 individuals with de novo MPP5 variants. Common features included global developmental delay, intellectual disability (3/3 - severe in 2/3), speech delay/regression (the latter in at least 2) and behavioral abnormalities. Variable other features were reported, among others microcephaly (1/3), abnormal vision (1/3 : CVI, retinal dystrophy, nystagmus), brain MRI abnormalities (2/3), late-onset seizures (1/3). These subjects displayed variable and non-specific dysmorphic features. All were investigated by exome sequencing (previous investigations not mentioned). One subject was found to harbor a de novo mosaic (5/25 reads) stopgain variant, further confirmed by Sanger sequencing [NM_022474.4:c.1555C>T - p.(Arg519Ter). The specific variant is reported once in gnomAD (1/251338). Two de novo missense variants were identified in the remaining individuals [c.1289A>G - p.Glu430Gly / c.974A>C - p.His325Pro). All variants had in silico predictions in favor of a deleterious effect (CADD score >24). The authors comment that MPP5 encodes an apical complex protein with asymmetric localization to the apical side of polarized cells. It is expressed in brain, peripheral nervous system and other tissues. MPP5 is a member of the membrane-associated guanylate kinase family of proteins (MAGUK p55 subfamily), determining cell polarity at tight junctions. Previous animal models suggest that complete Mpp5(Pals1) KO in mice leads to near absence of cerebral cortical neurons. Htz KO display reduction in size of cerebral cortex and hippocampus. The gene is expressed in proliferating cell populations of cerebellum and important for establishment cerebellar architecture. Conditional KO of Mpp5(Pals1) in retinal progenitor cells mimics the retinal pathology observed in LCA. [Several refs. provided] The authors studied a heterozygous CNS-specific Mpp5 KO mouse model. These mice presented microcephaly, decreased cerebellar volume and cortical thickness, decreased ependymal cells and Mpp5 at the apical surface of cortical vertrical zone. The proportion of cortical cells undergoing apoptotic cell death was increased. Mice displayed behavioral abnormalities (hyperactivity) and visual deficits, with ERG traces further suggesting retinal blindness. Overall the mouse model was thought to recapitulate the behavioral abnormalities observed in affected subjects as well as individual rare features such as microcephaly and abnormal vision. Haploinsufficiency (rather than a dominant negative effect) is favored as the underlying disease mechanism. This is also in line with a dose dependent effect observed in mice. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4998 | CSNK1G1 |
Zornitza Stark gene: CSNK1G1 was added gene: CSNK1G1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CSNK1G1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CSNK1G1 were set to 33009664 Phenotypes for gene: CSNK1G1 were set to Global developmental delay; Intellectual disability; Autism; Seizures Review for gene: CSNK1G1 was set to GREEN Added comment: Borderline Green/Amber rating. Gold et al (2020 - PMID: 33009664) report 5 individuals with CSNK1G1 variants, including updated information on a previously reported subject (Martin et al 2014 - PMID: 24463883). Features included DD (5/5) with associated expressive language delay, ASD (in at least 3/5), seizures (2/5), dysmorphic facial features (4/5 arched eyebrows, 3/5 prominent central incisors, 2/5 epicanthus) and limb anomalies (2/5 - proximally placed thumb, 5th f. clinodactyly, asymmetric overgrowth - the other individual had tapering fingers). GI problems were observed in 4/5. Two individuals had macrocephaly and one had microcephaly. There was no formal developmental assessment although ID might be implied in at least 3 individuals (p1: 20y - single words/regression in walking following a seizure episode, p2: 8y - first words at 5y, assistance to feed, dress and bathe, ASD, p4: 13y - regression, assistance to feed and dress). CSNK1G1 encodes the gamma-1 isoform of casein kinase 1, a protein involved in growth and cell morphogenesis. The gene has ubiquitous expression, incl. brain. As commented, in brain it regulates phosphorylation of NMDA receptors, playing a role in synaptic transmission (4 articles cited). One individual had a 1.2 kb deletion spanning exon 3 of CSNK1G1 [chr15:64550952-64552120 - GRCh37]. Parental samples were unavailable for this individual. Four individuals were found to harbor de novo CSNK1G1 variants [NM_022048.3: c.688C>T - p.(Arg230Trp) dn | c.1255C>T - p.(Gln419*) dn | c.1214+5G>A dn with in silico predictions in favor of splice disruption | c.419C>T - p.(Thr140Met) dn]. Arg230Trp is however present once in gnomAD. The stopgain variant is located in the last exon and predicted to skip NMD. There were no variant studies performed. The Drosophila gish gene encodes a CK1γ homolog with preferential expression in the mushroom body. Heterozygous and homozygous mutants exhibit impairment in memory retention, more severe in homozygous flies. gish was also identified as a seizure modifier in a fly epilepsy model (heterozygous para mt flies). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4783 | PRICKLE3 |
