Date | Panel | Item | Activity | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mendeliome v1.2432 | CDC20 |
Zornitza Stark gene: CDC20 was added gene: CDC20 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CDC20 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CDC20 were set to 32666501; 33683667; 33898437; 34218387 Phenotypes for gene: CDC20 were set to Oocyte/zygote/embryo maturation arrest 14, MIM# 620276 Review for gene: CDC20 was set to GREEN Added comment: i) PMID: 32666501- Biallelic (homozygous/compound heterozygous) variants in 5 unrelated Chinese women with infertility due to oocyte maturation arrest. Knocked down mouse oocytes showed an metaphase I (MI) arrest phenotype that could be rescued by injection of wildtype human CDC20 cRNA; all of the variants significantly reduced the ability of CDC20 to rescue the phenotype. ii) PMID: 33683667- a compound heterozygous (missense and nonsense) variant in a Chinese woman with infertility due to oocyte maturation abnormalities and early embryonic arrest. iii) PMID: 33898437- 4 patients from 3 Chinese families with homozygous or compound heterozygous variants with infertility due to oocyte maturation arrest, fertilization failure, and early embryonic arrest. Functional analysis in mouse oocytes with knockdown of Cdc20 showed that the homozygous and compound heterozygous variants significantly reduced the ability of CDC20 to rescue the lack of PB1 extrusion (MI arrest). iv) PMID: 34218387- homozygous missense variant in a Chinese woman with infertility due to oocyte maturation arrest at MI and fertilization failure of MII oocytes. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2426 | SPAG6 |
Zornitza Stark gene: SPAG6 was added gene: SPAG6 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SPAG6 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SPAG6 were set to 35232447; 38073178; 32124190 Phenotypes for gene: SPAG6 were set to Spermatogenic failure, MONDO:0004983, SPAG6-related Review for gene: SPAG6 was set to GREEN Added comment: i) PMID: 35232447- two homozygous variants (F1 II-1: p. A103D; F2 II-1:p. K196Sfs*6) in two unrelated Han Chinese men with nonsyndromic asthenoteratozoospermia with severe multiple morphological abnormalities of the sperm flagella. Immunostaining and WB showed lower SPAG6 expression in spermatozoa of both affected males. The couple with the missense variant as able to conceive successfully after undergoing ICSI. ii) PMID: 38073178- a homozygous missense p.R310W in three brothers (two brothers with both asthenozoospermia and oligozoospermia, third brother with azoospermia) iii) PMID: 32124190- a novel compound heterozygous variant (c.143_145del: p.48_49del, c.585delA: p.Lys196Serfs*6) in an infertile PCD patient with severe with asthenoteratozoospermia, presented with morphological defects of sperm flagella and lower mRNA and protein expression in mutant sperm. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2422 | PLCZ1 |
Zornitza Stark gene: PLCZ1 was added gene: PLCZ1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PLCZ1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PLCZ1 were set to 26721930; 31463947; 36593593; 37004249 Phenotypes for gene: PLCZ1 were set to Spermatogenic failure 17, MIM# 617214 Review for gene: PLCZ1 was set to GREEN Added comment: i) PMID:26721930- homozygous missense variant (I489F) in 2 Tunisian brothers with infertility due to oocyte activation failure. ii) PMID:31463947- 3 homozygous variants (C196X, S350P, L246F) in 4 Chinese men from 3 consanguineous families with SPGF17 and total fertilization failure of oocytes after intracytoplasmic sperm injection. iii) PMID: 36593593- compound heterozygosity for splice site and missense variants (c.1174+3A-C and N425S in case 2; c.136-1G-C and G453D in case 3) in 2 unrelated Chinese men with infertility due to acrosomal abnormalities and total fertilization failure. iv) PMID: 37004249- previously reported homozygous variant (C196X) in two unrelated men with infertility due to total fertilization failure Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2394 | MAN2B2 | Zornitza Stark edited their review of gene: MAN2B2: Added comment: Third individual reported PMID 38622837 with compound het missense variants, supportive functional data.; Changed rating: GREEN; Changed publications: 31775018, 35637269, 38622837; Changed phenotypes: Congenital disorder of glycosylation type 1EE with or without immunodeficiency, MIM# 621140 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2301 | ABCA1 | Katrina Bell reviewed gene: ABCA1: Rating: GREEN; Mode of pathogenicity: None; Publications: X VX; Phenotypes: Campomelic dysplasia with autosomal sex reversal 114290; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2301 | ABCB6 | Katrina Bell reviewed gene: ABCB6: Rating: GREEN; Mode of pathogenicity: Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments; Publications: ; Phenotypes: Campomelic dysplasia with autosomal sex reversal 114290; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, maternally imprinted (paternal allele expressed) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2295 | ARHGEF40 |
Chirag Patel gene: ARHGEF40 was added gene: ARHGEF40 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ARHGEF40 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: ARHGEF40 were set to PMID: 39838643 Phenotypes for gene: ARHGEF40 were set to Neurodevelopmental disorder MONDO:0700092 Review for gene: ARHGEF40 was set to RED Added comment: 2 individuals with global developmental delay, hypotonia, short stature, hearing impairment, nystagmus, feeding issues, and dysmorphism (bifid uvula, narrow mouth, high palate, micrognathia). Trio clinical whole exome sequencing identified de novo variants in the ARHGEF40 gene at position p.Arg225, which is fully conserved in mammals and located within the n-terminal keratin binding region (p.Arg225Trp and p.Arg225Gln). Of note, multiple additional probands with rare missense variants at the p.Arg225 residue have been identified by the same laboratory (but there was no consent for publication, providing further evidence of the importance of this residue. The ARHGEF40 gene (aka SOLO) is a member of the Rho guanine nucleotide exchange factor (Rho-GEF) family of proteins, which stimulate Rho signal transduction molecules by converting them from inactive GDP-bound form to the active GTP-bound state. No functional studies to characterise disease-gene relationship or disease mechanism. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2293 | HECTD1 |
Chirag Patel gene: HECTD1 was added gene: HECTD1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: HECTD1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: HECTD1 were set to PMID: 39879987 Phenotypes for gene: HECTD1 were set to Neurodevelopmental disorder MONDO:0700092 Review for gene: HECTD1 was set to GREEN Added comment: 14 unrelated individuals (identified through GeneMatcher) with 15 variants of uncertain significance (VUS) in HECTD1 (10 missense, 3 frameshift, 1 nonsense, and 1 splicing variant). Of the 15 different variants in HECTD1, 10 occurred de novo, 3 had unknown inheritance, and 2 were compound heterozygous. All variants were absent in gnomAD, and HECTD1 is highly intolerant to loss-of-function variation (loss-of-function-intolerant score of 1). Clinical presentation was variable developmental delay, intellectual disability, autism spectrum disorder, ADHD, and epilepsy. The one individual with compound heterozygous variants had growth impairment along with NDD. The variants were inherited from apparently healthy parents, suggesting that genetic or environmental modifiers may be required to develop the phenotype. Significant enrichment of de novo variants in HECTD1 was also shown in an independent cohort of 53,305 published trios with NDDs or congenital heart disease. HECT-domain-containing protein 1 (HECTD1) mediates developmental pathways, including cell signalling, gene expression, and embryogenesis. Conditional knockout of Hectd1 in the neural lineage in mice resulted in microcephaly, severe hippocampal malformations, and complete agenesis of the corpus callosum, supporting a role for Hectd1 in embryonic brain development. Functional studies of 2 missense variants and 1 nonsense variant in C. elegans revealed dominant effects, including either change-of-function or loss-of-function/haploinsufficient mechanisms. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2283 | ITGAV |
Zornitza Stark gene: ITGAV was added gene: ITGAV was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ITGAV was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ITGAV were set to 39526957 Phenotypes for gene: ITGAV were set to Syndromic disease, MONDO:0002254, ITGAV-related Review for gene: ITGAV was set to AMBER Added comment: Three unrelated families reported: two with affected children (one hmz missense; other compound het LoF with missense) and one family with four affected fetuses. Clinical features included brain and eye anomalies and IBD/immune dysregulation. TGF-beta signalling pathway affected. The deletion of itgav in zebrafish recapitulated patient phenotypes including retinal and brain defects and the loss of microglia in early development as well as colitis in juvenile zebrafish with reduced SMAD3 expression and transcriptional regulation. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2248 | DAP3 |
Zornitza Stark gene: DAP3 was added gene: DAP3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: DAP3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: DAP3 were set to 39701103 Phenotypes for gene: DAP3 were set to Mitochondrial disease MONDO:0044970, DAP3-related Review for gene: DAP3 was set to GREEN Added comment: DAP3 encodes the mitoribosomal small subunit 29 (MRPS29). Five unrelated individuals reported with bi-allelic variants in DAP3 and variable clinical presentations ranging from Perrault syndrome (sensorineural hearing loss and ovarian insufficiency) to an early childhood neurometabolic phenotype. Assessment of respiratory-chain function and proteomic profiling of fibroblasts from affected individuals demonstrated reduced MRPS29 protein amounts and, consequently, decreased levels of additional protein components of the mitoribosomal small subunit, as well as an associated combined deficiency of complexes I and IV. Lentiviral transduction of fibroblasts from affected individuals with wild-type DAP3 cDNA increased DAP3 mRNA expression and partially rescued protein levels of MRPS7, MRPS9, and complex I and IV subunits, demonstrating the pathogenicity of the DAP3 variants. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2237 | EP400 |
Sangavi Sivagnanasundram gene: EP400 was added gene: EP400 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: EP400 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: EP400 were set to 39708813 Phenotypes for gene: EP400 were set to neurodevelopmental disorder with or without early-onset generalized epilepsy - MONDO:0030930 Review for gene: EP400 was set to GREEN Added comment: 6 unrelated probands presenting with epilepsy with NDD had compound heterozygous variants in EP400. They were confirmed in trans and inherited from their asymptomatic parents. Knockdown of EP400 ortholog in Drosophila showed an increase in seizure-like susceptibility and abnormal neurological behaviour. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2224 | CRYL1 |
Andrew Fennell changed review comment from: About 1% of individuals with GJB2-AR NSHL are compound heterozygotes for one GJB2 pathogenic variant and one of several different deletions that include sequences upstream of GJB2 (comprising either GJB6 and portions of CRYL1 or just portions of CRYL1) that delete cis-regulatory regions of GJB2, thereby abolishing GJB2 expression. Occasionally, the deletion also includes GJB2.; to: About 1% of individuals with GJB2-AR NSHL are compound heterozygotes for one GJB2 pathogenic variant and one of several different deletions that include sequences upstream of GJB2 (comprising either GJB6 and portions of CRYL1 or just portions of CRYL1) that delete cis-regulatory regions of GJB2, thereby abolishing GJB2 expression. Occasionally, the deletion also includes GJB2. See also PMID: 20301449 GeneReviews |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2182 | CMPK2 |
Zornitza Stark gene: CMPK2 was added gene: CMPK2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CMPK2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CMPK2 were set to 36443312 Phenotypes for gene: CMPK2 were set to bilateral striopallidodentate calcinosis, MONDO:0008947, CMPK2-related Review for gene: CMPK2 was set to AMBER Added comment: Three individuals from two unrelated families reported. One family (two sibs) with homozygous start loss variant, and the other family with compound het variants. Adult-onset neurodegenerative disorder. Extensive functional data including mouse model. Evidence of underlying mitochondrial dysfunction. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2166 | POLA2 |
Sangavi Sivagnanasundram gene: POLA2 was added gene: POLA2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: POLA2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: POLA2 were set to 39616267 Phenotypes for gene: POLA2 were set to Telomere biology disorders; Coats plus syndrome MONDO:0012815 Review for gene: POLA2 was set to GREEN Added comment: New gene-disease association. PMID: 39616267 - Five individuals from two unrelated swedish families presenting with clinical phenotype suggestive of a TBD disorder with Coats plus features including retinal and gastrointestinal telangiectasias. Affected individuals also presented with shortened telomeres. Compound heterozygous variants were identified in both families. Family A (Ile96Thr;Pro424Leu) - Both variants are present in gnomAD v4.1 but FAF is rare enough for AR condition [c.287 T > C, p.(Ile96Thr) - FAF 0.002%; c.1271 C > T, p.(Pro424Leu) - FAF 0.0002 %] Family B (Ile96Thr; intragenic SNV resulting in the deletion of the 5’ terminal and exon 1) - same missense as the other family along with an SNV. In vitro assay using CRISPR/Cas9 genome engineering into HEK293T to assess whether the p.(Ile96Thr) would affect telomere length. The subclones carrying the missense variant showed telomeric shortening of ~4kb compared to the WT subclones. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2131 | TNFSF9 |
Zornitza Stark gene: TNFSF9 was added gene: TNFSF9 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TNFSF9 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TNFSF9 were set to 35657354 Phenotypes for gene: TNFSF9 were set to Hereditary susceptibility to infections, MONDO:0015979, TNFSF9-related Review for gene: TNFSF9 was set to RED Added comment: Fournier et al. described one patient with DiGeorge syndrome with a unique susceptibility to EBV with broad EBV infection and smooth muscle tumors. He was found to have a homozygous missense variant (p.V140G) in TNFSF9 coding for CD137L/4-1BBL, the ligand of the T cell co-stimulatory molecule CD137/4-1BB, whose deficiency predisposes to EBV infection. They show that CD137LV140G mutant was weakly expressed on patient cells or when ectopically expressed in HEK and P815 cells. Importantly, patient EBV-infected B cells failed to trigger the expansion of EBV-specific T cells, resulting in decreased T cell effector responses. T cell expansion was recovered when CD137L expression was restored on B cells. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2119 | ATG9A |
Bryony Thompson gene: ATG9A was added gene: ATG9A was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ATG9A was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ATG9A were set to 35838483 Phenotypes for gene: ATG9A were set to Autophagy-associated immune dysregulation and hyperplasia Review for gene: ATG9A was set to RED Added comment: A single case with compound heterozygous variants was reported. After infection with Epstein-Barr virus (EBV), the patient developed hyperplastic proliferation of T and B cells in the lung and brain and exhibited defects in lymphocyte memory cell populations. In vitro functional assays. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2048 | BMP5 |
Chirag Patel gene: BMP5 was added gene: BMP5 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: BMP5 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: BMP5 were set to Skeletal dysostosis and atrioventricular septal defect, no OMIM# Phenotypes for gene: BMP5 were set to Skeletal dysostosis and atrioventricular septal defect, no OMIM# Review for gene: BMP5 was set to RED Added comment: 1 patient with skeletal dysostosis, atrioventricular septal defect, hypermobility, laryngo-tracheo-bronchomalacia and dysmorphic features (malar hypoplasia, short palpebral fissures, short nose, low nasal bridge, anteverted nares, long philtrum, small ears with abnormally folded antihelix). Skeletal survey showed mild thoracolumbar scoliosis, four sacral segments, absent ossification of the inferior pubic rami, and patellar aplasia. Trio WGS identified compound heterozygous loss of function variants in BMP5 (c.88_89del, p.(Gly30Argfs*11) and c.1104+2del, p.(?). Abnormal splicing was proven on the suspected splice variant using maternal fibroblasts. BMP5 expression is confined to specific parts of the skeleton and cartilage in mice and is tightly regulated by different enhancers. Previous studies of chicken embryonic heart development showed BMP5 expression in the endoderm underlying the precardiac mesoderm, the myocardium of the atrioventricular canal and outflow tract regions. Other bone morphogenetic proteins are linked to several genetic skeletal disorders. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2026 | KBTBD2 |
Ain Roesley gene: KBTBD2 was added gene: KBTBD2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: KBTBD2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: KBTBD2 were set to 39313616 Phenotypes for gene: KBTBD2 were set to neurodevelopmental disorder MONDO:0700092, KBTBD2-related Review for gene: KBTBD2 was set to GREEN gene: KBTBD2 was marked as current diagnostic Added comment: 3 families - 2 compound hets and 1 hom phenotypes include: Microcephaly, hypotonia, failure to thrive, IUGR, delayed gross motor development, dysmorphism Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2022 | PSKH1 |
Zornitza Stark gene: PSKH1 was added gene: PSKH1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PSKH1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PSKH1 were set to 39132680 Phenotypes for gene: PSKH1 were set to Cholestasis, progressive familial intrahepatic, 13, MIM# 620962 Review for gene: PSKH1 was set to GREEN Added comment: 4 consanguineous families (out of 279 families) with intrahepatic cholestasis: -1 patient died at 10mths with cholestasis/liver impairment and kidney impairment -3 cousins with cholestasis (2 with liver failure needing transplant) and kidney features (2 with kidney failure, 1 with renal echogenicity) -2 siblings with hepatic fibrosis (1 with unilateral renal agenesis) -2 siblings with unexplained liver cirrhosis (1 needing transplant) but normal kidney function WES identified 3 different homozygous variants in PSKH1 (Arg121Trp, Ile126Val, Arg183Cys). Patient fibroblasts displayed abnormal cilia that are long and show abnormal transport. A homozygous Pskh1 mutant mouse faithfully recapitulated the human phenotype and displayed abnormally long cilia. The phenotype could be rationalized by the loss of catalytic activity observed for each recombinant PSKH1 variant using in vitro kinase assays. Human PSKH1 is a poorly understood gene that may play important role in intracellular trafficking, is sensitive to intracellular Ca2+ concentration, and is localized to centrosomes, suggesting a link to cystogenesis. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1998 | CEP76 |
Mark Cleghorn gene: CEP76 was added gene: CEP76 was added to Mendeliome. Sources: Other Mode of inheritance for gene: CEP76 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: CEP76 were set to complex neurodevelopmental disorder MONDO:0100038; Joubert syndrome; Bardet-Biedl syndrome; retinitis pigmentosa Penetrance for gene: CEP76 were set to unknown Review for gene: CEP76 was set to GREEN Added comment: Erica Davis, Stanley Manne Children’s research institute, Chicago ESHG presentation 4/6/24, unpublished CEP76 associated with syndromic ciliopathy CEP76 localizes to centrioles and basal body primary cilia Role in normal centriolar duplication Index case Bardet Biedl syndrome Compound heterozygous pLoF variants in CEP76 Via Gene matcher 7 cases in 7 families- biallelic CEP76 and various clinical features within ciliopathy spectrum: Obesity Ocular phenotype Structural brain anomalies Renal? 3/7 families clinical Dx Joubert syndrome 1/7 BBS 1/7 GDD/ID NOS 2/7 retinitis pigmentosa (1 of these with learning difficulties) Mixture of biallelic pLOF and missense variant CEP76 knockout zebrafish model shows retinal phenotype w photoreceptor loss, similar to homozygous known BBS4 pathogenic variant Cell based fx studies with missense variants above, consistent with centriolar duplication dysfunction Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1998 | MED16 |
Mark Cleghorn gene: MED16 was added gene: MED16 was added to Mendeliome. Sources: Other Mode of inheritance for gene: MED16 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: MED16 were set to complex neurodevelopmental disorder MONDO:0100038 Review for gene: MED16 was set to GREEN Added comment: Charlotte Guillouet, Imagine institute Paris ESHG presentation 4/6/24, unpublished MED16 is part of tail of ‘mediator complex’ Plays a role in enhancer/promotor regions Disruptive variants in other genes encoding proteins within this mediator complex (MED11/12/12/17/20, CDK8) are assoc w neurodevelopmental/neurodegenerative disorders Cases index family Sibs (M/F) to consanguineous parents w NDD/mod ID, tetralogy of Fallot or VSD, bilat deafness, micrognathia, malar hypoplasia, dental AbN, pre auricular tags, hypoplastic nails, brachydactly WES: biallelic MED16 p.Asp217Asn Via genematcher 16 families total, 22 individuals, homozygous or compound het rare MED16 variants Mixture of pLoF and missense variants Motor delay in 16/17 DD or ID in 17/17 Speech delay in 15/15 6/19 ToF 7/19 other septal/aortic defects 6/18 deafness 11/18 microretrognathia 6/17 cleft palate 8/19 preauricular tags 9/20 puffy eyelids 12/20 nasal dysplasia (most commonly short columella w bulbous nasal tip) 7/20 corpus callosum anomalies Not clear that functional work recapitulated phenotype as yet? Immunofluroescence on HeLa cells transfected with variants observed ?conclusion MED16 knockout mouse > growth delay, pre weaning lethality MED16 knockout zebrafish > reduced body length, early death, no obvious craniofacial phenotype Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1998 | SGMS1 |
Mark Cleghorn gene: SGMS1 was added gene: SGMS1 was added to Mendeliome. Sources: Other Mode of inheritance for gene: SGMS1 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: SGMS1 were set to complex neurodevelopmental disorder MONDO:0100038 Review for gene: SGMS1 was set to AMBER Added comment: SGMS1 Johannes Kopp, Charite Berlin ESHG presentation 4/6/24, unpublished Biallelic SGMS1 with novel metabolic disorder Only 2 families (3 cases) reported NDD, AbN cerebral myelination, SNHL, ichthyosis Homozygous or compound het SGMS1 missense Functional work to support role of SGMS1 in sphingolipid metabolism Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1976 | C12orf66 |
Mark Cleghorn gene: C12orf66 was added gene: C12orf66 was added to Mendeliome. Sources: Other Mode of inheritance for gene: C12orf66 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: C12orf66 were set to complex neurodevelopmental disorder MONDO:0100038 Penetrance for gene: C12orf66 were set to unknown Review for gene: C12orf66 was set to AMBER Added comment: KICS2 (previously known as C12ORF66) Rebecca Buchert, Universitatklinikum Tubingen ESHG talk 2/6/24, unpublished Proposed ID + epilepsy gene 8 families w 11 affected individuals Phenotypes: 11/11 ID, 9/11 epilepsy, 3/11 hearing impairment 3/8 homozygous missense variants (p.Asp296Glu, p.Tyr393Cys, p.Tyr393Cys), all highly conserved 1/8 compound het PTC (p.Lys262*) with 1.1Mb deletion 4/8 homozygous PTC (p.Glu3*, p.Gly79Valfs*18, p.Gly79Valfs*18, p.Lys260Asnfs*18) Gene appears to be involved in mTOR pathway, and cilia function mTORC1 activity in CRISPR-HEK293T cells – reduced activity in cells w variants above Zebrafish model: otolith defects, ciliary dysfunction ?not clear that this truly mimics phenotype observed in patient cohort described Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1939 | TBC1D7 | Zornitza Stark edited their review of gene: TBC1D7: Added comment: PMID: 36669495 reports additional individuals with compound het variants identified via trio RNASeq.; Changed publications: 24515783, 23687350, 36669495 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1936 | C17orf53 |
Zornitza Stark edited their review of gene: C17orf53: Added comment: PMID 38105698: Additional family reported with two sibs and compound het LoF variants. HGNC approved name is HROB.; Changed rating: GREEN; Changed publications: 34707299, 31467087, 38105698; Changed phenotypes: Ovarian dysgenesis 11, MIM# 620897 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1904 | SLC45A1 | Zornitza Stark edited their review of gene: SLC45A1: Added comment: PMID 39003656: additional individual with compound het missense variants and supportive functional data.; Changed rating: GREEN; Changed publications: 28434495, 39003656 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1840 | PRRX1 |
Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2. > PMID: 7758948 generated a loss-of-function mutation in the mouse Pmx1 gene. Mice homozygous for the mutant allele died soon after birth and exhibited defects of skeletogenesis, which involved the loss or malformation of craniofacial, limb, and vertebral skeletal structures. ; to: Craniosynostosis (MONDO:0015469), PRRX1-related > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) Agnathia-otocephaly complex, MIM# 202650 >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2. > PMID: 7758948 generated a loss-of-function mutation in the mouse Pmx1 gene. Mice homozygous for the mutant allele died soon after birth and exhibited defects of skeletogenesis, which involved the loss or malformation of craniofacial, limb, and vertebral skeletal structures. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1840 | PRRX1 |
Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2.; to: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2. > PMID: 7758948 generated a loss-of-function mutation in the mouse Pmx1 gene. Mice homozygous for the mutant allele died soon after birth and exhibited defects of skeletogenesis, which involved the loss or malformation of craniofacial, limb, and vertebral skeletal structures. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1840 | PRRX1 |
Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708).; to: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1840 | PRRX1 |
Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doen't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708).; to: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1840 | PRRX1 |
Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly don't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651); to: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doen't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1840 | PRRX1 |
Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651); to: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly don't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1816 | ATXN7L3 |
Chirag Patel gene: ATXN7L3 was added gene: ATXN7L3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ATXN7L3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: ATXN7L3 were set to PMID: 38753057 Phenotypes for gene: ATXN7L3 were set to Neurodevelopmental disorder, MONDO_0100500 Review for gene: ATXN7L3 was set to GREEN gene: ATXN7L3 was marked as current diagnostic Added comment: This study reports 9 unrelated individuals with de novo heterozygous variants in ATXN7L3 identified through WES testing and GeneMatcher. Core clinical features included: global motor and language developmental delay, hypotonia, and dysmorphic features (hypertelorism, epicanthal folds, blepharoptosis, small nose, small mouth, and low-set posteriorly rotated ears). Variable features included: feeding difficulties, seizures, mild periventricular leukomalacia, and structural cardiac abnormalities. A recurrent nonsense variant [p.(Arg114Ter)] was found in 5/9 individuals. The other variants were 1 frameshift [p.(Ser112LysfsTer12)] and 3 missense variants [p.(Ile71Thr), p.(Ser92Arg), and p.(Leu106Pro)]. They investigated the effects of the recurrent nonsense variant [p.(Arg114Ter)] in fibroblasts of an affected individual. ATXN7L3 protein levels were reduced, and deubiquitylation was impaired (as indicated by an increase in histone H2Bub1 levels). This is consistent with the previous observation of increased H2Bub1 levels in Atxn7l3-null mouse embryos, which have developmental delay and embryonic lethality. Pathogenic variants in deubiquitinating enzymes (DUBs) have been implicated in neurodevelopmental disorders (ND) and congenital abnormalities. ATXN7L3 is a component of the DUB module of the SAGA complex, and two other related DUB modules, and serves as an obligate adaptor protein of 3 ubiquitin-specific proteases (USP22, USP27X or USP51). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1778 | KCNIP4 |
Ain Roesley gene: KCNIP4 was added gene: KCNIP4 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: KCNIP4 was set to Unknown Publications for gene: KCNIP4 were set to 33826137 Phenotypes for gene: KCNIP4 were set to seizures; epilepsy Review for gene: KCNIP4 was set to RED gene: KCNIP4 was marked as current diagnostic Added comment: single paper describing insertions of L1 retrotransposons in KCNIP4 samples were post-mortem of resected temporal cortex from individuals with idiopathic temporal lobe epilepsy 1x de novo insertion of L1 in KCNIP4 however ddPCR revealed that this did NOT alter KCNIP4 mRNA expression Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1758 | PKHD1L1 |
Sangavi Sivagnanasundram gene: PKHD1L1 was added gene: PKHD1L1 was added to Mendeliome. Sources: Other Mode of inheritance for gene: PKHD1L1 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: PKHD1L1 were set to non syndromic hearing loss (MONDO:0020678) Review for gene: PKHD1L1 was set to GREEN Added comment: At least 4 individuals from unrelated families with sensorineural hearing loss (SNHL) (2 of the reported probands were from consanguineous parents). The individuals are either homozygous or compound heterozygous for mutations in PKHD1L1 (missense, frameshift and nonsense mutations have been reported). In vitro functional assessment as well as a mini-gene assay of Gly605Arg was conducted. The mini-gene assay on Gly605Arg showed that exon skipping occurs resulting in an in-frame deletion of 48 aa. Both studies didn't use a positive control however loss of function or disruption to protein stability is the speculated mechanism of disease. Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1733 | SUPT7L |
Chirag Patel gene: SUPT7L was added gene: SUPT7L was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SUPT7L was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SUPT7L were set to PMID: 38592547 Phenotypes for gene: SUPT7L were set to Lipodystrophy, MONDO:0006573 Review for gene: SUPT7L was set to RED Added comment: 1 case with generalised lipodystrophy, growth retardation, congenital cataracts, severe developmental delay and progeriod features. Trio WGS identified compound heterozygous variants in SUPT7L (missense causing abnormal splicing + frameshift). Variants validated with Sanger. SUPT7L encodes a component of the core structural module of the STAGA complex - a nuclear multifunctional protein complex that plays a role in various cellular processes (e.g. transcription factor binding, protein acetylation, splicing, and DNA damage control). Immunolabelling in fibroblasts from patient showed complete absence of SUPT7L protein. Transcriptome data from individual revealed downregulation of several gene sets associated with DNA replication, DNA repair, cell cycle, and transcription. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1696 | PTCRA |
Achchuthan Shanmugasundram gene: PTCRA was added gene: PTCRA was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PTCRA was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PTCRA were set to 38422122 Phenotypes for gene: PTCRA were set to Autoimmunity, HP:0002960; lymphopenia, MONDO:0003783 Review for gene: PTCRA was set to GREEN Added comment: PMID:38422122 reported the identification of 10 individuals from seven kindreds from four different ethnicities with biallelic PTCRA variants (homozygous in five kindreds and compound heterozygous in two kindreds). Six of these 10 patients were clinically asymptomatic at their most recent evaluation, while other four patients displayed infection, lymphoproliferation, and/or autoimmunity with an onset during their teens or in adulthood. One of these patients died from SARS-CoV-2 pneumonia at the age of 24 years. Patient 9 had a small thymus on MRI at the age of 2 years, whereas P5 and P6 had no visible thymus at the ages of 13 and 8 years, respectively. Three of the nine patients with pLOF PTCRA variants tested were found to produce autoantibodies, several of which were associated with clinical manifestations. Anti-thyroid autoantibodies and/or clinically overt thyroiditis were found in three of the nine patients. P7, who suffered from recurrent herpes infections, had autoantibodies against type I interferons. Two of those identified variants are hypomorphic and are associated with autoimmunity. In addition, there is extensive functional and epidemiological data available. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1691 | CANVAS_ACAGG | Bryony Thompson edited their review of STR: CANVAS_ACAGG: Added comment: Additional 4 unrelated cases homozygous for the (ACAGG)exp and one compound het with AAGGG/ACAGG expansion in a Japanese neuropathy cohort.; Changed rating: GREEN; Changed publications: 33103729, 36061987; Changed phenotypes: cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome MONDO:0044720; Set clinically relevant: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1689 | PSMA5 |
Zornitza Stark gene: PSMA5 was added gene: PSMA5 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PSMA5 was set to Other Publications for gene: PSMA5 were set to 37600812 Phenotypes for gene: PSMA5 were set to Inborn error of immunity, MONDO:0003778, PSMA5-related; PRAAS/CANDLE Review for gene: PSMA5 was set to RED Added comment: Single patient with heterozygous PSMB8 variant and de-novo PSMA5 truncating variant (p.Arg168*) with clinical features of CANDLE. Patient also had splice site variant in PSMC5. In silico modelling showing interaction of PSMB8 and PSMA5. PSMA5/a5 is a constitutive component of the 20S core proteasome, ? digenic model of disease. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1664 | MCOLN1 | Zornitza Stark edited their review of gene: MCOLN1: Added comment: PMID 37972748: 23 affected individuals from 13 families with Lisch epithelial corneal dystrophy. WGS in 2 families and then targeted Sanger sequencing in the other families identified 9 rare heterozygous loss of function variants in MCOLN1. Homozygous and compound-heterozygous state of 4 of 9 LECD-associated variants cause Mucolipidosis IV (MLIV), which comprises neurodegeneration as well as corneal opacity of infantile-onset with epithelial autofluorescent lysosomal inclusions. Six parents of 3 patients with MLIV confirmed to carry pathogenic MCOLN1 variants did not have the LECD phenotype. Heterozygous MCOLN1 variants can be associated with incomplete penetrance and variable expressivity of LECD with an estimated penetrance of 0.2% for MCOLN1 loss-of-function variants based on gnomAD.; Changed publications: 37972748; Changed phenotypes: Mucolipidosis IV, MIM# 252650, MONDO:0009653, Lisch epithelial corneal dystrophy, OMIM# 620763; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1660 | DOCK4 |
Sangavi Sivagnanasundram gene: DOCK4 was added gene: DOCK4 was added to Mendeliome. Sources: Other Mode of inheritance for gene: DOCK4 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: DOCK4 were set to PMID: 38526744 Phenotypes for gene: DOCK4 were set to DOCK4-related neurodevelopmental disorder (MONDO:0060490) Review for gene: DOCK4 was set to GREEN Added comment: 7 unrelated individuals reported with heterozygous variants (missense or null variants) in DOCK4. The individuals either had ID or DD between mild and moderate with brain abnormalities. Two of the individuals are reportedly compound heterozygous. Functional assay neuro-2A Dock4 knockout cells by using the Alt-R CRISPR-Cas9 system utilizing two different guide RNAs (ko1 and ko2) and one nonspecific control guide RNA (C: control). The assay depicted the loss of function mechanism in the presence of either p.Arg853Leu and p.Asp946_Lys1966delinsValSer* (described as 945VS). Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1657 | DISP1 |
Sangavi Sivagnanasundram changed review comment from: Well-establised gene disease association with differing mechanism of disease depending on the type of causative variant. Monoallelic truncating variants that resulted in haploinsufficiency in DISP1 led to mild HPE. However biallelic missense variants that results in a partial loss of function of DISP1 cause HPE as well. PMID: 38529886 25 individuals from 20 unrelated families with a phenotype associated with mild holoprosencephaly (HPE). A total of 23 different variants were identified in DISP1 (missense, frameshift and nonsense). 14 heterozygous individuals , 5 compound heterozygous individuals, 6 homozygous individuals (5 of the individuals were from 3 unrelated consanguineous families). HPE phenotype was also seen prenatally as one of the reported monoallelic individuals was a fetus at 20+6 GW prior to passing due to MTP. ; to: Gene disease association with differing mechanism of disease depending on the type of causative variant. Monoallelic truncating variants that resulted in haploinsufficiency in DISP1 led to mild HPE. However biallelic missense variants that results in a partial loss of function of DISP1 cause HPE as well. PMID: 38529886 25 individuals from 20 unrelated families with a phenotype associated with mild holoprosencephaly (HPE). A total of 23 different variants were identified in DISP1 (missense, frameshift and nonsense). 14 heterozygous individuals , 5 compound heterozygous individuals, 6 homozygous individuals (5 of the individuals were from 3 unrelated consanguineous families). HPE phenotype was also seen prenatally as one of the reported monoallelic individuals was a fetus at 20+6 GW prior to passing due to MTP. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1657 | DISP1 |
Sangavi Sivagnanasundram changed review comment from: Well-establised gene disease association with differing mechanism of disease depending on the type of causative variant. PMID: 38529886 25 individuals from 20 unrelated families with a phenotype associated with mild holoprosencephaly (HPE). A total of 23 different variants were identified in DISP1 (missense, frameshift and nonsense). Monoallelic truncating variants that resulted in haploinsufficiency in DISP1 led to mild HPE. However biallelic missense variants that results in a partial loss of function f DISP1 cause HPE as well.; to: Well-establised gene disease association with differing mechanism of disease depending on the type of causative variant. Monoallelic truncating variants that resulted in haploinsufficiency in DISP1 led to mild HPE. However biallelic missense variants that results in a partial loss of function of DISP1 cause HPE as well. PMID: 38529886 25 individuals from 20 unrelated families with a phenotype associated with mild holoprosencephaly (HPE). A total of 23 different variants were identified in DISP1 (missense, frameshift and nonsense). 14 heterozygous individuals , 5 compound heterozygous individuals, 6 homozygous individuals (5 of the individuals were from 3 unrelated consanguineous families). HPE phenotype was also seen prenatally as one of the reported monoallelic individuals was a fetus at 20+6 GW prior to passing due to MTP. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1646 | SASS6 |
Ain Roesley commented on gene: SASS6: PMID: 38501757 1x compound het for a fs and +3 splice variant. Using cDNA RT-ed from mother's RNA, exons 13-15 were amplified and exon 14 was found to be skipped resulting in c.1546_1674del and p.516_558del PMID: 36739862 1x family, compound het for 2 missense Functional studies not performed |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1633 | USP14 |
Zornitza Stark gene: USP14 was added gene: USP14 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: USP14 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: USP14 were set to 38469793; 35066879 Phenotypes for gene: USP14 were set to Syndromic disease MONDO:0002254, USP14-related Review for gene: USP14 was set to GREEN Added comment: PMID 35066879: 3 fetuses from 2 different branches of a consanguineous family, presenting with distal arthrogryposis, underdevelopment of the corpus callosum, and dysmorphic facial features. Exome sequencing identified a biallelic 4-bp deletion (c.233_236delTTCC; p.Leu78Glnfs*11) in USP14, and sequencing of family members showed segregation with the phenotype. Ubiquitin-specific protease 14 (USP14) encodes a major proteasome-associated deubiquitinating enzyme with an established dual role as an inhibitor and an activator of proteolysis, maintaining protein homeostasis. Usp14-deficient mice show a phenotype similar to lethal human multiple congenital contractures phenotypes, with callosal anomalies, muscle wasting, and early lethality, attributed to neuromuscular junction defects due to decreased monomeric ubiquitin pool. RT-qPCR experiment in an unaffected heterozygote revealed that mutant USP14 was expressed, indicating that abnormal transcript escapes nonsense-mediated mRNA decay. PMID 38469793: biallelic USP14 variants in four individuals from three unrelated families: one fetus, a newborn with a syndromic NDD, and two siblings affected by a progressive neurological disease. Specifically, the two siblings from the latter family carried two compound heterozygous variants c.8T>C p.(Leu3Pro) and c.988C>T p.(Arg330*), while the fetus had a homozygous frameshift c.899_902del p.(Lys300Serfs*24) variant and the newborn patient harbored a homozygous frameshift c.233_236del p.(Leu78Glnfs*11) variant. The fetus and the newborn had extensive brain malformations. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1596 | CIAO1 |
Paul De Fazio changed review comment from: PMID:38196629 (note pre-print) describes 4 unrelated patients with core features of progressive muscle weakness, respiratory insufficiency, joint hyperlaxity, ankle tightness, calf pseudohypertrophy, elevated CK, and larning disabilities/difficulties. 2 patients presented with increased iron deposition in the brain. Age of recognition of myopathic symptoms varied from early childhood to adolescence. PMID: 38411040 reports 2 unrelated patients. Patient 1 was born with microcephaly and borderline hypertonia, and died at 18 months of respiratory failure from bronchiolitis. Patient 2 presented with failure to thrive, a hyperkinetic movement disorder, and autism before deteriorating in late teens with muscle weakness, recurrent pneuomonia with respiratory insufficiency, and eventually death due to multi-organ failure with carnificating pneumonia, septic cardiomyopathy, and intracranial hemorrhages. Immune deficiency was ruled out. All variants reported were homozygous or compound heterozygous missense variants, with the exception of one large in-frame deletion of exon 7. Cell line studies showed the variants resulted in reduced protein stability and downstream cellular defects which could be rescued by wild-type CIAO1. Sources: Literature; to: PMID:38196629 (note pre-print) describes 4 unrelated patients with core features of progressive muscle weakness, respiratory insufficiency, joint hyperlaxity, ankle tightness, calf pseudohypertrophy, elevated CK, and larning disabilities/difficulties. 2 patients presented with increased iron deposition in the brain. Age of recognition of myopathic symptoms varied from early childhood to adolescence. Muscle biopsy showed variation in fiber size and an increase in internalized nuclei, as well as scattered degenerating/regenerating fibers and a mild to minimal increase in endomysial fibrosis. Electron microscopy revealed morphologically abnormal mitochondria. PMID: 38411040 reports 2 unrelated patients. Patient 1 was born with microcephaly and borderline hypertonia, and died at 18 months of respiratory failure from bronchiolitis. Patient 2 presented with failure to thrive, a hyperkinetic movement disorder, and autism before deteriorating in late teens with muscle weakness, recurrent pneuomonia with respiratory insufficiency, and eventually death due to multi-organ failure with carnificating pneumonia, septic cardiomyopathy, and intracranial hemorrhages. Immune deficiency was ruled out. All variants reported were homozygous or compound heterozygous missense variants, with the exception of one large in-frame deletion of exon 7. Cell line studies showed the variants resulted in reduced protein stability and downstream cellular defects which could be rescued by wild-type CIAO1. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1596 | CIAO1 |
Paul De Fazio gene: CIAO1 was added gene: CIAO1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CIAO1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CIAO1 were set to 38411040; 38196629 Phenotypes for gene: CIAO1 were set to Neuromuscular disease, CIAO1-related (MONDO:0019056) Penetrance for gene: CIAO1 were set to unknown Review for gene: CIAO1 was set to GREEN gene: CIAO1 was marked as current diagnostic Added comment: PMID:38196629 (note pre-print) describes 4 unrelated patients with core features of progressive muscle weakness, respiratory insufficiency, joint hyperlaxity, ankle tightness, calf pseudohypertrophy, elevated CK, and larning disabilities/difficulties. 2 patients presented with increased iron deposition in the brain. Age of recognition of myopathic symptoms varied from early childhood to adolescence. PMID: 38411040 reports 2 unrelated patients. Patient 1 was born with microcephaly and borderline hypertonia, and died at 18 months of respiratory failure from bronchiolitis. Patient 2 presented with failure to thrive, a hyperkinetic movement disorder, and autism before deteriorating in late teens with muscle weakness, recurrent pneuomonia with respiratory insufficiency, and eventually death due to multi-organ failure with carnificating pneumonia, septic cardiomyopathy, and intracranial hemorrhages. Immune deficiency was ruled out. All variants reported were homozygous or compound heterozygous missense variants, with the exception of one large in-frame deletion of exon 7. Cell line studies showed the variants resulted in reduced protein stability and downstream cellular defects which could be rescued by wild-type CIAO1. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1585 | SNF8 |
Chern Lim gene: SNF8 was added gene: SNF8 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SNF8 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SNF8 were set to 38423010 Phenotypes for gene: SNF8 were set to Neurodevelopmental disorder (MONDO:0700092), SNF8-related Review for gene: SNF8 was set to GREEN gene: SNF8 was marked as current diagnostic Added comment: PMID: 38423010 - Nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8. In total, three putative LoF variants and four missense variants were identified. - The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile) as compound heterozygous. - Functional studies using fibroblasts derived from patients and zebrafish model showed LoF is the disease mech. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1580 | NIT1 |
Paul De Fazio gene: NIT1 was added gene: NIT1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NIT1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: NIT1 were set to 38430071 Phenotypes for gene: NIT1 were set to Cerebrovascular disorder, NIT1-related (MONDO:0011057) Penetrance for gene: NIT1 were set to unknown gene: NIT1 was marked as current diagnostic Added comment: 5 unrelated families reported with recessively inherited cerebral small vessel disease had compound hetereozygous or homozygous variants in NIT1. 1 family (3 siblings) had p.(Ala68*) in trans with p.(Arg243Trp), the remaining 4 families (1 individual each) were all homozygous for p.(Arg243Trp). Patients presented in mid-adulthood with progressive movement disorders (e.g. dystonia, chorea, bradykinesia and tremor, gait disturbance, dysarthria) and had abnormal brain MRI findings (honeycomb appearance of the basal ganglia-thalamus complex, due to numerous strongly dilated PVS). 3 patients had non-lobar intracerebral hemorrhage. Slowly progressive cognitive decline was also a key feature. Metabolic analysis in urine confirmed loss of NIT1 enzymatic function. Note p.(Arg243Trp) has 1 homozygote in gnomAD v4, but permitted due to later presentation in reported patients. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1513 | NUP160 |
Melanie Marty changed review comment from: PMID: 30910934 1 x patient with familial steroid-resistant nephrotic syndrome (SRNS) and FSGS carried novel compound-heterozygous variants in NUP160 (R1173X and E803K). Silencing of Drosophila NUP160 specifically in nephrocytes (fly renal cells) led to functional abnormalities, reduced cell size and nuclear volume, and disorganized nuclear membrane structure. These defects were completely rescued by the expression of the wild-type human NUP160 gene in nephrocytes. PMID: 30179222 1 x family (2 sibs) with compound het variants E803K and Arg910X. 1 Sib had SRNS and FSGS, the other had proteinuria. PMID: 33456446 1 x family (2 sibs) with steroid-resistant nephrotic syndrome and chronic kidney disease. Homozygous for NUP160 c.1179+5G>A, confirmed by RT-PCR to cause abnormal splicing [r.1102_1179del;p.(Phe368_Gln393del)]. These individuals also had additional neurological features of intellectual disability and epilepsy. PMID: 38224683 Generated a podocyte-specific Nup160 knockout (Nup160podKO) mouse mode using CRISPR/Cas9 and Cre/loxP technologies. They showed that Nup160podKO mice develop typical signs of NS.; to: PMID: 30910934 1 x patient with familial steroid-resistant nephrotic syndrome (SRNS) and FSGS carried novel compound-heterozygous variants in NUP160 (R1173X and E803K). Silencing of Drosophila NUP160 specifically in nephrocytes (fly renal cells) led to functional abnormalities, reduced cell size and nuclear volume, and disorganized nuclear membrane structure. These defects were completely rescued by the expression of the wild-type human NUP160 gene in nephrocytes. PMID: 30179222 1 x family (2 sibs) with compound het variants E803K and Arg910X. 1 Sib had SRNS and FSGS, the other had proteinuria. PMID: 33456446 1 x family (2 sibs) with SRNS and chronic kidney disease. Homozygous for NUP160 c.1179+5G>A, confirmed by RT-PCR to cause abnormal splicing [r.1102_1179del;p.(Phe368_Gln393del)]. These individuals also had additional neurological features of intellectual disability and epilepsy. PMID: 38224683 Generated a podocyte-specific Nup160 knockout (Nup160podKO) mouse model using CRISPR/Cas9 and Cre/loxP technologies. They showed that Nup160podKO mice develop typical signs of NS. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1511 | MEI4 |