Teresa Zhao gene: PRICKLE3 was added gene: PRICKLE3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PRICKLE3 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: PRICKLE3 were set to 32516135 Phenotypes for gene: PRICKLE3 were set to Leber’s hereditary optic neuropathy MIM#535000 Review for gene: PRICKLE3 was set to AMBER Added comment: Reported as X-linked LHON modifier (c.157C>T, p.Arg53Trp) in PRICKLE3 in 3 Chinese families. All affected individuals carried both ND4 11778G>A and p.Arg53Trp mutations, while subjects bearing only a single mutation exhibited normal vision. Defective assembly, stability, and function of ATP synthase observed using Lymphoblastoid cell lines from one of the families. This finding indicated that the p.Arg53Trp mutation acted in synergy with the m.11778G>A mutation and deteriorated mitochondrial dysfunctions necessary for the expression of LHON. Prickle3-deficient mice exhibited pronounced ATPase deficiencies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4520 | SLC12A2 |
Zornitza Stark edited their review of gene: SLC12A2: Added comment: Monoallelic : DD/ID was a feature in >= 6 individuals with monoallelic de novo SLC12A2. An individual with an exon 22 truncating variant was reported to have normal milestones and cognitive function. Exon 21 variants have been described in individuals with rather isolated hearing impairment (possibly some associated motor delay, but normal cognition). Hearing impairment was also reported in 2/6 patients with variants in other exons (1 missense / 1 frameshift). Biallelic : DD/ID was reported in at least 3 individuals in literature. Hearing impairment has been reported on 2 occasions (although this was not probably evaluated in all subjects). --- Monoallelic SLC12A2 mutations : ► Individuals with de novo mutations and developmental disorder were first identified by the DDD study (2017 - PMID: 28135719). 5 of them have been reported in detail by McNeill et al (below). ► McNeill et al (2020 - PMID: 32658972) report on 6 individuals with neurodevelopmental disorder due to de novo SLC12A2 mutation. All presented DD or ID ranging from mild to severe. ASD was reported in 3/6. Sensorineural hearing loss was a feature in 2/6 with the remaining having normal formal evaluations. Brain, cardiac and/or additional malformations were reported in a single individual. Following non-diagnostic prior work-up (CMA, FMR1 or other investigations) trio exome sequencing revealed missense (4/6) or truncating variants (2/6). Three additional individuals (incl. a father and his son) with missense variants in exon 21 (NM_001046.3 / p.Glu979Lys and p.Glu980Lys) presented with bilateral sensorineural hearing loss. Speech and/or motor delay reported in these cases were attributed to the hearing impairment/vestibular arreflexia (cognitive abilities not tested). SLC12A2 encodes sodium-potassium-chloride transporter 1 (also NKCC1). The GTEx project has identified 8 isoforms. In brain both exon 21-containing/deleted isoforms are expressed (cited Morita et al 2014 - PMID: 24695712). As the authors discuss, RNA-seq of the developing mouse cochlea suggests that the exon 21 containing isoform is the single transcript expressed. Evidence from RNA-seq data (BrainSpan project) and literature suggests that the significant amounts of exon 21 lacking isoforms in fetal brain compensate for the deleterious effects of exon 21 variants and explain the lack of NDD in relevant patients. Slc12a2 (NKCC1) null mouse model has demonstrated that the transporter plays a role in accumulation of the potassium rich endolymph in the inner ear, with NKCC1 absence causing sensorineural deafness and imbalance. Slc12a2 display cochlear malformations, loss of hair cells and hearing impairment (cited Delpire et al 1999 - PMID: 10369265). The brain phenotype has not been studied extensively, although loss of Slc12a2 has been shown to inhibit neurogenesis (cited: Magalhães and Rivera et al. - PMID: 27582690). Slc12a2 null zebrafish display a collapse of the otic vesicle and reduced endolymph (Abbas and Whitfield, 2009 - PMID: 19633174) relevant to the human hearing disorder. In vitro assessment of NKCC1 ion transporter function in Xenopus laevis, supported the deleterious effect of the identified variants (significant reduction in K+ influx). Using available single cell RNA-seq data the authors further demonstrated that SLC12A2 expressing cells display transcriptomic profiles reflective of active neurogenesis. ► Delpire et al (2016 - PMID: 27900370 - not reviewed in detail) described a 13 y.o. girl