Lisa Norbart changed review comment from: PMID: 38252283 - 5x compound heterozygous missense variants and 1x homozygous missense variant seen in five individuals across 4 unrelated families affected with female infertility characterised by preimplantation embryonic arrest. Includes one family with two affected sisters with the same compound heterozygous variants. 2/4 families showed inheritance, parental data not available for other two families. Homozygous variant in the consanguineous family appears with a more severe phenotype. In vitro evidence shows variants reduced the interactions between MEI4 and DNA, but no effects on protein levels. In vivo knock-out mouse model showed female mice were infertile, characterised by developmental defects during oogenesis. Sources: Literature; to: PMID: 38252283 - 5x compound heterozygous missense variants and 1x homozygous missense variant seen in five individuals across 4 unrelated families affected with female infertility characterised by preimplantation embryonic arrest. Includes one family with two affected sisters with the same compound heterozygous variants. 2/4 families showed inheritance, parental data not available for other two families. Homozygous variant in the consanguineous family appears with a more severe phenotype. In vitro evidence shows variants reduced the interactions between MEI4 and DNA, but no effects on protein levels. In vivo knock-out mouse model showed female mice were infertile, characterised by developmental defects during oogenesis. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1507 | MEI4 |
Lisa Norbart gene: MEI4 was added gene: MEI4 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MEI4 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal Publications for gene: MEI4 were set to 38252283 Phenotypes for gene: MEI4 were set to Infertility disorder, MONDO:0005047, MEI4-related Review for gene: MEI4 was set to GREEN Added comment: PMID: 38252283 - 5x compound heterozygous missense variants and 1x homozygous missense variant seen in five individuals across 4 unrelated families affected with female infertility characterised by preimplantation embryonic arrest. Includes one family with two affected sisters with the same compound heterozygous variants. 2/4 families showed inheritance, parental data not available for other two families. Homozygous variant in the consanguineous family appears with a more severe phenotype. In vitro evidence shows variants reduced the interactions between MEI4 and DNA, but no effects on protein levels. In vivo knock-out mouse model showed female mice were infertile, characterised by developmental defects during oogenesis. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1468 | PPFIA3 |
Zornitza Stark gene: PPFIA3 was added gene: PPFIA3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PPFIA3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: PPFIA3 were set to 37034625 Phenotypes for gene: PPFIA3 were set to Neurodevelopmental disorder, MONDO:0700092, PPFIA3-related Review for gene: PPFIA3 was set to GREEN Added comment: 19 individuals with mono-allelic variants presenting with features including developmental delay, intellectual disability, hypotonia, micro/macrocephaly, autism, and epilepsy. One individual with compound het variants: insufficient evidence for bi-allelic variants causing disease. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1457 | BORCS8 |
Lauren Rogers changed review comment from: 3 unrelated families with five affected children with homozygous or compound heterozygous loss of function missense and PTC variants. HEK293T cells show the missense variants are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution. The BORCS8 PTC frameshift variant is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution. Zebrafish KO of the orthologous brocs8 causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease. Sources: Literature; to: 3 unrelated families with five affected children with homozygous or compound heterozygous loss of function missense and PTC variants. 5/5 hypotonia, failure to thrive, global developmental delay, profound intellectual disability, muscle weakness and atrophy, dysmorphic features. 3/5 with microcephaly, 3/5 with seizures, 4/5 with spasticity, 3/5 with scoliosis, 4/4 with optic atrophy. HEK293T cells show the missense variants are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution. The BORCS8 PTC frameshift variant is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution. Zebrafish KO of the orthologous brocs8 causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1457 | BORCS8 |
Lauren Rogers gene: BORCS8 was added gene: BORCS8 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: BORCS8 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: BORCS8 were set to 38128568 Phenotypes for gene: BORCS8 were set to Neurodevelopmental disorder (MONDO#0700092), BORCS8-related Review for gene: BORCS8 was set to GREEN Added comment: 3 unrelated families with five affected children with homozygous or compound heterozygous loss of function missense and PTC variants. HEK293T cells show the missense variants are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution. The BORCS8 PTC frameshift variant is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution. Zebrafish KO of the orthologous brocs8 causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1443 | POLD1 | Zornitza Stark edited their review of gene: POLD1: Added comment: Association with combined immunodeficiency: Three individuals from two generations of a consanguineous family reported, some functional data. Another unrelated individual reported in PMID 31449058, more functional data. Third family identified in Melbourne, two affected sibs, compound het variants and combined immunodeficiency.; Changed phenotypes: Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome, MIM# 615381, MONDO:0014157, Combined immunodeficiency, MONDO:0015131, POLD1-related; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1411 | FUK |
Zornitza Stark edited their review of gene: FUK: Added comment: PMID: 35718084: Reporting on 3 unrelated patients from literature and 1 new patient. All reported to have mild-severe intellectual disability, developmental delay and brain abnormalities, and 3/4 present with seizures. Phenotypes are childhood onset. Homozygous and compound heterozygous variants have been reported. PMID: 36426412: Reporting on new 1 patient (homozygous missense). Not affected by intellectual disability, developmental delay, or brain abnormalities. Presents with seizures. Loss of function suggested due to depletion of the FUK gene expression.; Changed rating: GREEN; Changed publications: 30503518, 35718084, 36426412 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1390 | FA2H |
Zornitza Stark changed review comment from: Well established gene-disease association, both peripheral and central features (dystonia, dysarthria, cognitive impairment, and epilepsy), childhood-onset, progressive. Sources: Expert Review; to: Well established gene-disease association, both peripheral and central features (dystonia, dysarthria, cognitive impairment, and epilepsy), childhood-onset, progressive. PubMed: 31135052 – 19 patients from 16 families consistent with a complicated form of SPG. PubMed:18463364 – 7 individuals identified from a large consanguineous family with SPG. PubMed: 19068277 – 7 patients from 2 unrelated consanguineous middle eastern families PubMed: 20104589– Multiple affected individuals in an Omani family. Findings indicated that an abnormal hydroxylation of myelin galactocerebroside lipid components can lead to the progression of a severe phenotype. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1362 | THOC6 |
Ling Sun changed review comment from: THOC6 homozygous or compound heterozygous variants are associated with Beaulieu-Boycott-Innes syndrome. Clinical spectrum is heterogenous, with major phenotype DD and ID (Note that this gene is already on the ID panel). Some are affected with structural cardiac anomalies, therefore not all individuals with BBIS have cardiac anomalies (hence, not a major phenotype). PMID 35426486: Two siblings with maternally inherited c.[298T>A;700G>T;824G>A], p.[(Trp100Arg);(Val234Leu);(Gly275Asp)] and paternally inherited c.977T>G, p.(Val326Gly) [compound het] PMID: 30476144: A boy with mat UPD homozygous c.(298T>A; 700G>C; 824G>C) A girl with maternally inherited c.(298T>A, 700G>C, 824G>A) and paternally inherited c.569G>A, p.(Gly190Glu) [compount het] PMID: 32282736: A boy with paternally inherited c.664T>C (p.Trp222Arg) and maternally inherited c.945+1 G>A [compound het]; to: THOC6 homozygous or compound heterozygous variants are associated with Beaulieu-Boycott-Innes syndrome. Clinical spectrum is heterogenous, with major phenotype DD and ID (Note that this gene is already on the ID panel). Some are affected with structural cardiac anomalies, therefore not all individuals with BBIS have cardiac anomalies (hence, not a major phenotype, eg. see https://databases.lovd.nl/shared/diseases/03390). PMID 35426486: Two siblings with maternally inherited c.[298T>A;700G>T;824G>A], p.[(Trp100Arg);(Val234Leu);(Gly275Asp)] and paternally inherited c.977T>G, p.(Val326Gly) [compound het] PMID: 30476144: A boy with mat UPD homozygous c.(298T>A; 700G>C; 824G>C) A girl with maternally inherited c.(298T>A, 700G>C, 824G>A) and paternally inherited c.569G>A, p.(Gly190Glu) [compount het] PMID: 32282736: A boy with paternally inherited c.664T>C (p.Trp222Arg) and maternally inherited c.945+1 G>A [compound het] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1362 | THOC6 |
Ling Sun changed review comment from: THOC6 homozygous or compound heterozygous variants are associated with Beaulieu-Boycott-Innes syndrome. Clinical spectrum is heterogenous, with major phenotype DD and ID (Note that this gene is already on the ID panel). Some are affected with structural cardiac anomalies, therefore not all individuals with BBIS have cardiac anomalies (hence, not a major phenotype). PMID 35426486: Two siblings with maternally inherited c.[298T>A;700G>T;824G>A], p.[(Trp100Arg);(Val234Leu);(Gly275Asp)] and paternally inherited c.977T>G, p.(Val326Gly) PMID: 30476144: A boy with mat UPD homozygous c.(298T>A; 700G>C; 824G>C) A girl with maternally inherited c.(298T>A, 700G>C, 824G>A) and paternally inherited c.569G>A, p.(Gly190Glu); to: THOC6 homozygous or compound heterozygous variants are associated with Beaulieu-Boycott-Innes syndrome. Clinical spectrum is heterogenous, with major phenotype DD and ID (Note that this gene is already on the ID panel). Some are affected with structural cardiac anomalies, therefore not all individuals with BBIS have cardiac anomalies (hence, not a major phenotype). PMID 35426486: Two siblings with maternally inherited c.[298T>A;700G>T;824G>A], p.[(Trp100Arg);(Val234Leu);(Gly275Asp)] and paternally inherited c.977T>G, p.(Val326Gly) [compound het] PMID: 30476144: A boy with mat UPD homozygous c.(298T>A; 700G>C; 824G>C) A girl with maternally inherited c.(298T>A, 700G>C, 824G>A) and paternally inherited c.569G>A, p.(Gly190Glu) [compount het] PMID: 32282736: A boy with paternally inherited c.664T>C (p.Trp222Arg) and maternally inherited c.945+1 G>A [compound het] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1362 | THOC6 |
Ling Sun changed review comment from: THOC6 homozygous or compound heterozygous variants are associated with Beaulieu-Boycott-Innes syndrome. Clinical spectrum is heterogenous, with major phenotype DD and ID (Note that this gene is already on the ID panel). Some are affected with structural cardiac anomalies (syndromic phenotype). PMID 35426486: Two siblings with maternally inherited c.[298T>A;700G>T;824G>A], p.[(Trp100Arg);(Val234Leu);(Gly275Asp)] and paternally inherited c.977T>G, p.(Val326Gly) PMID: 30476144: A boy with mat UPD homozygous c.(298T>A; 700G>C; 824G>C) A girl with maternally inherited c.(298T>A, 700G>C, 824G>A) and paternally inherited c.569G>A, p.(Gly190Glu); to: THOC6 homozygous or compound heterozygous variants are associated with Beaulieu-Boycott-Innes syndrome. Clinical spectrum is heterogenous, with major phenotype DD and ID (Note that this gene is already on the ID panel). Some are affected with structural cardiac anomalies, therefore not all individuals with BBIS have cardiac anomalies (hence, not a major phenotype). PMID 35426486: Two siblings with maternally inherited c.[298T>A;700G>T;824G>A], p.[(Trp100Arg);(Val234Leu);(Gly275Asp)] and paternally inherited c.977T>G, p.(Val326Gly) PMID: 30476144: A boy with mat UPD homozygous c.(298T>A; 700G>C; 824G>C) A girl with maternally inherited c.(298T>A, 700G>C, 824G>A) and paternally inherited c.569G>A, p.(Gly190Glu) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1358 | PSMB10 | Zornitza Stark edited their review of gene: PSMB10: Added comment: PMID 37600812: 3 additional unrelated patients with compound heterozygous variants with structural modelling of proteasome assembly.; Changed rating: GREEN; Changed publications: 31783057, 37600812 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1287 | HMOX1 | Zornitza Stark edited their review of gene: HMOX1: Added comment: PMID:33066778 provides a third case in support of promoting HMOX1 to green rating. This third case is a boy born to nonconsanguineous parents who presented with early onset asplenia, recurrent infections, and associated flares with bone marrow histiocyte activation with worsening interstitial lung disease and joint pain. This boy harboured compound heterozygous variants (p.L89Sfs*24 and p.Ala88Profs*51).; Changed rating: GREEN; Changed publications: 21088618, 9884342, 20844238, 33066778 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1254 | CFAP20 |
Sarah Pantaleo gene: CFAP20 was added gene: CFAP20 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CFAP20 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CFAP20 were set to PMID:36329026 Phenotypes for gene: CFAP20 were set to Retinitis pigmentosa (MONDO:0019200) Review for gene: CFAP20 was set to GREEN Added comment: CFAP20 is a ciliopathy candidate. Demonstrate in zebrafish that cfap20 is required for motile cilia function, and in C. elegans, CFAP-20 maintains the structural integrity of non-motile cilia inner junctions, influencing sensory-dependent signalling and development. Human patients and zebrafish with CFAP20 mutations both exhibit retinal dystrophy (retinitis pigments). Hence, CFAP20 functions within a structural./functional hub centred on the inner junction that is shared between motile and non-motile cilia, and is distinct from other ciliopathy-associaetd domains or macromolecular complexes. Describe 8 individuals from 4 independent families with damaging biallelic variants (homozygous or compound heterozygous) in CFAP20 that segregate with retinal dystrophy. All variants cluster to one side of the protein, with two of the residues directly contacting alpha-tubullin. Family 1 - consanguineous set of 3 siblings from Sudan, homozygous for CFAP20 c.305G>A; p.Arg102His (they also had a homozygous variant in DYNC1LI2 however CFAP20 was considered the better candidate. Family 2 - 3 siblings from Spain, 2 with retinal dystrophy, 1 genetically tested and has c.337C>T; p.(Arg113Trp) and c.397delC; p.(Gln133Serfs*5) Family 3 - single affected family member compound het for c.164+1G>A and c.457A>G; p.(Arg153Gly). Family 4 - 3 affected siblings with generalised retinopathy and variable neurological deficits with c.164+1G>A and c.257G>A; p.(Tyr86Cys) For all families, no individuals had signs of polycystic kidney disease; however, not all individuals had kidney imaging. Visual defecit phenotype presented between adolescence and adulthood (17-56 years old). Used HEK293T cell expression studies to demonstrate a statistically significant decline of mutated CFAP20 protein levels (with the exception of p.Arg102His). To test the specific variants, they used the C.elegans orthologues. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1117 | APOL1 |
Zornitza Stark edited their review of gene: APOL1: Added comment: Assigned Definitive gene-disease validity by the ClinGen Glomerulopathy GCEP - Classification - 09/28/2021 Increased risk of kidney and glomerular diseases in persons carrying two of the risk alleles in this gene: G1/G1, G2/G2 and compound heterozygous G1/G2. PMID: 20647424 - first study to identify G1 & G2 alleles associated with risk of renal disease. Comparing participants with zero or 1 risk allele of APOL1 to participants with 2 risk alleles provided an odds ratio for FSGS of 10.5 (CI, 6.0-18.4). This analysis supported a completely recessive pattern of inheritance. PMID: 25993319 - only G1 and G2 confer renal risk, and other common and rare APOL1 missense variants, including the archaic G3 haplotype, do not contribute to sporadic FSGS and HIVAN rs73885319 (G1) OR 9.66, p=9.97E-25 rs60910145 (G1) OR 9.75, p=9.04E-24 rs71785313 (G2) OR 5.69, p=3.39E-06 2 APOL1 risk alleles OR 18.31, p=3.31E-58 PMID: 34350953 - recessive gain-of-function toxicity mouse model recapitulates human kidney disease G1: p.Ser342Gly, AFR/AA gnomAD v2.1 AF 0.2276 (5,671/24,920 alleles, 687 homozygotes) p.Ile384Met, AFR/AA gnomAD v2.1 AF 0.2278 (5,487/24,082 alleles, 662 homozygotes) G2: p.Asn388_Tyr389del, AFR/AA gnomAD v2.1 AF 0.1402(3,402/24,268 alleles, 224 homozygotes AMBER status due to these being susceptibility alleles, and evidence being limited to these specific variants.; Changed rating: AMBER |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1087 | HNRNPA2B1 | Zornitza Stark Phenotypes for gene: HNRNPA2B1 were changed from oculopharyngeal muscular dystrophy, MONDO:0008116; Inclusion body myopathy with early-onset Paget disease with or without frontotemporal dementia 2 MIM#615422 to oculopharyngeal muscular dystrophy, MONDO:0008116, OMIM#620460; Inclusion body myopathy with early-onset Paget disease with or without frontotemporal dementia 2 MIM#615422 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1064 | STAB1 |
Chern Lim gene: STAB1 was added gene: STAB1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: STAB1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: STAB1 were set to 37490907; 28052375 Phenotypes for gene: STAB1 were set to Iron metabolism disease (MONDO:0002279), STAB1-related Review for gene: STAB1 was set to GREEN gene: STAB1 was marked as current diagnostic Added comment: PMID: 37490907 - Biallelic variants identified in 10 individuals from 7 families with unexplained hyperferritinaemia without iron overload. All of them were in good health and had no dysmorphologies, psycho-motor development abnormalities, hearing or vision disorders, or other pathologies. - Homozygous/compound heterozygous variants: missense, frameshift, stopgain, inframe del of 3 AAs, one synonymous. - Samples from three of the patients from two families showed no immunoreactivity with anti-stabilin-1 compared to control liver where high signal was detected in the liver sinusoids (immunohistochemistry analysis). - Patients’ peripheral monocytes and monocyte-derived macrophages showed very little expression of stabilin-1 on CD14+ monocytes and macrophages compared to control subjects (flow cytometry analysis). - These families have also been published in PMID: 28052375. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.997 | PMVK |
Zornitza Stark changed review comment from: Association with auto inflammatory syndrome: Five-year-old girl with recurring hyperinflammatory episodes initially presenting at 9mo with fever, arthritis, aphthous stomatitis and maculopapular rash with homozygous variant in PMVK p.Val131Ala (NM_006556.4: c.392T>C) with clinical overlap with MVK deficiency. Supportive functional data. Second patient, 6yo boy with compound heterozygous c.329G >A (p. Arg110Gln) and c.316G >A (p. Val106Met) mutations in trans configuration with similar phenotype.; to: Association with auto inflammatory syndrome: Five-year-old girl with recurring hyperinflammatory episodes initially presenting at 9mo with fever, arthritis, aphthous stomatitis and maculopapular rash with homozygous variant in PMVK p.Val131Ala (NM_006556.4: c.392T>C) with clinical overlap with MVK deficiency. Supportive functional data. Second patient, 6yo boy with compound heterozygous c.329G >A (p. Arg110Gln) and c.316G >A (p. Val106Met) mutations in trans configuration with similar phenotype. Amber for bi-allelic disease association. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.997 | PMVK |
Zornitza Stark edited their review of gene: PMVK: Added comment: Association with auto inflammatory syndrome: Five-year-old girl with recurring hyperinflammatory episodes initially presenting at 9mo with fever, arthritis, aphthous stomatitis and maculopapular rash with homozygous variant in PMVK p.Val131Ala (NM_006556.4: c.392T>C) with clinical overlap with MVK deficiency. Supportive functional data. Second patient, 6yo boy with compound heterozygous c.329G >A (p. Arg110Gln) and c.316G >A (p. Val106Met) mutations in trans configuration with similar phenotype.; Changed publications: 26202976, 37364720, 36410683; Changed phenotypes: Porokeratosis 1, multiple types, MIM# 175800, Autoinflammatory syndrome, MONDO:0019751, PMVK-related; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.989 | NAA60 |
Chirag Patel gene: NAA60 was added gene: NAA60 was added to Mendeliome. Sources: Other Mode of inheritance for gene: NAA60 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: NAA60 were set to Basal ganglia calcification Review for gene: NAA60 was set to GREEN gene: NAA60 was marked as current diagnostic Added comment: ESHG 2023: 10 individuals from 7 families with biallelic variants in NAA60 (missense and framshift). All with primary brain calcification - 4/10 childhood onset (DD, ID), 6/10 adult onset (cerebellar and pyramidal dysfunction, dystonia, parkinsonism, cognitive impairment, psychiatric manifestations). NAA60 catalyses N-terminal acetylation of transmembrane proteins and localises to Golgi apparatus. In vitro assay of variants showed reduced capacity of Nt acetylation. Fibroblast studies showed significantly reduced levels of phosphate importer (SLC20A2). Loss of function variants in SLC20A2 (~50% of PFBC cases) lead to increased extracellular phosphate (which is thought to lead to calcium deposits in brain). Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.965 | SART3 |
Daniel Flanagan gene: SART3 was added gene: SART3 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: SART3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SART3 were set to PMID: 37296101 Phenotypes for gene: SART3 were set to Neurodevelopmental disorder (MONDO#0700092), SART3-related; 46,XY disorder of sex development (MONDO:0020040), SART3-related Review for gene: SART3 was set to GREEN Added comment: Nine individuals from six families presenting with intellectual disability, global developmental delay, a subset of brain anomalies, together with gonadal dysgenesis in 46,XY individuals. Additionally, two individuals had seizures and two had epileptiform activity reported on EEG. Human induced pluripotent stem cells carrying patient variants in SART3 show disruption to multiple signalling pathways, upregulation of spliceosome components and demonstrate aberrant gonadal and neuronal differentiation in vitro. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.834 | GPR156 |
Anna Ritchie gene: GPR156 was added gene: GPR156 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GPR156 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: GPR156 were set to PMID: 36928819 Phenotypes for gene: GPR156 were set to Sensorineural hearing loss, MONDO:60700002, GPR156-related Review for gene: GPR156 was set to GREEN Added comment: Eight affected individuals from three unrelated families with congenital nonsyndromic bilateral sensorineural hearing loss. Homozygous or compound heterozygous loss of function variants were reported in these families. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.803 | ROBO1 |
Zornitza Stark edited their review of gene: ROBO1: Added comment: Association with ID: GREEN for bi-allelic variants: PMID:28286008 reported a boy with compound heterozygous variants that was presented with developmental delay in 13 months and had severe intellectual disability and hyperactivity at nine years of age. He was nonverbal and wheelchair dependent because of spastic diplegia and ataxia. PMID:30692597 reported a five year old boy identified with a homozygous ROBO1 variant who had combined pituitary hormone deficiency, psychomotor developmental delay, severe intellectual disability, sensorineural hearing loss, strabismus and characteristic facial features. PMID:35227688 reported eight patients including the boy reported in PMID:30692597. Of the other seven patients, three were presented with intellectual disability. Of these three patients, two harboured compound heterozygous and one harboured homozygous variants. PMID:35348658 reported a patient identified with monoallelic de novo variant (p.D422G) who presented with early-onset epileptic encephalopathy and had severe developmental delay.; Changed phenotypes: Congenital heart disease, Pituitary anomalies, Nystagmus 8, congenital, autosomal recessive, MIM# 257400, intellectual disability, MONDO:0001071 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.774 | SNAPC4 |
Ee Ming Wong changed review comment from: - Ten individuals from eight families with neurodevelopmental disorder found to be compound heterozygous for variants in SNAPC4 - Identified variants included 6x missense, 1x nonsense, 1x frameshift and 6x splice - Depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing, similarly observed in patient fibroblasts Sources: Literature; to: - Ten individuals from eight families with neurodevelopmental disorder found to be biallelic for variants in SNAPC4 - Identified variants included 6x missense, 1x nonsense, 1x frameshift and 6x splice - Depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing, similarly observed in patient fibroblasts Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.774 | SNAPC4 |
Ee Ming Wong gene: SNAPC4 was added gene: SNAPC4 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SNAPC4 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SNAPC4 were set to 36965478 Phenotypes for gene: SNAPC4 were set to Neurodevelopmental disorder (MONDO#0700092), SNAPC4-related Review for gene: SNAPC4 was set to GREEN gene: SNAPC4 was marked as current diagnostic Added comment: - Ten individuals from eight families with neurodevelopmental disorder found to be compound heterozygous for variants in SNAPC4 - Identified variants included 6x missense, 1x nonsense, 1x frameshift and 6x splice - Depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing, similarly observed in patient fibroblasts Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.727 | REPS1 |
Zornitza Stark gene: REPS1 was added gene: REPS1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: REPS1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: REPS1 were set to 29395073 Phenotypes for gene: REPS1 were set to Neurodegeneration with brain iron accumulation 7 , MIM# 617916 Review for gene: REPS1 was set to RED Added comment: Two siblings reported with compound het missense variants in this gene and a neurodegenerative course in childhood. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.719 | DPYSL2 |
Zornitza Stark gene: DPYSL2 was added gene: DPYSL2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: DPYSL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: DPYSL2 were set to 27249678; 35861646 Phenotypes for gene: DPYSL2 were set to intellectual disability, MONDO:0001071, DPYSL2-related Review for gene: DPYSL2 was set to AMBER Added comment: Two unrelated cases with monoallelic variants in DPYSL2/ CRMP2, supported by functional studies. However, the evidence is not sufficient for green rating as there are variants reported in other (but different) genes in the two patients. PMID:35861646 reported two cases identified with heterozygous variants (patient1: c.1693C>T (p.Arg565Cys); patient 2: c.42C>A (p.Ser14Arg). These patients had overlapping phenotypes including dysmorphic features, severe global developmental delay and hypoplasia of the corpus callosum. In addition, patient 2 was bed-ridden and could not roll out and had a history of myoclonic seizures and status epilepticus. It should be noted that patient 1 is compound heterozygous for 2 missense variants in the EFCAB5 gene and was hemizygous for a maternally inherited missense variant in the GPKOW gene and patient 2 had 1 de novo missense variant in the COBLL1 gene and was compound heterozygous for 2 missense variants in the POTEF gene. The severity of the phenotypes between the two cases differs significantly and the additional variants may have possibly contributed to this phenotype. Brain-specific Crmp2 knockout mice display neuronal development deficits and behavioural impairments associated with hypoplasia of the corpus callosum. In addition, functional studies performed in zebrafish and cell lines that the CRMP2 variants lead to the loss-of-function of CRMP2 protein and can cause intellectual disability. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.703 | ZNF143 |
Zornitza Stark gene: ZNF143 was added gene: ZNF143 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ZNF143 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ZNF143 were set to 27349184 Phenotypes for gene: ZNF143 were set to Combined methylmalonic acidemia and homocystinuria, cblX like 1, MONDO:0002012, ZNF143-related Review for gene: ZNF143 was set to RED Added comment: Single individual reported with compound heterozygous variants. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.668 | MRPS7 | Zornitza Stark edited their review of gene: MRPS7: Added comment: Now second publication (PMID: 36421788) describes sisters with an overlapping phenotype including sensorineural deafness and premature ovarian insufficiency. They both had compound heterozygous (one missense, one nonsense) MRPS7 variants.; Changed rating: AMBER; Changed publications: 25556185, 36421788 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.656 | EFCAB1 |
Chirag Patel gene: EFCAB1 was added gene: EFCAB1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: EFCAB1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: EFCAB1 were set to PMID: 36727596 Phenotypes for gene: EFCAB1 were set to Primary ciliary dyskinesia and heterotaxy, no OMIM # Review for gene: EFCAB1 was set to GREEN Added comment: WES in 3 individuals with laterality defects and respiratory symptoms, identified homozygous pathogenic variants in CLXN (EFCAB1). They found Clxn expressed in mice left-right organizer. Transmission electron microscopy depicted outer dynein arm (ODA) defects in distal ciliary axonemes. Immunofluorescence microscopy revealed absence of CLXN from the ciliary axonemes, absence of the ODA components DNAH5, DNAI1 and DNAI2 from the distal axonemes, as well as mislocalization or absence of DNAH9. Additionally, CLXN is undetectable in ciliary axonemes of individuals with defects in the outer dynein arm docking (ODA-DC) machinery: ODAD1, ODAD2, ODAD3 and ODAD4. Moreover, SMED-EFCAB1-deficient planaria displayed ciliary dysmotility. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.648 | SPTSSA |
Seb Lunke gene: SPTSSA was added gene: SPTSSA was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SPTSSA was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: SPTSSA were set to 36718090 Phenotypes for gene: SPTSSA were set to complex hereditary spastic paraplegia, MONDO:0015150 Review for gene: SPTSSA was set to AMBER Added comment: Three unrelated individuals with common neurological features of developmental delay, progressive motor impairment, progressive lower extremity spasticity, and epileptiform activity or seizures. Other additional features varied. Two of the individuals had the same de-novo missense, Thr51Ile, while the third was homozygous for a late truncating variant, Gln58AlafsTer10. The patient with the hom variant was described as less severe. Functional studies in fibroblasts showed dysregulation of the sphingolipid (SL) synthesis pathway, showing that both variants impair ORMDL regulation of the pathway leading to various levels of increased SL. Over expression of human SPTSSA was shown to lead to motor development in flies, rescued by expression of ORMDL for WT SPTSSA but not mutant SPTSSA. The de-novo missense were shown to impact regulation more than the hom truncation, while the truncated region was shown to previously to be important for ORMDL regulation. Mice with a hom KO of the functional equivalent sptssb had early onset ataxia and died prematurely, with evidence of axonic degeneration. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.635 | MIR145 |
Lucy Spencer gene: MIR145 was added gene: MIR145 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MIR145 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: MIR145 were set to 36649075 Phenotypes for gene: MIR145 were set to multisystemic smooth muscle dysfunction syndrome (MONDO:0013452), MIR145-related Review for gene: MIR145 was set to RED Added comment: PMID: 36649075- a patient whose fetal ultrasound revealed polyhydramnios, enlarged abdomenand bladder, and prune belly syndrome. During infancy/childhood profound gastrointestinal dysmotility, cerebrovascular disease, and multiple strokes. Described as a multisystemic smooth muscle dysfunction syndrome. Patient was found to have a de novo SNP in MIR145 NR_029686.1:n.18C>A. The MIR145transcript is processed into two microRNAs, with the variant position at nucleotide 3 of miR-145-5p. Transfection of an siRNA against mutant miR145-5p induced a notable decrease in the expression of several cytoskeletal proteins including transgelin, calponin, and importantly, smooth muscle actin. Hybridization analysis and miR RNA-seq demonstrated a decrease in expression of miR145-5p in the presence of mutant miR145-5p. RNA-seq showed that the differentially expressed genes were substantially different between patient and control fibroblasts. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.601 | BSN |
Krithika Murali changed review comment from: Ye et al 2022, Neurogenetics identified 4 unrelated individuals with epilepsy and compound heterozygous BSN variants via trio WES (combination of null and missense). Homozygous knockout mouse models showed abnormal CNS transmission and seizure activity. None of the identified variants were present in population databases as homozygotes. One individual had ID and microcephaly but all other individuals with biallelic variants had normal development. In addition, heterozygous variants were identified in unrelated affected individuals - 2 apparently co-segregating missense variants and 2 de novo null variants. These variants were either absent in population databases or rare. The authors note that affected individuals with heterozygous variants had milder disease - either requiring no therapy or monotherapy only. Heterozygous knockout mice had no phenotype and there were not enough affected individuals in the families to truly determine co-segregation. In addition, carrier parents of individuals with biallelic variants did not appear to be affected. Association between biallelic variants and epilepsy stronger than for monoallelic. Sources: Literature; to: Ye et al 2022, Neurogenetics - https://jmg.bmj.com/content/early/2022/12/12/jmg-2022-108865 Identified 4 unrelated individuals with epilepsy and compound heterozygous BSN variants via trio WES (combination of null and missense). Homozygous knockout mouse models showed abnormal CNS transmission and seizure activity. None of the identified variants were present in population databases as homozygotes. One individual had ID and microcephaly but all other individuals with biallelic variants had normal development. In addition, heterozygous variants were identified in unrelated affected individuals - 2 apparently co-segregating missense variants and 2 de novo null variants. These variants were either absent in population databases or rare. The authors note that affected individuals with heterozygous variants had milder disease - either requiring no therapy or monotherapy only. Heterozygous knockout mice had no phenotype and there were not enough affected individuals in the families to truly determine co-segregation. In addition, carrier parents of individuals with biallelic variants did not appear to be affected. Association between biallelic variants and epilepsy stronger than for monoallelic. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.593 | UHRF1 |
Chern Lim edited their review of gene: UHRF1: Added comment: PMID: 36458887 Unoki et al. 2022 - One patient with compound het missense and nonsense variants, both parents are carriers (hets). - The patient has chromosome instability with hypomethylation of the pericentromeric satellite-2 repeats and facial anomalies as typical symptoms of the ICF syndrome, but did not exhibit immunodeficiency, and developed an adrenocortical adenoma; characteristics that were atypical. - Genome-wide methylation analysis revealed the patient had a centromeric/pericentromeric hypomethylation, which is the main ICF signature, but also had a distinctive hypomethylation pattern compared to patients with the other ICF syndrome subtypes. - Structural and biochemical analyses revealed that the R296W variant disrupted the protein conformation and strengthened the binding affinity of UHRF1 with its partner LIG1, and reduced ubiquitylation activity of UHRF1 towards its ubiquitylation substrates, histone H3 and PAF15.; Changed publications: 36458887; Changed phenotypes: chromosome instability; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.588 | BSN |
Krithika Murali gene: BSN was added gene: BSN was added to Mendeliome. Sources: Literature Mode of inheritance for gene: BSN was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: BSN were set to Epilepsy MONDO:0005027 Review for gene: BSN was set to GREEN Added comment: Ye et al 2022, Neurogenetics identified 4 unrelated individuals with epilepsy and compound heterozygous BSN variants via trio WES (combination of null and missense). Homozygous knockout mouse models showed abnormal CNS transmission and seizure activity. None of the identified variants were present in population databases as homozygotes. One individual had ID and microcephaly but all other individuals with biallelic variants had normal development. In addition, heterozygous variants were identified in unrelated affected individuals - 2 apparently co-segregating missense variants and 2 de novo null variants. These variants were either absent in population databases or rare. The authors note that affected individuals with heterozygous variants had milder disease - either requiring no therapy or monotherapy only. Heterozygous knockout mice had no phenotype and there were not enough affected individuals in the families to truly determine co-segregation. In addition, carrier parents of individuals with biallelic variants did not appear to be affected. Association between biallelic variants and epilepsy stronger than for monoallelic. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.583 | OXGR1 |
Sarah Pantaleo gene: OXGR1 was added gene: OXGR1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: OXGR1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: OXGR1 were set to PMID:35671463 Phenotypes for gene: OXGR1 were set to Nephrolithiasis/nephrocalcinosis MONDO:0008171, OXGR1-related Penetrance for gene: OXGR1 were set to unknown Review for gene: OXGR1 was set to AMBER Added comment: Candidate disease gene for human calcium oxalate nephrolithiasis. Performed exome sequencing and directed sequencing of the OXGR1 locus in a worldwide nephrolithiasis/nephrocalcinosis (NL/NC) cohort, and putatively deleterious rare OXGR1 variants were functionally characterised. A heterozygous OXGR1 missense variant (c.371T>G; p.Leu124Arg) co-segregated with calcium oxalate NL and/or NC disease in an autosomal dominant inheritance pattern within a multi-generational family with five affected individuals. Interrogation of the OXGR1 locus in 1,107 additional NL/NC families identified five additional deleterious dominant variants in five families with calcium oxalate NL/NC. Rare, potentially deleterious OXGR1 variants were enriched in NL/NC subjects relative to ExAC controls. Four missense variants and one frameshift variant. Four of five NL/NC-associated missense variants revealed impaired AKG-dependent calcium ion uptake, demonstrating loss of function. Rare, dominant loss-of-function OXGR1 variants are associated with recurrent calcium oxalate NL/NC disease. Six potentially deleterious variants were identified in six of 1,108 NL/NC families (0.54%). Limitations: only probands were able to be recruited for four of six families. In the future, it will be important to determine whether any of the affected family members share the identified OXGR1 variant. They also observe OXGR1 variants in 0.16% of ExAC subjects (selected on the basis of the absence of paediatric disease). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.580 | CCIN |
Chern Lim gene: CCIN was added gene: CCIN was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CCIN was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CCIN were set to 36546111; 36527329 Phenotypes for gene: CCIN were set to Teratozoospermia Review for gene: CCIN was set to GREEN gene: CCIN was marked as current diagnostic Added comment: Two papers with three unrelated patients with teratozoospermia: PMID: 36546111 - Two families reported: One with homozygous missense (fam is consanguineous) and another with compound heterozygous missense + nonsense variants, patients suffering from teratozoospermia. - Homozygous CcinH42L/H42L and compound heterozygous CcinR432W/C447* knock-in mice generated. Spermatozoa from homozygous male mice exhibited abnormalities of sperm head shape revealed by Diff-Quick staining. When mated with WT mice, both homozygous CcinH42L/H42L and compound heterozygous CcinR432W/C447* male mice were infertile, whereas the mutant female mice could generate offspring and displayed no defects in fertility. PMID: 36527329 - One consanguineous family reported: homozygous missense, with asthenoteratozoospermia. - Transfected HEK cells showed reduced CCIN protein level. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.513 | NUP54 |
Hazel Phillimore gene: NUP54 was added gene: NUP54 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NUP54 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: NUP54 were set to PMID: 36333996 Phenotypes for gene: NUP54 were set to Early onset dystonia; progressive neurological deterioration; ataxia; dysarthria; dysphagia; hypotonia Mode of pathogenicity for gene: NUP54 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments Review for gene: NUP54 was set to AMBER Added comment: From PMID: 36333996.; Harrer, P. et al. (2022) Ann Neurol. doi: 10.1002/ana.26544. Three patients from unrelated families with dystonia and/or Leigh(-like) syndromes, with biallelic variants in NUP54, in the C-terminal protein region that interacts with NUP62. Onset was between 12 months and 5 years. All had progressive neurological deterioration with dystonia, ataxia, dysarthria, dysphagia, hypotonia. Patient / Family A (consanguineous) was homozygous for c.1073T>G p.(Ile358Ser). Patient / Family B was compound heterozygous for c.1073T>G p.(Ile358Ser) and c.1126A>G p.(Lys376Glu). Patient / Family C was compound heterozygosity for c.1410_1412del p.(Gln471del) and two missense variants c.1414G>A, p.(Glu472Lys); c.1420C>T, p.(Leu474Phe) The phenotypes were similar to those of NUP62 including early-onset dystonia with dysphagic choreoathetosis, and T2-hyperintense lesions in striatum. Brain MRIs showed T2/FLAIR hyperintensities in the dorsal putamina. Western blots showing reduced expression of NUP54 and its interaction partners NUP62/NUP58 in patient fibroblasts. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.504 | FEM1C |
Paul De Fazio gene: FEM1C was added gene: FEM1C was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FEM1C was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: FEM1C were set to 36336956; 28135719; 33398170; 33398168 Phenotypes for gene: FEM1C were set to Neurodevelopmental disorder, FEM1C-related MONDO:0700092 Review for gene: FEM1C was set to GREEN gene: FEM1C was marked as current diagnostic Added comment: PMID:36336956 describes a 9-year-old boy with severe DD, lack of speech, pyramidal signs, and limb ataxia who had a de novo missense variant Asp126His in FEM1C ascertained by WES. The equivalent variant introduced into the nematode C.elegans resulted in disabled locomotion caused by synaptic abnormalities and not muscle dysfunction. An alternate change Asp126Val was reported in the DDD study de novo in a patient with uncharacterised developmental delay (PMID:28135719). The Asp126 residue (but not either of the variants above specifically) was shown to be functionally important by in vitro studies (PMID:33398170;33398168). The residue is highly conserved and located in a region of missense constraint. Borderline green, 2 patients and an animal model. Note all evidence points to the Asp126 residue being of specific importance. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.489 | PIGN |
Zornitza Stark edited their review of gene: PIGN: Added comment: Large cohort study of 21 new and review of 40 previously published cases in PMID 36322149 Biallelic-truncating variants were detected in 16 patients-10 with Fryns syndrome, 1 with MCAHS1, 2 with Fryns syndrome/MCAHS1, and 3 with neurologic phenotype. There was an increased risk of prenatal or neonatal death within this group (6 deaths were in utero or within 2 months of life; 6 pregnancies were terminated). Incidence of polyhydramnios, congenital anomalies (eg, diaphragmatic hernia), and dysmorphism was significantly increased. Biallelic missense or mixed genotype were reported in the remaining 45 cases-32 showed a neurologic phenotype and 12 had MCAHS1. No cases of diaphragmatic hernia or abdominal wall defects were seen in this group except patient 1 in which we found the missense variant p.Ser893Arg to result in functionally null alleles, suggesting the possibility of an undescribed functionally important region in the final exon.; Changed publications: 36322149; Changed phenotypes: Multiple congenital anomalies-hypotonia-seizures syndrome 1, MIM# 614080, MONDO:0013563, Fryns syndrome |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.465 | TPR |
Achchuthan Shanmugasundram gene: TPR was added gene: TPR was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TPR was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TPR were set to 34494102 Phenotypes for gene: TPR were set to intellectual disability, MONDO:0001071; cerebellar ataxia, MONDO:0000437; microcephaly, MONDO:0001149 Review for gene: TPR was set to RED Added comment: This gene should be added to the following diseases: Intellectual disability, microcephaly and ataxia. Comment on classification of this gene: This gene should be added with a RED rating as the association is based on biallelic variants identified from a report of two siblings. Two siblings harbouring variants c.6625C>T/ p.Arg2209Ter (identified in heterozygous state in both siblings and father) and c.2610 + 5G > A (identified in heterozygous state in both siblings and mother) were reported with ataxia, microcephaly and severe intellectual disability. Functional analyses in patient fibroblasts provide evidence that the variants affect TPR splicing, reduce steady-state TPR levels, abnormal nuclear pore composition and density, and altered global RNA distribution. This gene has not yet been associated with any phenotypes either in OMIM or in Gene2Phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.403 | ARNT2 |
Bryony Thompson gene: ARNT2 was added gene: ARNT2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ARNT2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ARNT2 were set to 11381139; 24022475 Phenotypes for gene: ARNT2 were set to Webb-Dattani syndrome MONDO:0014404 Review for gene: ARNT2 was set to AMBER Added comment: A homozygous frameshift (c.1373_1374dupTC) in six affected children from a highly consanguineous family with a syndromic phenotype including microcephaly with fronto-temporal lobe hypoplasia, multiple pituitary hormone deficiency, seizures, severe visual impairment and abnormalities of the kidneys and urinary tract. In a Arnt2(-/-) mouse model embryos die perinatally and exhibit impaired hypothalamic development. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.390 | FAM20B |
Bryony Thompson gene: FAM20B was added gene: FAM20B was added to Mendeliome. Sources: Other Mode of inheritance for gene: FAM20B was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: FAM20B were set to 30847897; 30105814; 22732358; 27405802 Phenotypes for gene: FAM20B were set to Desbuquois dysplasia MONDO:0015426 Review for gene: FAM20B was set to AMBER Added comment: Two siblings from a single family with neonatal short limb dysplasia resembling Desbuquois dysplasia. One of the siblings underwent genetic testing and compound heterozygous variants were identified in FAM20B ((NM_014864: c.174_178delTACCT p.T59Afs*19/c.1038delG p.N347Mfs*4). Multiple mouse models reported with skeletal abnormalities. Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.372 | LETM1 |
Ee Ming Wong gene: LETM1 was added gene: LETM1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: LETM1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: LETM1 were set to 36055214 Phenotypes for gene: LETM1 were set to Mitochondrial disease MONDO#0044970, LETM1-related gene: LETM1 was marked as current diagnostic Added comment: -18 affected individuals from 11 unrelated families harbouring ultra-rare bi-allelic missense and loss-of-function LETM1 variants -Most of the affected individuals (14/18, 78%) had an infantile-onset disease manifestation, and 4/18 (22%) presented first symptoms between the ages of 1.5 and 2 years -Variant types included missense, frameshift, stop loss, in-frame deletion and splice defect -From biochemical and morphological studies, bi-allelic LETM1 variants are associated with defective mitochondrial K efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.318 | UBAP2L |
Zornitza Stark changed review comment from: Based on Jia et al (2022 - PMID: 35977029) speech, motor delay as well as ID are observed in individuals harboring de novo pLoF variants in UBAP2L. The gene encodes a regulator of the stress granule (SG) assembly. Extensive evidence is provided on the effect of variants as well as the role of UBAP2L and other genes for components and/or regulation of SG in pathogenesis of NDDs. Among others a Ubap2l htz deletion mouse model (behavioral and cognitive impairment, abnormal cortical development due to impaired SG assembly, etc). Data from 26 previous studies, aggregating 40,853 probands with NDDs (mostly DD/ID, also ASD) suggest enrichment for DNMs in UBAP2L or other genes previously known and further shown to be important for SG formation (incl. G3BP1/G3BP2, CAPRIN1). Sources: Literature; to: Based on Jia et al (2022 - PMID: 35977029) speech, motor delay as well as ID are observed in 11 individuals harboring de novo pLoF variants in UBAP2L. The gene encodes a regulator of the stress granule (SG) assembly. Extensive evidence is provided on the effect of variants as well as the role of UBAP2L and other genes for components and/or regulation of SG in pathogenesis of NDDs. Among others a Ubap2l htz deletion mouse model (behavioral and cognitive impairment, abnormal cortical development due to impaired SG assembly, etc). Data from 26 previous studies, aggregating 40,853 probands with NDDs (mostly DD/ID, also ASD) suggest enrichment for DNMs in UBAP2L or other genes previously known and further shown to be important for SG formation (incl. G3BP1/G3BP2, CAPRIN1). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.317 | UBAP2L |