harboring a de novo 11-bp deletion in SLC12A2 exon 22. This individual reached developmental milestones on time and had a NORMAL cognitive function. Hearing was seemingly normal. Features included orthostatic intolerance, respiratory weakness, multiple endocrine abnormalities, pancreatic insufficiency and multiorgan failure incl. gut and bladder. Exome in the proband, parents and 3 unaffected sibs suggested SLC12A2 as the only candidate for her phenotype. Functional analyses in Xenopus laevis oocytes suggested that a non functional transporter was expressed and trafficked to the membrane as the wt. Detection of the truncated protein at higher molecular sizes suggested either enhanced dimerization or misfolded aggregate. There was no dominant-negative effect of mutant NKCC1. In patient fibroblasts a reduced total and NKCC1-mediated K+ influx. ► Mutai et al (2020 - PMID: 32294086) report on several individuals from 4 families, harboring variants within exon 21 or - in one case - at it's 3' splice-site (leading to skipping oe this exon at the mRNA level). All subjects were investigated for severe/profound hearing loss (in line with the role of exon 21-included isoforms in cochlea. The variant segregated with hearing impairment in 3 generations of a family while in all other subjects the variant had occured as de novo event. Despite motor delays (e.g. the subject from fam2 could not hold head or sit at the age of 10m / the proband in Fam3 was able to hold his head and walk at 6 and 20 m respectively) behavior and cognition were commented to be within normal range. ----- Biallelic SLC12A2 mutations: ► Anazi et al (2017 - PMID: 29288388) briefly reported on a 3 y.o. boy (17DG0776) with central hypotonia, neonatal respiratory distress, failure to thrive, global DD and microcephaly and a skeletal survey suggestive of osteopenia. After non-diagnostic prior investigations (CMA revealing a 1p duplication classified as VUS, extensive metabolic workup), WES revealed a homozygous SLC12A2 splicing variant [NM_001046.2:c.2617-2A>G]. ► Macnamara et al (2019 - PMID: 30740830) described a 5.5 y.o. male with sensorineural hearing loss, profound delays in all developmental areas among several other features (choanal atresia, failure to thrive, respiratory problems, absent sweat and tear production or salivation, GI abnormalities). Genetic testing for several disorders considered (cystic fibrosis, spinal muscular atrophy, sequencing and del/dup analysis of mtDNA) was normal. CMA revealed paternal uniparental isodisomy for chr. 5 and WGS a homozygous 22kb deletion in SLC12A2. This was followed by confirmation of homozygosity in the proband, heterozygosity of the unaffected father, delineation of breakpoints (chr5:127441491-127471419). mRNA studies in patient fibroblasts confirmed deletion of ex2-7, splicing of ex1 directly to ex8 and introduction of a premature stop codon in ex9. qRT-PCR confirmed that mRNA is likely subjected to NMD (expression ~80% of control). Western blot confirmed absence of the protein in the patient's fibroblasts. Again mouse models are thought to recapitulate the hearing defect but also the deficient saliva production (cited Evans et al 2000 - PMID: 10831596). Again the authors speculate a role of SLC12A2 in brain development based on evidence from murine models (migration, dendritic growth, increse in neuron density through regulation of GABAergic signalling (Young et al 2012 - PMID: 23015452). Hypotheses are also made on a regulatory relationship between NKCC1 and CFTR based on mRNA data from the ko mouse model. ► Stödberg et al (2020 - PMID: 32754646) reported 2 sibs with a complex neurodevelopmental disorder due to compound heterozygosity for a frameshift SLC12A2 variant and a splicing one (NM_001046:c.1431delT and c.2006-1G>A). Both presented hypotonia, neonatal S. aureus parotitis and respiratory problems (incl. apneas). While the older sib died at the age of 22 days, the younger one had persistent respiratory issues incl. a dry respiratory mucosa motivating metabolic, immunology investigations and testing for CF. She displayed microcephaly (OFC -2.5 SD, H was also -3.5SD), severe intellectual disability. MRI was suggestive of white matter and basal ganglia abnormalities. Other features incl. hearing impairment, and lack of tears,saliva and sweat, constipation and intestinal malrotation. There was facial dysmorphism. The variants were the only retained following WGS of the 2 affected sisters, parents and an unaffected brother. The splicing variant was shown to result in skipping of exon 13, while the indel in NMD. Again the authors discuss that the deficient saliva production, impaired hearing and GI problems are recapitulated in the mouse model (several refs provided).; Changed rating: GREEN; Changed publications: 28135719, 32658972, 27900370, 32294086, 29288388, 30740830, 32754646; Changed phenotypes: Kilquist syndrome, deafness, intellectual disability, dysmorphic features, absent salivation, ectodermal dysplasia, constipation, intestinal malrotation, multiple congenital anomalies; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4141 | TIMM8A | Zornitza Stark Phenotypes for gene: TIMM8A were changed from to Mohr-Tranebjaerg syndrome, MIM# 304700 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4139 | TIMM8A | Zornitza Stark reviewed gene: TIMM8A: Rating: GREEN; Mode of pathogenicity: None; Publications: 11803487, 11405816; Phenotypes: Mohr-Tranebjaerg syndrome, MIM# 304700; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4085 | KIF1BP | Zornitza Stark Phenotypes for gene: KIF1BP were changed from to Goldberg-Shprintzen megacolon syndrome, MIM# 609460 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4082 | KIF1BP | Zornitza Stark reviewed gene: KIF1BP: Rating: GREEN; Mode of pathogenicity: None; Publications: 23427148; Phenotypes: Goldberg-Shprintzen megacolon syndrome, MIM# 609460; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3325 | TBC1D2B |
Zornitza Stark gene: TBC1D2B was added gene: TBC1D2B was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: TBC1D2B was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TBC1D2B were set to 32623794 Phenotypes for gene: TBC1D2B were set to Global developmental delay; Intellectual disability; Seizures; Gingival overgrowth; Behavioral abnormality; Abnormality of the mandible; Abnormality of brain morphology; Abnormality of the eye; Hearing abnormality Review for gene: TBC1D2B was set to GREEN Added comment: Harms et al (2020 - PMID: 32623794) report on 3 unrelated individuals with biallelic pLoF TBC1D2B variants. Features included cognitive impairment (mild ID in one case, regression at the age of 12y in another, hypotonia and delayed milestones in a third aged 8m), seizures (3/3 - variable age of onset) and/or gingival overgrowth (2/3 - prior to initiation of AEDs). Other findings included behavioral abnormalities, mandibular anomalies, abnormal brain imaging and ophthalmologic or (rarely) audiometric evaluations. All were born to non-consanguineous couples and additional investigations were performed in some. Variants were identified by WES or trio WGS, with Sanger confirmation/compatible segregation analyses. In line with the pLoF variants, mRNA studies in fibroblasts from 2 unrelated affected individuals demonstrated significantly reduced (~80-90%) TBC1C2D mRNA levels compared to controls, restored following cycloheximide treatment. Protein was absent in patient fibroblasts. TBC-domain containing GTPase activating proteins are known as key regulators of RAB GTPase activity. TBC1D2B was shown to colocalize with RAB5-positive endocytic vesicles. CRISPR/Cas9-mediated ko of TBC1D2B in HeLa cells suggested a role in EGF receptor endocytosis and decreased cell viability of TBC1D2B-deficient HeLa cells upon serum deprivation. Genes encoding other TBC domain-containg GTPase-activating proteins, e.g. TBC1D7 and TBC1D20, TBC1D24 are associated with recessive neurodevelopmental disorders (with ID and/or seizures) and the pathophysiological defect in TBC1D2B-related disorder (deficit in vesicle trafficking and/or cell survival) is proposed to be similar to that of TBC1D24. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3323 | EXOC2 |
Zornitza Stark gene: EXOC2 was added gene: EXOC2 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: EXOC2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: EXOC2 were set to 32639540 Phenotypes for gene: EXOC2 were set to Global developmental delay; Intellectual disability; Abnormality of the face; Abnormality of brain morphology Review for gene: EXOC2 was set to AMBER Added comment: Van Bergen et al (2020 - PMID: 32639540) report on 3 individuals from 2 families, harboring biallelic EXOC2 mutations. Clinical presentation included DD, ID (severe in 2 subjects from fam1, borderline intellectual functioning in fam2), dysmorphic features and brain abnormalities. Cerebellar anomalies were common to all with a molar tooth sign observed in one (1/3). Other findings limited to subjects from one family included acquired microcephaly, congenital contractures, spastic quadriplegia (each observed 2/3). Previous investigations were in all cases non-diagnostic. WES identified biallelic EXOC2 mutations in all affected individuals. EXOC2 encodes an exocyst subunit. The latter is an octameric complex, component of the membrane transport machinery, required for tethering and fusion of vesicles at the plasma membrane. As discussed ,vesicle transport is important for the development of brain and the function of neurons and glia. Exocyst function is also important for delivery of Arl13b to the primary cilium (biallelic ARL13B mutations cause Joubert syndrome 8) and ciliogenesis. Affected subjects from a broader consanguineous