Zornitza Stark gene: UBAP2L was added gene: UBAP2L was added to Mendeliome. Sources: Literature Mode of inheritance for gene: UBAP2L was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: UBAP2L were set to 35977029 Phenotypes for gene: UBAP2L were set to Neurodevelopmental disorder, MONDO:0700092, UBAP2L-related Review for gene: UBAP2L was set to GREEN Added comment: Based on Jia et al (2022 - PMID: 35977029) speech, motor delay as well as ID are observed in individuals harboring de novo pLoF variants in UBAP2L. The gene encodes a regulator of the stress granule (SG) assembly. Extensive evidence is provided on the effect of variants as well as the role of UBAP2L and other genes for components and/or regulation of SG in pathogenesis of NDDs. Among others a Ubap2l htz deletion mouse model (behavioral and cognitive impairment, abnormal cortical development due to impaired SG assembly, etc). Data from 26 previous studies, aggregating 40,853 probands with NDDs (mostly DD/ID, also ASD) suggest enrichment for DNMs in UBAP2L or other genes previously known and further shown to be important for SG formation (incl. G3BP1/G3BP2, CAPRIN1). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.279 | BUD13 |
Alison Yeung gene: BUD13 was added gene: BUD13 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: BUD13 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: BUD13 were set to 35670808 Phenotypes for gene: BUD13 were set to Lipodystrophy, MONDO:0006573 Review for gene: BUD13 was set to AMBER Added comment: 5 individuals with a lipodystrophy phenotype with a typical facial appearance, corneal clouding, achalasia, progressive hearing loss, and variable severity. Although 3 individuals showed stunted growth, intellectual disability, and died within the first decade of life, 2 are adults with normal intellectual development. All individuals harbored an identical homozygous nonsense variant affecting the retention and splicing complex component BUD13. Individuals from only two Algerian families. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.233 | SPTBN5 |
Zornitza Stark changed review comment from: Identified as a candidate gene in a sacral agenesis cohort. PMID 32732226: compound het variants identified in a fetus with multicystic kidney and oligohydramnios detected by fetal ultrasound. Autopsy showed multiple congenital abnormalities including hygroma coli, spina bifida, polycystic kidneys, facial dysmorphism, common mesenterin, rachischisis, sacral vertebral agenesis. Sources: Literature; to: Bi-allelic variants: Identified as a candidate gene in a sacral agenesis cohort. PMID 32732226: compound het variants identified in a fetus with multicystic kidney and oligohydramnios detected by fetal ultrasound. Autopsy showed multiple congenital abnormalities including hygroma coli, spina bifida, polycystic kidneys, facial dysmorphism, common mesenterin, rachischisis, sacral vertebral agenesis. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.173 | PMM2 |
Zornitza Stark edited their review of gene: PMM2: Added comment: Association with HIPKD: Cabezas et al (2017) reported co-occurrence of hyperinsulinaemic hypoglycaemia and polycystic kidney disease (HIPKD in 17 children from 11 unrelated families. Patients presented with hyperinsulinaemic hypoglycaemia in infancy and enlarged kidneys with multiple kidney cysts. Some progressed to ESKD and some had liver cysts. Whole-genome linkage analysis in 5 informative families identified a single significant locus on chromosome 16p13.2. Sequencing of the coding regions of all linked genes failed to identify biallelic mutations. Instead, they found in all patients a promoter mutation (c.-167G>T) in PMM2, either homozygous or in trans with PMM2 coding mutations. They found deglycosylation in cultured pancreatic β cells altered insulin secretion. In vitro, the PMM2 promoter mutation associated with decreased transcriptional activity in patient kidney cells and impaired binding of the transcription factor ZNF143. In silico analysis suggested an important role of ZNF143 for the formation of a chromatin loop including PMM2. They proposed that the PMM2 promoter mutation alters tissue-specific chromatin loop formation, with consequent organ-specific deficiency of PMM2 leading to the restricted phenotype of HIPKD. None of the patients exhibited the typical clinical or diagnostic features of CDG1A. Serum transferrin glycosylation was normal in 11 patients who had assessment.; Changed publications: 28108845, 28373276, 32595772; Changed phenotypes: Congenital disorder of glycosylation, type Ia (MIM#212065), Hyperinsulinaemic Hypoglycaemia and Polycystic Kidney Disease (HIPKD), MONDO:0020642, PMM2-related |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.119 | RELN | Zornitza Stark edited their review of gene: RELN: Added comment: PMID 35769015: 13 individuals from seven families with monoallelic (heterozygous) variants of RELN and frontotemporal or temporal-predominant lissencephaly variant. Some individuals with monoallelic variants had moderate frontotemporal lissencephaly, but with normal cerebellar structure and intellectual disability with severe behavioural dysfunction. However, one adult had abnormal MRI with normal intelligence and neurological profile. Additional 7 individuals from 4 families with bi-allelic variants.; Changed publications: 35769015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.119 | TAF8 |
Zornitza Stark changed review comment from: 8 individuals reported from 5 families, four of which were consanguineous. Clinical features included severe psychomotor retardation with almost absent development, feeding problems, microcephaly, growth retardation, spasticity and epilepsy. Six had the c.781-1G > A variant in homozygous state. This is likely to be a founder variant. One family with different compound heterozygous variants. Sources: Literature; to: 8 individuals reported from 5 families, four of which were consanguineous. Clinical features included severe psychomotor retardation with almost absent development, feeding problems, microcephaly, growth retardation, spasticity and epilepsy. Six had the c.781-1G > A variant in homozygous state. Unclear if this is a founder variant, families of different ethnicities. One family with different compound heterozygous variants. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.118 | TAF8 |
Zornitza Stark gene: TAF8 was added gene: TAF8 was added to Mendeliome. Sources: Literature founder tags were added to gene: TAF8. Mode of inheritance for gene: TAF8 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TAF8 were set to 29648665; 35759269 Phenotypes for gene: TAF8 were set to Neurodevelopmental disorder, MONDO:0700092, TAF8-related Review for gene: TAF8 was set to GREEN Added comment: 8 individuals reported from 5 families, four of which were consanguineous. Clinical features included severe psychomotor retardation with almost absent development, feeding problems, microcephaly, growth retardation, spasticity and epilepsy. Six had the c.781-1G > A variant in homozygous state. This is likely to be a founder variant. One family with different compound heterozygous variants. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.44 | BUB1 |
Paul De Fazio gene: BUB1 was added gene: BUB1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: BUB1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: BUB1 were set to 35044816; 19772675; 19117986; 23209306 Phenotypes for gene: BUB1 were set to Intellectual disability and microcephaly Review for gene: BUB1 was set to GREEN gene: BUB1 was marked as current diagnostic Added comment: 2 unrelated patients with ID, microcephaly, short stature, dysmorphic features reported with biallelic variants: P1 (3yo male): homozygous start-loss variant (2 hets and 0 hom in gnomAD). Functional testing showed a small amount of full-length protein was translated, and BUB1 recruitment to kinetochores was nearly undetectable. P2 (16yo female): compound heterozygous for a canonical splice variant (1 het and no hom in gnomAD) and an NMD-predicted frameshift variant (absent from gnomAD). The splice variant was shown to result in an in-frame deletion of 54 amino acids in the kinase domain. P2 cells have reduced protein levels but essentially no kinase activity. BUB1 patient cells have impaired mitotic fidelity. Homozygous Bub1 disruption in mice is embryonic lethal (PMID:19772675). A hypomorphic mouse is viable with increased tumourigenesis with ageing and aneuploidy (PMID:19117986). A kinase-dead mouse does not show increased tumourigenesis but does have a high frequency of aneuploid cells (PMID:23209306) Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.44 | LMOD2 |
Melanie Marty gene: LMOD2 was added gene: LMOD2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: LMOD2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: LMOD2 were set to PMID: 31517052; PMID: 34888509; PMID: 35082396; PMID: 35188328; PMID: 26487682 Phenotypes for gene: LMOD2 were set to Dilated cardiomyopathy Review for gene: LMOD2 was set to GREEN Added comment: 4 unrelated families with early onset dilated cardiomyopathy, autosomal recessive inheritance, functional studies showing loss of protein and a mouse model reported. PMID: 31517052 1 x neonate with DCM, homozygous nonsense variant identified. PMID: 34888509 2 x neonatal deaths (from 1 family) related to dilated cardiomyopathy (DCM), compound heterozygous loss-of-function variants identified. PMID:35082396 2 x siblings with DCM who died shortly after birth due to heart failure, homozygous canonical splice variant identified. Functional studies show loss of donor site and loss of protein. PMID: 35188328 1 x child (9 months) with DCM, with homozygous frameshift variant. Functional studies showed absence of LMOD2 protein (western blot). PMID: 26487682 Lmod2 null (knockout) mice present with short cardiac thin filaments and die at ~3 weeks due to dysfunctional, dilated hearts Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.34 | TRIM47 |
Zornitza Stark gene: TRIM47 was added gene: TRIM47 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TRIM47 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: TRIM47 were set to 35511193 Phenotypes for gene: TRIM47 were set to Genetic cerebral small vessel disease MONDO:0018787 Review for gene: TRIM47 was set to RED Added comment: GWAS data: Combined evidence from summary-based Mendelian randomization studies and profiling of human loss-of-function allele carriers showed an inverse relation between TRIM47 expression in the brain and blood vessels and extensive small vessel disease severity. Observed significant enrichment of Trim47 in isolated brain vessel preparations compared to total brain fraction in mice, in line with the literature showing Trim47 enrichment in brain endothelial cells at single cell level. Functional evaluation of TRIM47 by small interfering RNAs-mediated knockdown in human brain endothelial cells showed increased endothelial permeability, an important hallmark of cerebral small vessel disease pathology. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.5 | SPATA22 |
Zornitza Stark gene: SPATA22 was added gene: SPATA22 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: SPATA22 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SPATA22 were set to 35285020 Phenotypes for gene: SPATA22 were set to Premature ovarian insufficiency and nonobstructive azoospermia; Genetic infertility MONDO:0017143 Review for gene: SPATA22 was set to AMBER Added comment: 1 consanguineous family with two premature ovarian insufficiency (POI) and two nonobstructive azoospermia (NOA) patients. WES identified a homozygous variant in SPATA22 (c.400C>T:p.R134X). Histological analysis and spermatocyte spreading assay demonstrated that the spermatogenesis was arrested at a zygotene-like stage in the proband with NOA. 2nd patient found with idiopathic POI and compound heterozygous variants in SPATA22 (c.900+1G>A and c.31C>T:p.R11X). Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.3 | RDH11 | Zornitza Stark edited their review of gene: RDH11: Added comment: 2nd case reported: 1 Chinese patient with retinitis pigmentosa, juvenile cataracts, intellectual disability, and myopathy. Trio-based WES and whole genomic CNV detection found compound heterozygous variants in RDH11 (p.Leu313Pro and c.75-3C>A) with biparental inheritance. Variant c.75-3C>A was confirmed to be a splice-site mutation by cDNA sequencing. It caused exon 2 skipping, resulting in a frameshift mutation and premature translation termination (p.Lys26Serfs*38). They found mislocalization of RDH11 protein in muscle cells of the patient by using immunofluorescence staining. Retinol dehydrogenase 11 (RDH11) is an 11-cis-retinol dehydrogenase that has a well-characterized, albeit auxiliary role in the retinoid cycle. Diseases caused by mutations in the RDH11 gene are very rare, and only one affected family with eye and intelligence involvement has been reported.; Changed rating: AMBER; Changed publications: 24916380, 15634683, 30731079, 18326732, 34988992 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14672 | TIA1 | Elena Savva Phenotypes for gene: TIA1 were changed from Amyotrophic lateral sclerosis 26 with or without frontotemporal dementia, MIM# 619133; Welander distal myopathy (MIM#604454) to Amyotrophic lateral sclerosis 26 with or without frontotemporal dementia, MIM# 619133; Welander distal myopathy (MIM#604454) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14667 | TIA1 | Elena Savva Phenotypes for gene: TIA1 were changed from to Amyotrophic lateral sclerosis 26 with or without frontotemporal dementia, MIM# 619133; Welander distal myopathy (MIM#604454) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14556 | MPO | Zornitza Stark Marked gene: MPO as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14556 | MPO | Zornitza Stark Gene: mpo has been classified as Amber List (Moderate Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14556 | MPO | Zornitza Stark Phenotypes for gene: MPO were changed from to Myeloperoxidase deficiency, MIM# 254600 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14555 | MPO | Zornitza Stark Mode of inheritance for gene: MPO was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14554 | MPO | Zornitza Stark Classified gene: MPO as Amber List (moderate evidence) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14554 | MPO | Zornitza Stark Gene: mpo has been classified as Amber List (Moderate Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14553 | MPO | Zornitza Stark reviewed gene: MPO: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Myeloperoxidase deficiency, MIM# 254600; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13825 | HNRNPA2B1 | Zornitza Stark Phenotypes for gene: HNRNPA2B1 were changed from Inclusion body myopathy with early-onset Paget disease with or without frontotemporal dementia 2 MIM#615422 to oculopharyngeal muscular dystrophy, MONDO:0008116; Inclusion body myopathy with early-onset Paget disease with or without frontotemporal dementia 2 MIM#615422 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13789 | DNAH14 |
Chern Lim gene: DNAH14 was added gene: DNAH14 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: DNAH14 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: DNAH14 were set to PMID: 35438214 Phenotypes for gene: DNAH14 were set to Neurodevelopmental disorder, DNAH14-related (MONDO#0700092) Review for gene: DNAH14 was set to GREEN gene: DNAH14 was marked as current diagnostic Added comment: PMID: 35438214: - Three previously unreported patients with compound heterozygous DNAH14 variants, including one nonsense, one frameshift, and four missense variants. A spectrum of neurological and developmental phenotypes was observed, including seizures, global developmental delay, microcephaly, and hypotonia. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13787 | TULP3 |
Anna Ritchie gene: TULP3 was added gene: TULP3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TULP3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TULP3 were set to PMID: 35397207 Phenotypes for gene: TULP3 were set to progressive degenerative liver fibrosis with variable fibrocystic kidney disease; hypertrophic cardiomyopathy MONDO:0005045 Review for gene: TULP3 was set to GREEN Added comment: 15 individuals from eight unrelated families with bi-allelic variants in TULP3 were detected. The affected individuals reported are mostly adults, in the 3rd through 7th decades of life, and presented with progressive degenerative liver fibrosis with variable fibrocystic kidney disease and hypertrophic cardiomyopathy. The human phenotype was ecapitulated in adult zebrafish and confirmed disruption of critical ciliary cargo composition in several primary cell lines derived from affected individuals Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13263 | RSPH4A |
Belinda Chong changed review comment from: Radial spokes are regularly spaced along cilia, sperm, and flagella axonemes and have a multisubunit 'stalk' and 'head' that form a signal transduction scaffold between the central microtubule pair and dynein arms. RSPH4A is predicted to be a component of the radial spoke head based on homology with proteins in the biflagellate alga Chlamydomonas reinhardtii and other ciliates (Castleman et al., 2009; PMID19200523) 9 families with primary ciliary dyskinesia without situs inversus (Kott et al. 2013 (PMID:23993197), Castleman et al., 2009 (PMID19200523) and Daniels et al. 2013; (PMID:23798057)): - In affected members of 4 Pakistani families with CILD11, Castleman et al. (2009) identified a homozygous mutation in the RSPH4A gene. - In affected members of a family of northern European descent with CILD11, Castleman et al. (2009) identified compound heterozygosity for 2 mutations in the RSPH4A gene - Kott et al. (2013) identified pathogenic mutations in the RSPH4A gene in 7 (14%) of 48 families with a specific CILD. Common founder mutation: - Daniels et al. (2013) identified a common founder mutation in the RSPH4A gene in 9 patients with CILD11, all of whom had Puerto Rican ancestry. Multiple individuals in ClinVar with primary ciliary dyskinesia; to: Radial spokes are regularly spaced along cilia, sperm, and flagella axonemes and have a multisubunit 'stalk' and 'head' that form a signal transduction scaffold between the central microtubule pair and dynein arms. RSPH4A is predicted to be a component of the radial spoke head based on homology with proteins in the biflagellate alga Chlamydomonas reinhardtii and other ciliates (Castleman et al., 2009; PMID19200523) 9 families with primary ciliary dyskinesia without situs inversus (Kott et al. 2013 (PMID:23993197), Castleman et al., 2009 (PMID19200523) and Daniels et al. 2013; (PMID:23798057)): - In affected members of 4 Pakistani families with CILD11, Castleman et al. (2009) identified a homozygous mutation in the RSPH4A gene. - In affected members of a family of northern European descent with CILD11, Castleman et al. (2009) identified compound heterozygosity for 2 mutations in the RSPH4A gene - Kott et al. (2013) identified pathogenic mutations in the RSPH4A gene in 7 (14%) of 48 families with a specific CILD. Common founder mutation: - Daniels et al. (2013) identified a common founder mutation in the RSPH4A gene in 9 patients with CILD11, all of whom had Puerto Rican ancestry. Multiple individuals in ClinVar with primary ciliary dyskinesia PMID: 25789548; Frommer 2015: 8 PCD families reported, only 4 different variants identified. Functional studies performed. PMID: 22448264; Ziętkiewicz 2012: 4 additional families/variants reported. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12863 | SERPING1 | Zornitza Stark Phenotypes for gene: SERPING1 were changed from to Angioedema, hereditary, 1 and 2, MIM#106100; Complement component 4, partial deficiency of, MIM#120790 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12787 | SERPING1 | Samantha Ayres reviewed gene: SERPING1: Rating: GREEN; Mode of pathogenicity: None; Publications: 35386643, 31517426, 29753808; Phenotypes: Angioedema, hereditary, 1 and 2, MIM#106100, Complement component 4, partial deficiency of, MIM#120790; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12647 | SOX9 | Zornitza Stark Phenotypes for gene: SOX9 were changed from to Campomelic dysplasia, MIM# 114290; Campomelic dysplasia, MONDO:0007251 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12644 | SOX9 | Zornitza Stark reviewed gene: SOX9: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Campomelic dysplasia, MIM# 114290, Campomelic dysplasia, MONDO:0007251; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12295 | TIA1 | Zornitza Stark reviewed gene: TIA1: Rating: AMBER; Mode of pathogenicity: None; Publications: 29235362, 29886022, 29773329, 29699721, 29216908, 24659297, 29457785, 28817800, 23401021, 23401021; Phenotypes: Amyotrophic lateral sclerosis 26 with or without frontotemporal dementia, MIM# 619133, Welander distal myopathy (MIM#604454); Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12224 | SERPINA1 |
Samantha Ayres changed review comment from: Well established gene-disease relationship Rated as C by babyseq due to low penetrance in childhood. Can cause hepatic dysfunction in infancy. Identification would prevent further investigation and potentially lead to optimising respiratory health due to adult onset respiratory involvement.; to: Well established gene-disease relationship Rated as C by babyseq due to low penetrance in childhood. Can cause hepatic dysfunction in infancy. Identification would prevent further investigation and potentially lead to optimising respiratory health due to adult onset respiratory involvement. MUTATIONAL & CLINICAL SPECTRUM ZZ genotype: 2% have severe, neonatal/early-onset liver disease (potentially fatal/requiring liver transplantation), up to 6% have childhood onset liver disease. Also associated with adult-onset lung disease particularly emphysema (50%+ penetrance) - smoking is an important risk factor (close to 100% penetrance). TREATMENT There is no specific treatment for liver disease beyond transplant. There is treatment (AAT augmentation therapy) available to delay progression of lung disease phenotype. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12062 | LGI1 | Alison Yeung Phenotypes for gene: LGI1 were changed from to Epilepsy, familial temporal lobe, 1, MIM# 6000512 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12059 | LGI1 | Alison Yeung reviewed gene: LGI1: Rating: GREEN; Mode of pathogenicity: None; Publications: 18711109, 12205652, 15079010, 22496201; Phenotypes: Epilepsy, familial temporal lobe, 1, MIM# 6000512; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11107 | AL117258.1 |
Melanie Marty changed review comment from: Gene also known as CIROP Homozygous or compound heterozygous CIROP variants identified in 12 families with congenital heart defects associated with heterotaxy. Functional tests performed on Xenopus and zebrafish embryos showed that CIROP was essential for left side symmetry and is expressed in ciliated left–right organisers. Sources: Literature; to: Gene also known as CIROP and LMLN2 Homozygous or compound heterozygous CIROP variants identified in 12 families with congenital heart defects associated with heterotaxy. Functional tests performed on Xenopus and zebrafish embryos showed that CIROP was essential for left side symmetry and is expressed in ciliated left–right organisers. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11097 | AL117258.1 |
Melanie Marty gene: AL117258.1 was added gene: AL117258.1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: AL117258.1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: AL117258.1 were set to 34903892 Phenotypes for gene: AL117258.1 were set to Heterotaxy, congenital heart defects Review for gene: AL117258.1 was set to GREEN Added comment: Gene also known as CIROP Homozygous or compound heterozygous CIROP variants identified in 12 families with congenital heart defects associated with heterotaxy. Functional tests performed on Xenopus and zebrafish embryos showed that CIROP was essential for left side symmetry and is expressed in ciliated left–right organisers. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11092 | NAV2 |
Dean Phelan gene: NAV2 was added gene: NAV2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NAV2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: NAV2 were set to PMID:35218524 Phenotypes for gene: NAV2 were set to Developmental delay; cerebellar hypoplasia; cerebellar dysplasia Review for gene: NAV2 was set to AMBER Added comment: PMID:35218524 - Two compound heterozygous LOF variants identified in one female with developmental delay and a diagnosis of cerebellar hypoplasia and dysplasia. Functional studies showed cellular migration deficits. Hypomorphic mouse model revealed developmental anomalies including cerebellar hypoplasia and dysplasia, corpus callosum hypo-dysgenesis, and agenesis of the olfactory bulbs. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10999 | TBK1 | Chern Lim reviewed gene: TBK1: Rating: RED; Mode of pathogenicity: None; Publications: 25803835, 26581300; Phenotypes: Frontotemporal dementia and/or amyotrophic lateral sclerosis 4 (MIM#616439), AD; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10844 | ATP5O |
Ain Roesley gene: ATP5O was added gene: ATP5O was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ATP5O was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ATP5O were set to 34954817 Phenotypes for gene: ATP5O were set to mitochondrial disease, ATP5F1E-related MONDO:0044970 Penetrance for gene: ATP5O were set to Complete Review for gene: ATP5O was set to RED gene: ATP5O was marked as current diagnostic Added comment: Now known as ATP5PO (HGNC) 1 compound het individual with dev delay, muscular hypotonia, ID, dystonia, seizures and neurologic regression Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10552 | CRACR2A |
Dean Phelan gene: CRACR2A was added gene: CRACR2A was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CRACR2A was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CRACR2A were set to PMID:34908525 Phenotypes for gene: CRACR2A were set to Late onset combined immunodeficiency Review for gene: CRACR2A was set to AMBER Added comment: PMID:34908525 - one patient compound het (missense and PTC) with late onset combined immunodeficiency (current chest infections, panhypogammaglobulinemia and CD4+T cell lymphopenia). Functional studies showed defective JNK phosphorylation, defective SOCE and impaired cytokine production. Further search did not identify any additional publications. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10510 | NAA20 |
Zornitza Stark gene: NAA20 was added gene: NAA20 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NAA20 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: NAA20 were set to 34230638 Phenotypes for gene: NAA20 were set to Intellectual disability; Microcephaly; Neurodevelopmental disorder MONDO:0700092 Review for gene: NAA20 was set to GREEN Added comment: 2 consanguineous families with 5 affected individuals with developmental delay, intellectual disability, and microcephaly (-2-4SD). Exome and genome sequencing identified 2 different homozygous variants in NAA20 gene (p.Met54Val and p.Ala80Val), and segregated with affected individuals. N-terminal acetyltransferases modify proteins by adding an acetyl moiety to the first amino acid and are vital for protein and cell function. The NatB complex acetylates 20% of the human proteome and is composed of the catalytic subunit NAA20 and the auxiliary subunit NAA25. Both NAA20-M54V and NAA20-A80V were impaired in their capacity to form a NatB complex with NAA25, and in vitro acetylation assays revealed reduced catalytic activities toward different NatB substrates. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10103 | REC8 |
Bryony Thompson gene: REC8 was added gene: REC8 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: REC8 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: REC8 were set to 34794894; 15515002; 34707299 Phenotypes for gene: REC8 were set to Primary ovarian insufficiency Review for gene: REC8 was set to AMBER Added comment: PMID: 34707299 - a French POI case with compound het predicted loss of function variants PMID: 15515002 - Rec8-/- female mice demonstrated ovarian dysgenesis and lack of ovarian follicles at reproductive maturity. PMID: 27603904 - 2 sisters with POI segregating a missense in REC8 inherited from the unaffected mother (p.Gln154Arg) and a missense in GDF9 inherited from the father. Possible digenic inheritance. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10044 | ECM1 |
Zornitza Stark changed review comment from: PMID: 11929856 - Hamada et al 2002 - looked at 6 different unrelated consanguineous families (from Saudi Arabia, Kuwait, Pakistan, The Netherlands, UK, and a group of South African families with a probable common ancestor) with a clinical diagnosis of Lipoid proteinosis (LP)/Urbach–Wiethe disease. They performed a genome-wide linkage analysis and identified a region and then looked at the expression of candidate genes in fibroblasts from patients compared to controls. ECM1 was found to have lower expression levels. 6 homozygous deletion variants were identified in the patients. In one family they established that the parents were heterozygous for the variant. PMID: 28720532 - Afifi et al 2017 - studied 12 patients from 10 unrelated consanguineous Egyptian families with a clinical diagnosis of lipoid proteinosis. The patients reported progressive hoarseness of voice and easily damaged skin by minor trauma or friction. Homozygous ECM1 variants were detected in affected members in all families: 1 family had a missense variant, 5 families had splice site variants and 4 families had indels predicted to cause frameshifts. Parents were found to be heterozygous for the variants. PMID: 33159951 - Zhu et al 2021 - a novel homozygous three-nucleotide duplication (c.506_508dupCTG) in ECM in two siblings affected with LP from a consanguineous Chinese family.; to: Lipoid proteinosis of Urbach and Wiethe is a rare autosomal recessive disorder typified by generalized thickening of skin, mucosae, and certain viscera. Classic features include beaded eyelid papules and laryngeal infiltration leading to hoarseness. The disorder is clinically heterogeneous, with affected individuals displaying differing degrees of skin scarring and infiltration, variable signs of hoarseness and respiratory distress, and in some cases neurologic abnormalities such as temporal lobe epilepsy. Histologically, there is widespread deposition of hyaline (glycoprotein) material and disruption/reduplication of basement membrane PMID: 11929856 - Hamada et al 2002 - looked at 6 different unrelated consanguineous families (from Saudi Arabia, Kuwait, Pakistan, The Netherlands, UK, and a group of South African families with a probable common ancestor) with a clinical diagnosis of Lipoid proteinosis (LP)/Urbach–Wiethe disease. They performed a genome-wide linkage analysis and identified a region and then looked at the expression of candidate genes in fibroblasts from patients compared to controls. ECM1 was found to have lower expression levels. 6 homozygous deletion variants were identified in the patients. In one family they established that the parents were heterozygous for the variant. PMID: 28720532 - Afifi et al 2017 - studied 12 patients from 10 unrelated consanguineous Egyptian families with a clinical diagnosis of lipoid proteinosis. The patients reported progressive hoarseness of voice and easily damaged skin by minor trauma or friction. Homozygous ECM1 variants were detected in affected members in all families: 1 family had a missense variant, 5 families had splice site variants and 4 families had indels predicted to cause frameshifts. Parents were found to be heterozygous for the variants. PMID: 33159951 - Zhu et al 2021 - a novel homozygous three-nucleotide duplication (c.506_508dupCTG) in ECM in two siblings affected with LP from a consanguineous Chinese family. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10024 | OGDHL |
Melanie Marty gene: OGDHL was added gene: OGDHL was added to Mendeliome. Sources: Literature Mode of inheritance for gene: OGDHL was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: OGDHL were set to PMID: 34800363 Phenotypes for gene: OGDHL were set to Neurodevelopmental disorder featuring epilepsy, hearing loss, visual impairment, and ataxia Review for gene: OGDHL was set to GREEN Added comment: Nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum. Homozygous and compound heterozygous variants reported. Variant types reported include missense, PTCs and a synonymous variant that was shown to affect splicing. Functional studies with a CRISPR-Cas9-mediated tissue knockout with cDNA rescue system showed that the missense variants result in loss-of-function. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10019 | SLIRP |
Belinda Chong gene: SLIRP was added gene: SLIRP was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SLIRP was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SLIRP were set to 34426662 Phenotypes for gene: SLIRP were set to Mitochondrial encephalomyopathy with complex I and IV deficiency Review for gene: SLIRP was set to RED Added comment: Single Dutch non-consanguineous patient having mitochondrial encephalomyopathy with complex I and complex IV deficiency, whole exome sequencing revealed two compound heterozygous variants (NM_031210.5:c.248_252del; NP_112487.1:p.(Ile83Argfs*10) and NC_000014.8:g.78177003 A > G; NM_031210.5:c.98-178 A > G) in SLIRP. Report SLIRP variants as a novel cause of mitochondrial encephalomyopathy with OXPHOS deficiency Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9774 | SPATA5L1 | Zornitza Stark changed review comment from: Note some of the affected individuals had isolated deafness, hence two OMIM phenotypes have been associated with this gene. All were of Ashkenazi Jewish origin, and had the p.Ile466Met founder variant, either hmz or compound het with another variant.; to: Note some of the affected individuals had isolated deafness, hence two OMIM phenotypes have been associated with this gene. All were of Ashkenazi Jewish origin, and had the p.Ile466Met founder variant, compound het with another variant. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9774 | SPATA5L1 | Zornitza Stark edited their review of gene: SPATA5L1: Added comment: Note some of the affected individuals had isolated deafness, hence two OMIM phenotypes have been associated with this gene. All were of Ashkenazi Jewish origin, and had the p.Ile466Met founder variant, either hmz or compound het with another variant.; Changed publications: 34626583; Changed phenotypes: Neurodevelopmental disorder with hearing loss and spasticity, MIM# 619616, Deafness, autosomal recessive 119, MIM# 619615 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9702 | MICAL1 |
Bryony Thompson gene: MICAL1 was added gene: MICAL1 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: MICAL1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: MICAL1 were set to 29394500; 21638339 Phenotypes for gene: MICAL1 were set to Autosomal dominant epilepsy with auditory features (ADEAF) Review for gene: MICAL1 was set to AMBER Added comment: Two families with supporting in vitro functional assays. Assessment of expression pattern of Mical-1 in the temporal neocortex of patients with intractable temporal epilepsy and pilocarpine-induced rat model, suggests Mical-1 may associate with inner pathophysiological modulation in epilepsy. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9569 | KIAA0391 |
Lucy Spencer changed review comment from: Four unrelated families with multisystem disease associated with bi-allelic variants in PRORP. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes. -1 consanguineous family with homozygous missense in 3 affected sisters, het parents unaffected. Siblings had profound bilateral SNHL in infancy. In teens developed primary amenorrhea/Perrault syndrome, and hypergonadotropic hypogonadism. -1 unrelated male with compound het missense, each inherited from an unaffected parent. Hearing loss noted at 3, diagnosed at 5. -1 unrelated male compound het for a missense and a frameshift. appendicular hypertonia in infancy, mild dysmorphism. Severe global dev delay at 20 months. Normal hearing at 18 months, but at 3 years had bilateral SNHL. -an affected mother and her 2 affected children (son and daughter), homozygous for a missense. Father is heterozygous and unaffected. Son has psychotic disorder, autistic traits. Sister had intrauterine growth retardation, global developmental delay, and seizures in the first years of life. Mother presented with retrobulbar optic neuritis and tonic pupil at 39 years of age, then with asthenia, myalgias, memory loss, and frequent headaches. All variants are in p.400s. Sources: Literature; to: Four unrelated families with multisystem disease associated with bi-allelic variants in PRORP. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes. -1 consanguineous family with homozygous missense in 3 affected sisters, het parents unaffected. Siblings had profound bilateral SNHL in infancy. In teens developed primary amenorrhea/Perrault syndrome, and hypergonadotropic hypogonadism. -1 unrelated male with compound het missense, each inherited from an unaffected parent. Hearing loss noted at 3, diagnosed at 5. -1 unrelated male compound het for a missense and a frameshift. appendicular hypertonia in infancy, mild dysmorphism. Severe global dev delay at 20 months. Normal hearing at 18 months, but at 3 years had bilateral SNHL. -an affected mother and her 2 affected children (son and daughter), homozygous for a missense. Father is heterozygous and unaffected. Son has psychotic disorder, autistic traits. Sister had intrauterine growth retardation, global developmental delay, and seizures in the first years of life. Mother presented with retrobulbar optic neuritis and tonic pupil at 39 years of age, then with asthenia, myalgias, memory loss, and frequent headaches. All variants are in p.400s. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9567 | KIAA0391 |
Lucy Spencer gene: KIAA0391 was added gene: KIAA0391 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: KIAA0391 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: KIAA0391 were set to PMID: 34715011 Added comment: Four unrelated families with multisystem disease associated with bi-allelic variants in PRORP. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes. -1 consanguineous family with homozygous missense in 3 affected sisters, het parents unaffected. Siblings had profound bilateral SNHL in infancy. In teens developed primary amenorrhea/Perrault syndrome, and hypergonadotropic hypogonadism. -1 unrelated male with compound het missense, each inherited from an unaffected parent. Hearing loss noted at 3, diagnosed at 5. -1 unrelated male compound het for a missense and a frameshift. appendicular hypertonia in infancy, mild dysmorphism. Severe global dev delay at 20 months. Normal hearing at 18 months, but at 3 years had bilateral SNHL. -an affected mother and her 2 affected children (son and daughter), homozygous for a missense. Father is heterozygous and unaffected. Son has psychotic disorder, autistic traits. Sister had intrauterine growth retardation, global developmental delay, and seizures in the first years of life. Mother presented with retrobulbar optic neuritis and tonic pupil at 39 years of age, then with asthenia, myalgias, memory loss, and frequent headaches. All variants are in p.400s. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9402 | TBK1 | Zornitza Stark Phenotypes for gene: TBK1 were changed from to Frontotemporal dementia and/or amyotrophic lateral sclerosis 4, MIM# 616439 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9392 | TBK1 | Lucy Spencer reviewed gene: TBK1: Rating: ; Mode of pathogenicity: None; Publications: PMID: 31000212, 25943890; Phenotypes: Frontotemporal dementia, amyotrophic lateral sclerosis; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9379 | OOEP |
Zornitza Stark gene: OOEP was added gene: OOEP was added to Mendeliome. Sources: Literature Mode of inheritance for gene: OOEP was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: OOEP were set to 29574422 Phenotypes for gene: OOEP were set to Multi locus imprinting disturbance in offspring Review for gene: OOEP was set to RED Added comment: Single report of biallelic variants in this gene in a mother of a child with Multi locus imprinting disturbance (MLID) and a transient neonatal diabetes mellitus phenotype. This gene encodes part of the subcortical maternal complex (SCMC). Other genes in this group act as 'maternal effect' genes and are associated with early embryonic arrest, recurrent hydatiform mole and MLID in offspring. As is the case for other genes encoding components of the SCMC, the pathogenicity of variants can be difficult to establish as reproductive outcomes are not recorded in genomic databases and variants may be listed in population databases as they are not classed as pathogenic in males or women with no reproductive history. Functional studies of genes encoding components of the SCMC are limited as their expression is restricted to the oocyte and early embryo. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9347 | AARS | Eleanor Williams changed review comment from: PMID: 33909043 - Botta et al 2021 - using WES or WGS analysis of 34 unsolved cases with multi-system phenotypes, but with hair alterations that are typical of trichothiodystrophy but no reported photosensitivity, they identified 2 unrelated cases carrying 4 potentially pathogenic variants in the AARS1 gene (previously known as AARSB. Both patients had very rare compound heterozygous missense variants. In one family there was an older affected sibling but segregation data was not available for either family.; to: PMID: 33909043 - Botta et al 2021 - using WES or WGS analysis of 34 unsolved cases with multi-system phenotypes, but with hair alterations that are typical of trichothiodystrophy but no reported photosensitivity, they identified 2 unrelated cases carrying 4 potentially pathogenic variants in the AARS1 gene (previously known as AARSB. Both patients had very rare compound heterozygous missense variants. In one family there was an older affected sibling but segregation data was not available for either family. Functional studies suggest that the variants affects gene product stability. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9328 | UNC13B |
Zornitza Stark gene: UNC13B was added gene: UNC13B was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: UNC13B was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: UNC13B were set to 33876820 Phenotypes for gene: UNC13B were set to Epilepsy Review for gene: UNC13B was set to RED Added comment: No OMIM human disease association. Gene encodes a presynaptic protein Munc13-2 highly expressed in the brain (predominantly cerebral cortex). Variant interpretation data in human epilepsy cohort somewhat conflicting and restricted to a single study. Conflicting data esp regarding MOI, and evidence for pathogenicity of several of the variants is limited. Wang et al, Brain, 2021 - trio-based whole-exome sequencing identified UNC13B in 12 individuals affected by partial epilepsy and/or febrile seizures from 8 unrelated families. Identified: x1 de novo nonsense variant, absent in gnomad, damaging in silicos x1 de novo splice site, absent in gnomad, damaging in silicos x1 splice site variant present in unaffected mother (low frequency in gnomad) x2 compound het in one individual - more severe phenotype postulated (x1 variant present in contro cohortl, the other variant present in low frequency in gnomad) x1 missense variant - in Han Chinese major depressive disorders study, not in gnomad x1 missense variant - highly conserved residue, not in gnomad x2 other missense variant - highly conserved residue, low frequency in gnomad Latter 4 missense variants cosegregated with affected individuals in the families In Drosophila, seizure rate and duration were increased by Unc13b knockdown compared to wild-type flies, but these effects were less pronounced than in sodium voltage-gated channel alpha subunit 1 (Scn1a) knockdown Drosophila De novo UNC13B variants previously reported in bipolar disorder and autism spectrum disorder Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9319 | CFAP221 |
Zornitza Stark gene: CFAP221 was added gene: CFAP221 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CFAP221 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CFAP221 were set to 31636325 Phenotypes for gene: CFAP221 were set to Primary ciliary dyskinesia Review for gene: CFAP221 was set to RED Added comment: WES in 1 family with 3 siblings with clinical symptoms of PCD identified compound heterozygous loss-of-function variants in CFAP221, which segregated with disease. No functional studies. Nasal epithelial cells from 1 of the subjects demonstrated slightly reduced beat frequency, however, waveform analysis revealed that the CFAP221 defective cilia beat in an aberrant circular pattern. A candidate gene in cases where PCD is suspected but cilia structure and beat frequency appear normal. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9285 | EIF3F | Zornitza Stark edited their review of gene: EIF3F: Added comment: Hüffmeier et al (2021) reported 21 patients who were homozygous/compound heterozygous for Phe232Val variant in EIF3F. All affected individuals had developmental delay and speech delay. About half had behavioural problems, altered muscular tone, hearing loss, and short stature. The study suggests that microcephaly, reduced sensitivity to pain, cleft lip/palate, gastrointestinal symptoms and ophthalmological symptoms are part of the phenotypic spectrum.; Changed publications: 30409806, 33736665; Changed phenotypes: Mental retardation, autosomal recessive 67, MIM# 618295 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9203 | B9D1 |
Bryony Thompson changed review comment from: hNow N PMID: 34338422 - compound het missense and frameshift variant in a proband with anal atresia with vestibular fistula, ventricular septal defect, and right renal agenesis (VACTERL cohort) PMID: 21763481 - B9d1 -/- mouse displayed polydactyly, kidney cysts, ductal plate malformations, and abnormal patterning of the neural tube, concomitant with compromised ciliogenesis, ciliary protein localization, and Hedgehog (Hh) signal transduction.; to: 3 unrelated cases with a syndromic phenotype and a supporting null mouse model PMID: 34338422 - compound het missense and frameshift variant in a proband with anal atresia with vestibular fistula, ventricular septal defect, and right renal agenesis (VACTERL cohort) PMID: 24886560 - 2 Joubert syndrome cases PMID: 21763481 - B9d1 -/- mouse displayed polydactyly, kidney cysts, ductal plate malformations, and abnormal patterning of the neural tube, concomitant with compromised ciliogenesis, ciliary protein localization, and Hedgehog (Hh) signal transduction. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9195 | HSCB |
Zornitza Stark gene: HSCB was added gene: HSCB was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: HSCB was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: HSCB were set to 32634119 Phenotypes for gene: HSCB were set to Anaemia, sideroblastic, 5, MIM# 619523 Review for gene: HSCB was set to AMBER Added comment: Single individual reported with compound heterozygous variants in this gene. Good functional data including animal model. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8956 | RMRP |
Zornitza Stark changed review comment from: Over 60 pathogenic RMRP variants have been reported resulting in CHH phenotypes; multiple mouse models Homozygous and Compound heterozygous (insertions, duplications and missense) variants have been reported resulting in loss of function. *Founder variant g.70A>G (Amish and Finnish populations) CHH individuals present with variable features that may include: shortened limbs, short stature, metaphysical dysplasia, fine, sparse and/or light-coloured hair, hematologic abnormalities and a spectrum of combined immunodeficiency.; to: Over 60 pathogenic RMRP variants have been reported resulting in CHH phenotypes; multiple mouse models Homozygous and Compound heterozygous (insertions, duplications and missense) variants have been reported resulting in loss of function. *Founder variant g.70A>G (Amish and Finnish populations) CHH individuals present with variable features that may include: shortened limbs, short stature, metaphysical dysplasia, fine, sparse and/or light-coloured hair, hematologic abnormalities and a spectrum of combined immunodeficiency. Anauxetic dysplasia 1, MIM# 607095 is a more severe phenotype, whereas Metaphyseal dysplasia without hypotrichosis, MIM# 250460 is milder. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8848 | TCN2 |
Zornitza Stark changed review comment from: Well established gene-disease association. 26 pathogenic TCN2 variants have been reported in over 40 individuals; multiple mouse models Homologous and Compound Heterozygous TCN2 variants (deletions or insertions, nonsense mutations, and point mutations) have been reported; deletions or insertions are the most common, causing frameshifts that result in protein truncation. Individuals usually present within the first year of life with failure to thrive, diarrhoea, anaemia, pallor and agammaglobulinaemia. Sources: Expert list; to: Well established gene-disease association. 26 pathogenic TCN2 variants have been reported in over 40 individuals; multiple mouse models Homozygous and Compound Heterozygous TCN2 variants (deletions or insertions, nonsense mutations, and point mutations) have been reported; deletions or insertions are the most common, causing frameshifts that result in protein truncation. Individuals usually present within the first year of life with failure to thrive, diarrhoea, anaemia, pallor and agammaglobulinaemia. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8847 | TCN2 |
Zornitza Stark changed review comment from: Well established gene-disease association. Sources: Expert list; to: Well established gene-disease association. 26 pathogenic TCN2 variants have been reported in over 40 individuals; multiple mouse models Homologous and Compound Heterozygous TCN2 variants (deletions or insertions, nonsense mutations, and point mutations) have been reported; deletions or insertions are the most common, causing frameshifts that result in protein truncation. Individuals usually present within the first year of life with failure to thrive, diarrhoea, anaemia, pallor and agammaglobulinaemia. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8807 | VPS50 |