family (fam1) were homozygous for a truncating variant. Fibroblast studies revealed mRNA levels compatible with NMD (further restored in presence of CHX) as well as reduced protein levels. The female belonging to the second non-consanguineous family was found to harbor 2 missense variants in trans configuration. An exocytosis defect was demonstrated in fibroblasts from individuals belonging to both families. Ciliogenesis appeared to be normal, however Arl13b localization/recruitment to the cilia was reduced compared with control cells with the defect rescued upon exogenous expression of wt EXOC2. Mutations in other genes encoding components of the exocyst complex have been previously reported in individuals with relevant phenotypes (e.g. EXOC8 in a boy with features of Joubert s. or EXOC4 in nephrotic syndrome). The authors discuss on the essential role of EXOC2 based on model organism studies (e.g. impaired neuronal membrane traffic, failure of neuronal polarization and neuromuscular junction expansion seen in Drosophila Sec5 (EXOC2) null mutants). Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3318 | ABCA2 |
Zornitza Stark gene: ABCA2 was added gene: ABCA2 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: ABCA2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ABCA2 were set to 30237576; 29302074; 31047799 Phenotypes for gene: ABCA2 were set to Intellectual developmental disorder with poor growth and with or without seizures or ataxia, 618808 Review for gene: ABCA2 was set to GREEN Added comment: Biallelic pathogenic ABCA2 variants cause Intellectual developmental disorder with poor growth and with or without seizures or ataxia (MIM 618808). There are 3 relevant publications (01-07-2020) : - Maddirevula et al [2019 - PMID: 30237576] described briefly 2 unrelated subjects (16-2987, 16DG0071) both DD and seizures among other manifestations. - Hu et al [2019 - PMID: 29302074] reported 3 sibs (M8600615 - III:1-3) born to consanguineous parents (M8600615 - III:1-3) with DD/ID (formal confirmation of moderate ID, in those (2) evaluated). One also presented with seizures. - Aslam and Naz [2019 - PMID: 31047799] provided clinical details on 2 siblings born to consanguineous parents. ID was reported for the older sib but was absent in the younger one. Seizures were not part of the phenotype. All subjects harbored biallelic pLoF variants. N.B. : Steinberg et al [2015 - PMID: 25773295], within a cohort of patients with ALS, identified one with biallelic ABCA2 variants. As however Aslam and Naz comment, this person harbored a single pathogenic variant, with a second one rather unlikely to be pathogenic due to high allele frequency. Overall this gene can be considered for inclusion with green rating in both ID and epilepsy panels (each in >=3 unrelated individuals). Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2859 | JARID2 |
Zornitza Stark gene: JARID2 was added gene: JARID2 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: JARID2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: JARID2 were set to 23294540 Phenotypes for gene: JARID2 were set to Intellectual disability Review for gene: JARID2 was set to AMBER Added comment: Emerging evidence that haploinsufficiency causes neurodevelopmental phenotypes, mostly based on CNV data to date. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2440 | MCAT |
Chern Lim gene: MCAT was added gene: MCAT was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MCAT was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MCAT were set to 31915829 Phenotypes for gene: MCAT were set to progressive autosomal recessive optic neuropathy Review for gene: MCAT was set to RED Added comment: One family reported - a consanguineous family, two homozygous missense variants in both affected siblings. Functional studies showed both missense together have synergic impact on MCAT protein misfolding; p.(L81R) had more impact on MCAT protein expression reduction than did the p.(R212W); some study in conditional knockout mice. (PMID:31915829) Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2372 | ACKR3 |
Elena Savva gene: ACKR3 was added gene: ACKR3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ACKR3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ACKR3 were set to PMID: 3121183 Phenotypes for gene: ACKR3 were set to Oculomotor synkinesis Review for gene: ACKR3 was set to AMBER Added comment: No phenotype currently listed in OMIM PMID: 3121183 - 1 family (3 siblings and a cousin) with congenital ptosis and oculomotor synkinesis. Mouse model reciprocated the phenotype. Functional assay using transfected HEK293 cells show protein mislocalization and lower binding affinity Emerging gene-disease association Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1944 | IL2RB |