Zornitza Stark gene: VPS50 was added gene: VPS50 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: VPS50 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: VPS50 were set to 34037727 Phenotypes for gene: VPS50 were set to Neonatal cholestatic liver disease; Failure to thrive; Profound global developmental delay; Postnatal microcephaly; Seizures; Abnormality of the corpus callosum Review for gene: VPS50 was set to AMBER Added comment: Schneeberger et al (2021 - PMID: 34037727) describe the phenotype of 2 unrelated individuals with biallelic VPS50 variants. Common features included transient neonatal cholestasis, failure to thrive, severe DD with failure to achieve milestones (last examination at 2y and 2y2m respectively), postnatal microcephaly, seizures (onset at 6m and 25m) and irritability. There was corpus callosum hypoplasia on brain imaging. Both individuals were homozygous for variants private to each family (no/not known consanguinity applying to each case). The first individual was homozygous for a splicing variant (NM_017667.4:c.1978-1G>T) and had a similarly unaffected sister deceased with no available DNA for testing. The other individual was homozygous for an in-frame deletion (c.1823_1825delCAA / p.(Thr608del)). VPS50 encodes a critical component of the endosome-associated recycling protein (EARP) complex, which functions in recycling endocytic vesicles back to the plasma membrane [OMIM based on Schindler et al]. The complex contains VPS50, VPS51, VPS52, VPS53, the three latter also being components of GARP (Golgi-associated-retrograde protein) complex. GARP contains VPS54 instead of VPS50 and is required for trafficking of proteins to the trans-golgi network. Thus VPS50 (also named syndetin) and VPS54 function in the EARP and GARP complexes, to define directional movement of their endocytic vesicles [OMIM based on Schindler et al]. The VPS50 subunit is required for recycling of the transferrin receptor. As discussed by Schneeberger et al (refs provided in text): - VPS50 has a high expression in mouse and human brain as well as throughout mouse brain development. - Mice deficient for Vps50 have not been reported. vps50 knockdown in zebrafish results in severe developmental defects of the body axis. Knockout mice for other proteins of the EARP/GARP complex (e.g. Vps52, 53 and 54) display embryonic lethality. Studies performed by Schneeberger et al included: - Transcript analysis for the 1st variant demonstrated skipping of ex21 (in patient derived fabriblasts) leading to an in frame deletion of 81 bp (r.1978_2058del) with predicted loss of 27 residues (p.Leu660_Leu686del). - Similar VPS50 mRNA levels but significant reduction of protein levels (~5% and ~8% of controls) were observed in fibroblasts from patients 1 and 2. Additionally, significant reductions in the amounts of VPS52 and VPS53 protein levels were observed despite mRNA levels similar to controls. Overall, this suggested drastic reduction of functional EARP complex levels. - Lysosomes appeared to have similar morphology, cellular distribution and likely unaffected function in patient fibroblasts. - Transferrin receptor recycling was shown to be delayed in patient fibroblasts suggestive of compromise of endocytic-recycling function. As the authors comment, the phenotype of both individuals with biallelic VPS50 variants overlaps with the corresponding phenotype reported in 15 subjects with biallelic VPS53 or VPS51 mutations notably, severe DD/ID, microcephaly and early onset epilepsy, CC anomalies. Overall, for this group, they propose the term "GARP and/or EARP deficiency disorders". There is no VPS50-associated phenotype in OMIM or G2P. SysID includes VPS50 among the ID candidate genes. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8736 | PIDD1 |
Zornitza Stark gene: PIDD1 was added gene: PIDD1 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: PIDD1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PIDD1 were set to 28397838; 29302074; 33414379; 34163010 Phenotypes for gene: PIDD1 were set to Global developmental delay; Intellectual disability; Seizures; Autism; Behavioral abnormality; Psychosis; Pachygyria; Lissencephaly; Abnormality of the corpus callosum Review for gene: PIDD1 was set to GREEN Added comment: There is enough evidence to include this gene in the current panel with green rating. Biallelic PIDD1 pathogenic variants have been reported in 26 individuals (11 families) with DD (all), variable degrees of ID (mild to severe), behavioral (eg. aggression/self-mutilation in several, ADHD) and/or psychiatric abnormalities (ASD, psychosis in 5 belonging to 3 families), well-controlled epilepsy is some (9 subjects from 6 families) and MRI abnormalities notably abnormal gyration pattern (pachygyria with predominant anterior gradient) as well as corpus callosum anomalies (commonly thinning) in several. Dysmorphic features have been reported in almost all, although there has been no specific feature suggested. The first reports on the phenotype associated with biallelic PIDD1 mutations were made by Harripaul et al (2018 - PMID: 28397838) and Hu et al (2019 - PMID: 29302074) [both studies investigating large cohorts of individuals with ID from consanguineous families]. Sheikh et al (2021 - PMID: 33414379) provided details on the phenotype of 15 individuals from 5 families including those from the previous 2 reports and studied provided evidence on the role of PIDD1 and the effect of variants. Zaki et al (2021 - PMID: 34163010) reported 11 additional individuals from 6 consanguineous families, summarize the features of all subjects published in the literature and review the neuroradiological features of the disorder. PIDD1 encodes p53-induced death domain protein 1. The protein is part of the PIDDosome, a multiprotein complex also composed of the bipartite linker protein CRADD (also known as RAIDD) and the proform of caspase-2 and induces apoptosis in response to DNA damage. There are 5 potential PIDD1 mRNA transcript variants with NM_145886.4 corresponding to the longest. Similar to the protein encoded by CRADD, PIDD1 contains a death domain (DD - aa 774-893). Constitutive post-translational processing gives PIDD1-N, PIDD1-C the latter further processed into PIDD1-CC (by auto-cleavage). Serine residues at pos. 446 and 588 are involved in this autoprocessing generating PIDD1-C (aa 446-910) and PIDD1-CC (aa 774-893). The latter is needed for caspase-2 activation. Most (if not all) individuals belonged to consanguineous families of different origins and harbored pLoF or missense variants. Variants reported so far include : c.2587C>T; p.Gln863* / c.1909C>T ; p.Arg637* / c.2443C>T / p.Arg815Trp / c.2275-1G>A which upon trap assay was shown to lead to skipping of ex15 with direct splicing form exon14 to the terminal exon 16 (resulting to p.Arg759Glyfs*1 with exlcusion of the entire DD) / c.2584C>T; p.Arg862Trp / c.1340G>A; p.Trp447* / c.2116_2120del; p.Val706His*, c.1564_1565del; p.Gly602fs*26 Evidence so far provided includes: - Biallelic CRADD variants cause a NDD disorder and a highly similar gyration pattern. - Confirmation of splicing effect (eg. for c.2275-1G>A premature stop in position 760) or poor expression (NM_145886.3:c.2587C>T; p.Gln863*). Arg815Trp did not affect autoprocessing or protein stability. - Abnormal localization pattern, loss of interaction with CRADD and failure to activate caspase-2 (MDM2 cleavage assay) [p.Gln863* and Arg815Trp] - Available expression data from GTEx (PIDD1 having broad expression in multiple tissues, but higher in brain cerebellum) as well as BrainSpan and PsychEncode studies suggesting high coexpression of PIDD1, CRADD and CASP2 in many regions in the developing human brain. - Variants in other genes encoding proteins interacting with PIDD1 (MADD, FADD, DNAJ, etc) are associated with NDD. Pidd-1 ko mice (ex3-15 removal) lack however CNS-related phenotypes. These show decreased anxiety but no motor anomalies. This has also been the case with Cradd-/- mice displaying no significant CNS phenotypes without lamination defects. There is currently no associated phenotype in OMIM. PIDD1 is listed in the DD panel of G2P (PIDD1-related NDD / biallelic / loss of function / probable) . SysID includes PIDD1 among the current primary ID genes. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8583 | PRDX3 |
Hazel Phillimore changed review comment from: Biallelic variants in 5 unrelated families with early onset (median 21 years , range 13-22 years) with ataxia with variable additional hyper- and hypokinetic movement disorders, and severe early-onset cerebellar atrophy (seen on MRI), and involvement of the brainstem, medullary olive and parietal cortex. Evolution of the disease was gait ataxia leading to upper limb ataxia, then dysarthria and then dysphagia, all within a decade. For some of these patients, the phenotype included myoclonus, dystonia and / or tremor. Mild classical mitochondrial features were seen in one of the patients, namely ptosis and COX-negative fibres. The variants were homozygous nonsense, homozygous frameshift, homozygous missense, and a compound heterozygote of a splice variant and missense, all leading to complete loss of the protein. Oxidative stress and mitochondrial dysfunction was indicated as the disease mechanism. The families originated from Germany, France, India and two from eastern Turkey. The two families from Turkey were seemingly unrelated to each other but had the same homozygous missense. Patient fibroblasts from each of the five probands showed lack of protein (via Western blot) and decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity. PRXD3 encodes peroxiredoxin 3, a mitochondrial antioxidant protein, that catalyses the reduction of hydrogen peroxide. It localises in the mitochondria, where most hydrogen peroxide is generated. Functional studies: PRDX3 knockdown (induced by silencing RNA against PRDX3) in cerebellar medulloblastoma cells showed significantly decreased cell viability, increased hydrogen peroxide levels and increased susceptibility to apoptosis triggered by reactive oxygen species. In addition, induced knockdown drosophila (in vivo animal model) had aberrant locomotor phenotypes and reduced lifespans, while immunolabelling of the brain showed increased cell death after exposure to oxidative stress. Sources: Literature; to: Biallelic variants in 5 unrelated families with early onset (median 21 years , range 13-22 years) with ataxia with variable additional hyper- and hypokinetic movement disorders, and severe early-onset cerebellar atrophy (seen on MRI), and involvement of the brainstem, medullary olive and parietal cortex. Evolution of the disease was gait ataxia leading to upper limb ataxia, then dysarthria and then dysphagia, all within a decade. For some of these patients, the phenotype included myoclonus, dystonia and / or tremor. Mild classical mitochondrial features were seen in one of the patients, namely ptosis and COX-negative fibres. The variants were homozygous nonsense, homozygous frameshift, homozygous missense, and a compound heterozygote with a splice variant and missense, all leading to complete loss of the protein. Oxidative stress and mitochondrial dysfunction was indicated as the disease mechanism. The families originated from Germany, France, India and two from eastern Turkey. The two families from Turkey were seemingly unrelated to each other but had the same homozygous missense. Patient fibroblasts from each of the five probands showed lack of protein (via Western blot) and decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity. PRDX3 encodes peroxiredoxin 3, a mitochondrial antioxidant protein, that catalyses the reduction of hydrogen peroxide. It localises in the mitochondria, where most hydrogen peroxide is generated. Functional studies: PRDX3 knockdown (induced by silencing RNA against PRDX3) in cerebellar medulloblastoma cells showed significantly decreased cell viability, increased hydrogen peroxide levels and increased susceptibility to apoptosis triggered by reactive oxygen species. In addition, induced knockdown drosophila (in vivo animal model) had aberrant locomotor phenotypes and reduced lifespans, while immunolabelling of the brain showed increased cell death after exposure to oxidative stress. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8583 | PRDX3 |
Hazel Phillimore gene: PRDX3 was added gene: PRDX3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PRDX3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PRDX3 were set to PMID: 33889951 Phenotypes for gene: PRDX3 were set to cerebellar ataxia (early onset, mild to moderate, progressive) Penetrance for gene: PRDX3 were set to unknown Review for gene: PRDX3 was set to GREEN Added comment: Biallelic variants in 5 unrelated families with early onset (median 21 years , range 13-22 years) with ataxia with variable additional hyper- and hypokinetic movement disorders, and severe early-onset cerebellar atrophy (seen on MRI), and involvement of the brainstem, medullary olive and parietal cortex. Evolution of the disease was gait ataxia leading to upper limb ataxia, then dysarthria and then dysphagia, all within a decade. For some of these patients, the phenotype included myoclonus, dystonia and / or tremor. Mild classical mitochondrial features were seen in one of the patients, namely ptosis and COX-negative fibres. The variants were homozygous nonsense, homozygous frameshift, homozygous missense, and a compound heterozygote of a splice variant and missense, all leading to complete loss of the protein. Oxidative stress and mitochondrial dysfunction was indicated as the disease mechanism. The families originated from Germany, France, India and two from eastern Turkey. The two families from Turkey were seemingly unrelated to each other but had the same homozygous missense. Patient fibroblasts from each of the five probands showed lack of protein (via Western blot) and decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity. PRXD3 encodes peroxiredoxin 3, a mitochondrial antioxidant protein, that catalyses the reduction of hydrogen peroxide. It localises in the mitochondria, where most hydrogen peroxide is generated. Functional studies: PRDX3 knockdown (induced by silencing RNA against PRDX3) in cerebellar medulloblastoma cells showed significantly decreased cell viability, increased hydrogen peroxide levels and increased susceptibility to apoptosis triggered by reactive oxygen species. In addition, induced knockdown drosophila (in vivo animal model) had aberrant locomotor phenotypes and reduced lifespans, while immunolabelling of the brain showed increased cell death after exposure to oxidative stress. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8570 | PDCL3 |
Zornitza Stark gene: PDCL3 was added gene: PDCL3 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: PDCL3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PDCL3 were set to 32621347 Phenotypes for gene: PDCL3 were set to Megacystis-microcolon Review for gene: PDCL3 was set to AMBER Added comment: Single publication (PMID 32621347): one family with two affected fetuses - one with megacystis and microcolon, and the other with megacystisis and bilateral diaphragmatic hernia (prune-belly phenotype). Compound het LOF variants in PDCL3 (one frameshift and one missense). Complete absence of PDLC3 expression demonstrated in one of the affected fetuses. No homozygous LOF PDCL3 variants in gnomAD. PCDL3 negatively modulates actin folding and is strongly expressed in smooth muscle of bladder and colon. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8524 | TMPO | Bryony Thompson Marked gene: TMPO as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8524 | TMPO | Bryony Thompson Gene: tmpo has been classified as Red List (Low Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8524 | TMPO | Bryony Thompson Classified gene: TMPO as Red List (low evidence) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8524 | TMPO | Bryony Thompson Gene: tmpo has been classified as Red List (Low Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8523 | TMPO | Bryony Thompson reviewed gene: TMPO: Rating: RED; Mode of pathogenicity: None; Publications: 16247757; Phenotypes: Hypertrophic cardiomyopathy, dilated cardiomyopathy; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8511 | CAMK4 |
Zornitza Stark gene: CAMK4 was added gene: CAMK4 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: CAMK4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CAMK4 were set to 30262571; 33098801; 33211350 Phenotypes for gene: CAMK4 were set to Intellectual disability; Autism; Behavioral abnormality; Abnormality of movement; Dystonia; Ataxia; Chorea; Myoclonus Review for gene: CAMK4 was set to GREEN Added comment: 3 publications by Zech et al (2018, 2020 - PMIDs : 30262571, 33098801, 33211350) provide clinical details on 3 individuals, each harboring a private de novo CAMK4 variant. Overlapping features included DD, ID, behavoral issues, autism and abnormal hyperkinetic movements. Dystonia and chorea in all 3 appeared 3-20 years after initial symptoms. CAMK4 encodes Calcium/Calmodulin-dependent protein kinase IV, an important mediator of calcium-mediated activity and dynamics, particularly in the brain. It is involved in neuronal transmission, synaptic plasticity, and neuronal gene expression required for brain development and neuronal homeostasis (summary by OMIM based on Zech et al, 2018). The 473 aa enzyme has a protein kinase domain (aa 46-300) and a C-terminal autoregulatory domain (aa 305-341) the latter comprising an autoinhibitory domain (AID / aa 305-321) and a calmodulin-binding domain (CBD / aa 322-341) [NP_001735.1 / NM_001744.4 - also used below]. Variants in all 3 subjects were identified following trio-WES and were in all cases protein-truncating, mapping to exon 10 or exon 10-intron 10 junction, expected to escape NMD and cause selective abrogation of the autoinhibitory domain (aa 305-321) leading overall to gain-of-function. Variation databases include pLoF CAMK4 variants albeit in all cases usptream or downstream of this region (pLI of this gene in gnomAD: 0.51). Variants leading to selective abrogation of the autoregulatory domain have not been reported. Extensive evidence for the GoF effect of the variant has been provided in the first publication. Several previous studies have demonstrated that abrogation of the AID domain leads to consitutive activation (details below). Mouse models - though corresponding to homozygous loss of function - support a role for CAMKIV in cognitive and motor symptoms. Null mice display tremulous and ataxic movements, deficiencies in balance and sensorimotor performance associated with reduced number of Purkinje neurons (Ribar et al 2000, PMID: 11069976 - not reviewed). Wei et al (2002, PMID: 12006982 - not reviewed) provided evidence for alteration in hippocampal physiology and memory function. Heterozygous mutations in other genes for calcium/calmodulin-dependent protein kinases (CAMKs) e.g. CAMK2A/CAMK2B (encoding subunits of CAMKII) have been reported in individuals with ID. --- The proband in the first publication (PMID: 30262571) was a male with DD, ID, behavioral difficulties (ASD, autoaggression, stereotypies) and hyperkinetic movement disorder (myoclonus, chorea, ataxia) with severe generalized dystonia (onset at the age of 13y). Brain MRI demonstrated cerebellar atrophy. Extensive work-up incl. karyotyping, CMA, DYT-TOR1A, THAP1, GCH1, SCA1/2/3/6/7/8/12/17, Friedreich's ataxia and FMR1 analysis was negative.F Trio WES identified a dn splice site variant (c.981+1G>A) in the last exon-intron junction. RT-PCR followed by gel electrophoresis and Sanger in fibroblasts from an affected and control subject revealed that the proband had - as predicted by the type/location of the variant - in equal amount 2 cDNA products, a normal as well as a truncated one. Sequencing of the shortest revealed utilization of a cryptic donor splice site upstream of the mutated donor leading to a 77bp out-of-frame deletion and introduction of a premature stop codon in the last codon (p.Lys303Serfs*28). Western blot in fibroblast cell lines revealed 2 bands corresponding to the normal protein product as well as to the p.Lys303Serfs*28 although expression of the latter was lower than that of the full length protein. Several previous studies have shown that mutant CAMKIV species that lack the autoinhibitory domain are consitutively active (several Refs provided). Among others Chatila et al (1996, PMID: 8702940) studied an in vitro-engineered truncation mutant (Δ1-317 - truncation at position 317 of the protein) with functionally validated gain-of-function effect. To prove enhanced activity of the splicing variant, Zech et al assessed phosphorylation of CREB (cyclic AMP-responsive element binding protein), a downstream substrate of CAMKIV. Immunobloting revealed significant increase of CREB phosphorylation in patient fibroblasts compared to controls. Overactivation of CAMKIV signaling was reversed when cells were treated with STO-609 an inhibitor of CAMKK, the ustream activator of CAMKIV. Overall the authors demonstrated that loss of CAMKIV autoregulatory domain due to this splice variant had a gain-of-function effect. ---- Following trio-WES, Zech et al (2020 - PMID: 33098801) identified another relevant subject within cohort of 764 individuals with dystonia. This 12-y.o. male, harboring a different variant affecting the same donor site (c.981+1G>T), presented DD, ID, dystonia (onset at 3y) and additional movement disorders (myoclonus, ataxia) as well as similar behavior (ASD, autoaggression, stereotypies). [Details in suppl. p20]. ---- Finally Zech et al (2020 - PMID: 33211350) reported on a 24-y.o. woman with adolescence onset choreodystonia. Other features included DD, moderate ID, absence seizures in infancy, OCD with anxiety and later diagnosis of ASD. Trio WES revealed a dn stopgain variant (c.940C>T; p.Gln314*). Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8335 | LINGO4 |
Laura Raiti gene: LINGO4 was added gene: LINGO4 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: LINGO4 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: LINGO4 were set to PMID: 33098801 Phenotypes for gene: LINGO4 were set to Developmental Delay, Intellectual disability, speech disorder Review for gene: LINGO4 was set to GREEN Added comment: 3 unrelated individuals 1 x individual compound heterozygous for 2x missense variants: c.679C>A; c.1262G>A p.Leu227Met; p.Arg421Gln comp het. Phenotype: infancy-onset generalized dystonia; DD/hypo, ID, speech disorder (isolated plus non-MD symptoms) NDD 1 x individual homozygous for missense variant: c.679C>A p.Leu227Met Phenotype: DD/hypo, ID, speech disorder 1 x individual homozygous for missense variant: c.1673G>A p.Ser558Asn Phenotype: DD/hypo, ID, speech disorder Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8334 | DYNC2H1 |
Zornitza Stark changed review comment from: More than 50 unrelated families reported.; to: More than 50 unrelated families reported with predominantly skeletal dysplasia. Association with RP: - Five affected probands with homozygous and compound heterozygous missense and PTC variants - Associated with the NM_001080463.1 transcript (predominant isoform in retina from retinal organoid studies). PMID 32753734 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8333 | KIF20A |
Zornitza Stark gene: KIF20A was added gene: KIF20A was added to Mendeliome. Sources: Literature Mode of inheritance for gene: KIF20A was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: KIF20A were set to 29357359 Phenotypes for gene: KIF20A were set to Cardiomyopathy, familial restrictive, 6, MIM# 619433 Review for gene: KIF20A was set to GREEN Added comment: Single family reported, two affected sibs, perinatal lethal cardiomyopathy, compound het variants in this gene. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8326 | AK2 |
Zornitza Stark changed review comment from: Well established gene-disease association.; to: Well established gene-disease association. PMID: 19043417 (2009). 6 affected individuals from 5 unrelated families (3 of the families showed evidence of consanguinity). Homozygous (5 individuals) and compound heterozygous (1 individual) variants in the AK2 gene. Variants included missense, deletion and inframe indel, resulting in protein LoF. Available parents were sequenced and found heterozygous for the variants, supporting bi-allelic inheritance. PMID: 19043416 (2009). 7 affected individuals from 6 unrelated families (2 separate consanguineous & 4 non-consanguineous families). Homozygous and compound heterozygous variants detected (missense, deletion, inframe indel), resulting in protein LoF. Reticular dysgenesis phenotype including Leukopenia, lymphopenia and agranulocytosis in all affected individuals and sensorineural deafness in 7 individuals. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8263 | EPHA7 |
Zornitza Stark gene: EPHA7 was added gene: EPHA7 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: EPHA7 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: EPHA7 were set to 34176129 Phenotypes for gene: EPHA7 were set to Intellectual disability Review for gene: EPHA7 was set to AMBER Added comment: Lévy et al (2021 - PMID: 34176129) provide evidence that haploinssuficiency of EPHA7 results in a neurodevelopmental disorder. The authors report on 12 individuals belonging to 9 unrelated families, all harboring with 6q microdeletions spanning EPHA7. Overlapping features included DD (13/13), ID (10/10 - mild in most cases, individuals with larger CNVs/additional variants had more severe phenotype), speech delay and behavioral disorders. Variable other features incl. hypotonia (70%), non specific facial features, eye abnormalities (40%) and cardiac defects (25%). The CNVs ranged from 152 kb to few Mb in size but in 4 subjects (P5-8) were only minimal, involving only EPHA7. 9 out of 12 individuals had inherited the deletion (5 subjects paternal, 4 maternal), in 1 subject (P12) this occured de novo, while for 2 others inheritance was not specified. Most deletions were inherited from an unaffected parent (in 6/7 families), with unclear contribution in a further one. The authors discuss on previous studies suggesting an important role for EphA7 in brain development (modulation of cell-cell adhesion and repulsion, regulation of dendrite morphogenesis in early corticogenesis, role in dendritic spine formation later in development. EphA7 has also been proposed to drive neuronal maturation and synaptic function). Haploinsufficiency for other ephrins or ephrin receptors has been implicated in other NDDs. Overall Lévy et al promote incomplete penetrance and variable expressivity with haploinsufficiency of this gene being a risk factor for NDD. [The gene has also an %HI of 2.76% and a pLI of 1]. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8000 | PLXNA3 |