Zornitza Stark gene: IL2RB was added gene: IL2RB was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: IL2RB was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: IL2RB were set to 31040184; 31040185 Phenotypes for gene: IL2RB were set to Immunodeficiency 63 with lymphoproliferation and autoimmunity, MIM# 618495; Lymphoproliferation, lymphadenopathy, hepatosplenomegaly, autoimmune haemolytic anaemia, dermatitis, enteropathy, hypergammaglobulinaemia, recurrent viral (EBV, CMV) infections Review for gene: IL2RB was set to GREEN Added comment: Five families reported. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1836 | GNB2 |
Sue White gene: GNB2 was added gene: GNB2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GNB2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: GNB2 were set to 31698099 Phenotypes for gene: GNB2 were set to intellectual disability; dysmorphic features Penetrance for gene: GNB2 were set to Complete Review for gene: GNB2 was set to AMBER Added comment: single report of patient with de novo missense variant in GNB2 and intellectual disability. Emerging evidence of other de no missense variants in GNB2 and ID Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1639 | GLRX5 | Zornitza Stark Phenotypes for gene: GLRX5 were changed from to Anemia, sideroblastic, 3, pyridoxine-refractory; Spasticity, childhood-onset, with hyperglycinemia | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1635 | GLRX5 | Elena Savva reviewed gene: GLRX5: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Anemia, sideroblastic, 3, pyridoxine-refractory, Spasticity, childhood-onset, with hyperglycinemia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1312 | KCNK4 | Zornitza Stark Phenotypes for gene: KCNK4 were changed from to Facial dysmorphism, hypertrichosis, epilepsy, intellectual/developmental delay, and gingival overgrowth syndrome 618381 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1308 | KCNK4 | Zornitza Stark reviewed gene: KCNK4: Rating: GREEN; Mode of pathogenicity: Other; Publications: 30290154; Phenotypes: Facial dysmorphism, hypertrichosis, epilepsy, intellectual/developmental delay, and gingival overgrowth syndrome 618381; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1114 | HUWE1 | Zornitza Stark Phenotypes for gene: HUWE1 were changed from to Mental retardation, X-linked syndromic, Turner type; Say-Meyer syndrome; Juberg-Marsidi syndrome | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.914 | RAB11A |
Zornitza Stark gene: RAB11A was added gene: RAB11A was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RAB11A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: RAB11A were set to 29100083 Phenotypes for gene: RAB11A were set to Intellectual disability; seizures Review for gene: RAB11A was set to AMBER Added comment: Five individuals reported with DNMs and neurodevelopmental phenotypes as part of this paper; however, clinical details are sparse. Emerging gene, phenotype not yet clearly delineated. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.774 | ZFHX3 | Zornitza Stark Added comment: Comment when marking as ready: Emerging evidence. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.273 | GABRA5 |
Zornitza Stark gene: GABRA5 was added gene: GABRA5 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: GABRA5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: GABRA5 were set to 31056671; 29961870 Phenotypes for gene: GABRA5 were set to Epileptic encephalopathy, early infantile, 79; OMIM #618559 Review for gene: GABRA5 was set to GREEN Added comment: 3 unrelated patients with de novo heterozygous missense mutations in GABRA5 gene. In vitro functional expression studies in HEK293 cells showed that the mutant subunit was expressed at the surface and incorporated into the channel, but the mutant channel was 10 times more sensitive to GABA compared to wildtype. This increased sensitization resulted in increased receptor desensitization to GABA, with a reduced maximal GABA-evoked current and impaired capacity to pass GABAergic chloride current. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.47 | ERG | Zornitza Stark Marked gene: ERG as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.47 | ERG | Zornitza Stark Gene: erg has been classified as Red List (Low Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.47 | ERG | Zornitza Stark Classified gene: ERG as Red List (low evidence) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.47 | ERG | Zornitza Stark Gene: erg has been classified as Red List (Low Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.46 | ERG | Zornitza Stark reviewed gene: ERG: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: ; Mode of inheritance: None | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.0 | ERG |
Zornitza Stark gene: ERG was added gene: ERG was added to Mendeliome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services Mode of inheritance for gene: ERG was set to Unknown |