Zornitza Stark gene: PLXNA3 was added gene: PLXNA3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PLXNA3 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: PLXNA3 were set to 33495532 Phenotypes for gene: PLXNA3 were set to Hypogonadotropic hypogonadism Review for gene: PLXNA3 was set to GREEN Added comment: Screened 216 patients with Idiopathic hypogonadotropic hypogonadism by exome sequencing. Identified 7 individuals from 5 families with hemizygous PLXNA3 missense variants. In 2 of the kindreds, there was at least one more gene known to be associated with IHH (oligogenecity). Data provided with evidence that PLXNA3, a key component of the SEMA3F holoreceptor complex,31 is expressed by the human GnRH and olfactory/vomeronasal systems. S646P variant showed PLXNA3 localization exclusively in the ER, indicating that the variant S646P disrupts cell surface localization of PLXNA3. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7986 | RELN |
Ee Ming Wong edited their review of gene: RELN: Added comment: - Six affected individuals carrying missense variants in RELN including 1. Two individuals with compound heterozygous variants - One of the variants has 26 homozygotes in gnomAD and therefore pathogenicity of this variant is in question - LoF demonstrated for three of the variants (reduced RELN secretion), except for p.Y1821H which demonstrated an apparently increased RELN secretion (GoF) 2. Two brothers carrying the maternally inherited variant (mother apparently healthy) - LoF demonstrated for these variants 3. Two individuals de novo for RELN variants - Dominant negative demonstrated for these variants where secretion of WT-RELN was impaired when co-transfected with mutant constructs in HEK293T cells; Changed rating: AMBER; Changed publications: Riva et al bioRxiv (pre-print, not peer-reviewed); Changed phenotypes: Pachygyria, Polymicrogyria, Heterotopia; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7945 | DNAH2 | Zornitza Stark edited their review of gene: DNAH2: Added comment: PMID 32732226: compound het variants identified in a fetus with hydrops and complex congenital heart disease detected by fetal ultrasound. Autopsy showed multiple congenital abnormalities including hydrops, heterotaxy, complex congenital heart disease, hypotrophic splenium, and common mesentery.; Changed publications: 30811583, 32732226; Changed phenotypes: Spermatogenic failure 45, MIM# 619094, Heterotaxy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7944 | SCN7A |
Zornitza Stark gene: SCN7A was added gene: SCN7A was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SCN7A was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SCN7A were set to 32732226 Phenotypes for gene: SCN7A were set to Holoprosencephaly Review for gene: SCN7A was set to RED Added comment: Novel candidate gene identified in a fetus with holoprosencephaly detected by ultrasound. Autopsy showed multiple congenital abnormalities including IUGR, microcephaly, bilateral, ablepharon, corpus callosum agenesis, myelomeningocele, tracheal atresia, absent nipples, unilateral simian crease, and hypoplastic phalanges. Compound heterozygous variants including a truncating variant were found by exome sequencing with concordant segregation. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7943 | SPTBN5 |
Zornitza Stark gene: SPTBN5 was added gene: SPTBN5 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SPTBN5 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SPTBN5 were set to 32732226; 28007035 Phenotypes for gene: SPTBN5 were set to Sacral agenesis; congenital anomalies Review for gene: SPTBN5 was set to RED Added comment: Identified as a candidate gene in a sacral agenesis cohort. PMID 32732226: compound het variants identified in a fetus with multicystic kidney and oligohydramnios detected by fetal ultrasound. Autopsy showed multiple congenital abnormalities including hygroma coli, spina bifida, polycystic kidneys, facial dysmorphism, common mesenterin, rachischisis, sacral vertebral agenesis. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7749 | MCM7 |
Arina Puzriakova gene: MCM7 was added gene: MCM7 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MCM7 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MCM7 were set to 33654309; 34059554 Phenotypes for gene: MCM7 were set to Meier-Gorlin syndrome; Microcephaly; Intellectual disability; Lipodystrophy; Adrenal insufficiency Review for gene: MCM7 was set to AMBER Added comment: MCM7 is a component of the MCM complex, a DNA helicase which is essential for DNA replication. Other components have been linked to disease with phenotypes including microcephaly and ID. MCM7 is not associated with any phenotype in OMIM or G2P at present. ------ Currently there are 3 unrelated pedigrees in literature with different biallelic MCM7 variants associated with disease (see below). Although there is some functional data in support of variant-level deleteriousness or gene-level pathogenicity, the clinical gestalt is very different between the 3 families. - PMID: 33654309 (2021) - Two unrelated individuals with different compound het variants in MCM7 but disparate clinical features. One patient had typical Meier-Gorlin syndrome (including growth retardation, microcephaly, congenital lung emphysema, absent breast development, microtia, facial dysmorphism) whereas the second case had a multi-system disorder with neonatal progeroid appearance, lipodystrophy and adrenal insufficiency. While small at birth, the second patient did not demonstrate reduced stature or microcephaly at age 14.5 years. Both individuals had normal neurodevelopment. Functional studies using patient-derived fibroblasts demonstrate that the identified MCM7 variants were deleterious at either transcript or protein levels and through interfering with MCM complex formation, impact efficiency of S phase progression. - PMID: 34059554 (2021) - Homozygous missense variant identified in three affected individuals from a consanguineous family with severe primary microcephaly, severe ID and behavioural abnormalities. Knockdown of Mcm7 in mouse neuroblastoma cells lead to reduced cell viability and proliferation with increased apoptosis, which were rescued by overexpression of wild-type but not mutant MCM7. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7464 | JAG2 |
Belinda Chong gene: JAG2 was added gene: JAG2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: JAG2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: JAG2 were set to PMID: 33861953 Phenotypes for gene: JAG2 were set to muscular dystrophy Review for gene: JAG2 was set to GREEN Added comment: Whole-exome sequencing identified 13 families with rare homozygous or compound heterozygous JAG2 variants. Bi-allelic variants include 10 missense variants that disrupt highly conserved amino acids, a nonsense variant, two frameshift variants, an in-frame deletion, and a microdeletion encompassing JAG2. Onset of muscle weakness occurred from infancy to young adulthood. Serum creatine kinase (CK) levels were normal or mildly elevated. Muscle histology was primarily dystrophic. MRI of the lower extremities revealed a distinct, slightly asymmetric pattern of muscle involvement with cores of preserved and affected muscles in quadriceps and tibialis anterior, in some cases resembling patterns seen in POGLUT1-associated muscular dystrophy. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7464 | VPS41 |
Kristin Rigbye changed review comment from: "Five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function."; to: "Five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function." "Affected individuals were born after uneventful pregnancies and presented in most cases early in life with developmental delay. Various degrees of ataxia, hypotonia, and dystonia were present in all affected individuals, preventing independent ambulation. Likewise, nystagmus was commonly described. In addition, all affected individuals displayed intellectual disability and speech delay. Two siblings further presented with therapy-resistant epilepsy. No major dysmorphic features were found. In two individuals, retinal pigment alterations were noticed. Brain MRI revealed mild cerebellar atrophy and vermian atrophy without other major structural abnormalities in most affected individuals while in one case (Subject 9) bilateral hyperintensities at the nucleus caudatus area were noted. No hearing or vision problems were noted and in cases where nerve conduction studies were performed, these were normal. Transmission electron microscopy (TEM) on peripheral blood lymphocytes from Subject 2 and lymphoblastoid cells from Subject 3 revealed more multilayered vesicles compared to control cells." |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7192 | ADCY6 |
Zornitza Stark changed review comment from: Laquerriere et al. (2014): 2 sibs from a consanguineous family with an axoglial form of lethal congenital contracture syndrome, and homozygous missense ADCY6 mutation (R1116C). The parents were heterozygous for the mutation. Knocked down ADCY6 orthologs in zebrafish showed a loss of myelin basic protein expression in the peripheral nervous system but no defects in Schwann cell migration and axonal growth. Gonzaga‐Jauregui et al. (2015): 1 patient with congenital hypotonia, distal joint contractures, hypomyelinating neuropathy, and vocal cord paralysis, and a homozygous missense ADCY6 variant. No functional studies. Deceased sister with a similar phenotype with hypotonia, areflexia, and hypomyelinating neuropathy who died at 18 months of respiratory insufficiency. Agolini et al. (2020): 1 patient with severe form of AMC, with two novel compound heterozygous variants in ADCY6 (parents confirmed carriers), but no functional studies. Sources: Literature; to: - PMID: 33820833 (2021) - Further 2 sibs reported with a homozygous c.3346C>T:p.Arg1116Cys variant in the ADCY6 gene. The family was identified from a cohort of 315 genetically undiagnosed and unrelated AMC families. Arthrogryposis and IUGR were detected prenatally. Laquerriere et al. (2014): 2 sibs from a consanguineous family with an axoglial form of lethal congenital contracture syndrome, and homozygous missense ADCY6 mutation (R1116C). The parents were heterozygous for the mutation. Knocked down ADCY6 orthologs in zebrafish showed a loss of myelin basic protein expression in the peripheral nervous system but no defects in Schwann cell migration and axonal growth. Gonzaga‐Jauregui et al. (2015): 1 patient with congenital hypotonia, distal joint contractures, hypomyelinating neuropathy, and vocal cord paralysis, and a homozygous missense ADCY6 variant. No functional studies. Deceased sister with a similar phenotype with hypotonia, areflexia, and hypomyelinating neuropathy who died at 18 months of respiratory insufficiency. Agolini et al. (2020): 1 patient with severe form of AMC, with two novel compound heterozygous variants in ADCY6 (parents confirmed carriers), but no functional studies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7004 | PRIM1 |
Zornitza Stark changed review comment from: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant. Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD). Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinaemia, and lymphopaenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections. Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype. Sources: Literature; to: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant. Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD). Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinaemia, and lymphopaenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections. Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7003 | PRIM1 |
Zornitza Stark changed review comment from: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant. Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD). Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections. Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype. Sources: Literature; to: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant. Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD). Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinaemia, and lymphopaenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections. Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7003 | PRIM1 |
Zornitza Stark changed review comment from: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant. Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD). Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections. Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype. Sources: Literature; to: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant. Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD). Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections. Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7003 | PRIM1 |
Zornitza Stark gene: PRIM1 was added gene: PRIM1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PRIM1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PRIM1 were set to 33060134 Phenotypes for gene: PRIM1 were set to Microcephalic primordial dwarfism, MONDO:0017950 Review for gene: PRIM1 was set to AMBER Added comment: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant. Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD). Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections. Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6994 | COPB2 |
Zornitza Stark gene: COPB2 was added gene: COPB2 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: COPB2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: COPB2 were set to 29036432 Phenotypes for gene: COPB2 were set to Microcephaly 19, primary, autosomal recessive, MIM# 617800 Review for gene: COPB2 was set to RED Added comment: Two sibs with homozygous missense variant in this gene, mice homozygous for this variant had normal brain size however. Mice compound het for null allele and missense variant had some brain features, suggesting the missense variant is hypomorphic. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6825 | SCA31 |
Bryony Thompson STR: SCA31 was added STR: SCA31 was added to Mendeliome. Sources: Expert list Mode of inheritance for STR: SCA31 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for STR: SCA31 were set to 19878914; 31755042 Phenotypes for STR: SCA31 were set to Spinocerebellar ataxia 31 MIM#117210 Review for STR: SCA31 was set to GREEN STR: SCA31 was marked as clinically relevant Added comment: Complex repeat insertion (TGGAA)n, (TAGAA)n, (TAAAA)n, (TAAAATAGAA)n, TGGAA is present only in affected cases. Sequencing showed that the insertion consisted of a preceding TCAC sequence, and 3 pentanucleotide repeat components (TGGAA)n, (TAGAA)n, and (TAAAA)n in all patients tested. 2.5-3.8 KB insertion is associated with disease and RNA toxicity expected to be mechanism of disease Normal and pathogenic cut-offs are based on animal model experiments (PMID: 31755042) Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6526 | APOO |
Arina Puzriakova gene: APOO was added gene: APOO was added to Mendeliome. Sources: Literature Mode of inheritance for gene: APOO was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: APOO were set to 32439808 Phenotypes for gene: APOO were set to Developmental delay; Lactic acidosis; Muscle weakness; Hypotonia; Repetitive infections; Cognitive impairment; Autistic behaviour Review for gene: APOO was set to RED Added comment: - PMID: 32439808 (2021) - Three generation family with c.350T>C variant in APOO, encoding a component of the MICOS complex which plays a role in maintaining inner mitochondrial membrane architecture. Phenotypes include fatigue and muscle weakness (6/8), learning difficulties and cognitive impairment (4/8), and increased blood lactate (2/8). Four individuals were asymptomatic carriers, including one male (authors indicate variability in female carriers was due to skewed X-inactivation, although skewing studies were inconclusive in some cases). Variability in clinical presentation suggests reduced penetrance or possible contribution of additional factors. Functional studies showed altered MICOS assembly and abnormalities in mitochondria ultrastructure in patient-derived fibroblasts. Knockdown studies in Drosophila and yeast demonstrated mitochondrial structural and functional deficiencies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6467 | ANKZF1 |
Bryony Thompson gene: ANKZF1 was added gene: ANKZF1 was added to Mendeliome. Sources: Other Mode of inheritance for gene: ANKZF1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ANKZF1 were set to 28302725 Phenotypes for gene: ANKZF1 were set to Infantile-onset inflammatory bowel disease Review for gene: ANKZF1 was set to AMBER Added comment: Two unrelated cases (1 homozygous and 1 compound heterozygous), and supporting in vitro and yeast assays indicating that loss-of-function mutations in ANKZF1 result in deregulation of mitochondrial integrity. Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6463 | CLTCL1 |
Bryony Thompson changed review comment from: PMID: 26068709 - Three siblings in a single consanguineous family with congenital insensitivity to pain, inability to feel touch, and cognitive delay and a homozygous rare missense variant (Glu330Lys - no homozygotes in gnomAD v2.1). In vitro functional assays of the variant suggested a deleterious effect on the protein. Additionally cellular assays suggested a role for the gene in neural crest development and in the genesis of pain and touch sensing neurons. PMID: 29402896 - more in depth functional assays and proteomic analyses suggesting a role for the protein in regulating sensory neuron differentiation in the human peripheral system Other reports of associations with limited evidence: PMID: 22511880 - Identified as a candidate gene in an autism study, but the homozygous variant (reported as R125C, but actually R1165C) has 40 homozygotes in gnomAD v2.1. And many of the other compound heterozygous candidate variants in the study are too common in gnomAD v2.1, with many homozygotes present. The missense reported in the pain insensitivity family Glu330Lys was reported with another rare missense variant (Glu1310Lys) in one of the autism cases, but no other phenotype information was provided. PMID: 31354784 - a single case with infantile spasm reported with compound het missense (Met1316Val & Arg1165Cys), but both are very common in gnomAD v2.1 with 33,000 and 40 homozygotes, respectively. Sources: Literature; to: PMID: 26068709 - Three siblings in a single consanguineous family with congenital insensitivity to pain, inability to feel touch, and cognitive delay and a homozygous rare missense variant (Glu330Lys - no homozygotes in gnomAD v2.1). In vitro functional assays of the variant suggested a deleterious effect on the protein. Additionally cellular assays suggested a role for the gene in neural crest development and in the genesis of pain and touch sensing neurons. PMID: 29402896 - more in depth functional assays and proteomic analyses suggesting a role for the protein in regulating sensory neuron differentiation in the human peripheral system. Other reports of associations with limited evidence: PMID: 22511880 - Identified as a candidate gene in an autism study, but the homozygous variant (reported as R125C, but actually R1165C) has 40 homozygotes in gnomAD v2.1. And many of the other compound heterozygous candidate variants in the study are too common in gnomAD v2.1, with many homozygotes present. The missense reported in the pain insensitivity family Glu330Lys was reported with another rare missense variant (Glu1310Lys) in one of the autism cases, but no other phenotype information was provided. PMID: 31354784 - a single case with infantile spasm reported with compound het missense (Met1316Val & Arg1165Cys), but both are very common in gnomAD v2.1 with 33,000 and 40 homozygotes, respectively. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6463 | CLTCL1 |
Bryony Thompson gene: CLTCL1 was added gene: CLTCL1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CLTCL1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CLTCL1 were set to 26068709; 29402896; 22511880; 31354784 Phenotypes for gene: CLTCL1 were set to Congenital insensitivity to pain Review for gene: CLTCL1 was set to AMBER Added comment: PMID: 26068709 - Three siblings in a single consanguineous family with congenital insensitivity to pain, inability to feel touch, and cognitive delay and a homozygous rare missense variant (Glu330Lys - no homozygotes in gnomAD v2.1). In vitro functional assays of the variant suggested a deleterious effect on the protein. Additionally cellular assays suggested a role for the gene in neural crest development and in the genesis of pain and touch sensing neurons. PMID: 29402896 - more in depth functional assays and proteomic analyses suggesting a role for the protein in regulating sensory neuron differentiation in the human peripheral system Other reports of associations with limited evidence: PMID: 22511880 - Identified as a candidate gene in an autism study, but the homozygous variant (reported as R125C, but actually R1165C) has 40 homozygotes in gnomAD v2.1. And many of the other compound heterozygous candidate variants in the study are too common in gnomAD v2.1, with many homozygotes present. The missense reported in the pain insensitivity family Glu330Lys was reported with another rare missense variant (Glu1310Lys) in one of the autism cases, but no other phenotype information was provided. PMID: 31354784 - a single case with infantile spasm reported with compound het missense (Met1316Val & Arg1165Cys), but both are very common in gnomAD v2.1 with 33,000 and 40 homozygotes, respectively. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6419 | ASCC3 |
Bryony Thompson gene: ASCC3 was added gene: ASCC3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ASCC3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ASCC3 were set to 21937992; https://doi.org/10.1016/j.xhgg.2021.100024 Phenotypes for gene: ASCC3 were set to Neuromuscular syndrome; congenital myopathy Review for gene: ASCC3 was set to GREEN Added comment: 11 individuals from 7 unrelated families with homozygous (missense) or compound heterozygous variants (missense with a presumed LoF variant or 2 missense, no biallelic LoF) with a neurologic phenotype that ranges from severe developmental delay to muscle fatigue. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6207 | WBP11 |
Eleanor Williams gene: WBP11 was added gene: WBP11 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: WBP11 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: WBP11 were set to 33276377 Phenotypes for gene: WBP11 were set to malformation syndrome affecting the cardiac, skeletal, gastrointestinal and renal systems Review for gene: WBP11 was set to GREEN Added comment: PMID: 33276377 - Martin et al 2020 - report 13 affected individuals from 7 unrelated families identified through various different cohort analysis (vertebral malformation, renal hypodysplasia, syndromic esophageal atresia, multiple congenital anomalies) in whom a WBP11 heterozygous variant is considered the top causative candidate. 5 identified variants were predicted to be protein truncating whilst the 6th was a missense variant. All variants are absent from population databases. In family 1, the variant was inherited from the apparently unaffected mother, indicating reduced penetrance, and phenotypic variance within families was observed. Phenotypes covered cardiac, vertebral, renal, craniofacial and gastrointestinal systems. At least at least 5 of the patients affected had features in three component organs so can be considered a VACTERL association. Wbp11 heterozygous null mice had vertebral and renal anomalies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6172 | BCAT2 |
Bryony Thompson changed review comment from: A single case reported with compound heterozygous variants with functional studies demonstrating that the two variants resulted in decreased BCAT2 enzyme activity. Also, a null mouse model has a phenotype similar to human maple syrup urine disease. Sources: NHS GMS; to: 6 cases from 5 unrelated families with homozygous or compound heterozygous variant, and supporting functional studies demonstrating decreased BCAT2 enzyme activity for some of the variants. Also, a null mouse model has a phenotype similar to human maple syrup urine disease. Sources: NHS GMS |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6172 | BCAT2 |
Bryony Thompson gene: BCAT2 was added gene: BCAT2 was added to Mendeliome. Sources: NHS GMS Mode of inheritance for gene: BCAT2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: BCAT2 were set to 14755340; 25653144 Phenotypes for gene: BCAT2 were set to Hypervalinemia or hyperleucine-isoleucinemia MIM#618850; disorder of branched-chain amino acid metabolism Review for gene: BCAT2 was set to AMBER Added comment: A single case reported with compound heterozygous variants with functional studies demonstrating that the two variants resulted in decreased BCAT2 enzyme activity. Also, a null mouse model has a phenotype similar to human maple syrup urine disease. Sources: NHS GMS |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6028 | CYLD | Zornitza Stark Phenotypes for gene: CYLD were changed from Brooke-Spiegler syndrome, 605041; Cylindromatosis, familial, 132700; Trichoepithelioma, multiple familial, 1, 601606; Frontotemporal dementia and amyotrophic lateral sclerosis to Brooke-Spiegler syndrome, 605041; Cylindromatosis, familial, 132700; Trichoepithelioma, multiple familial, 1, 601606; Frontotemporal dementia and/or amytrophic lateral sclerosis 8, MIM# 619132 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6027 | CYLD | Zornitza Stark reviewed gene: CYLD: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Frontotemporal dementia and/or amytrophic lateral sclerosis 8, MIM# 619132; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5908 | CPA6 | Zornitza Stark Phenotypes for gene: CPA6 were changed from to Epilepsy, familial temporal lobe, 5, MIM#614417; Febrile seizures, familial, 11, MIM#614418 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5718 | PGM3 |
Zornitza Stark changed review comment from: Phosphoglucomutase 3 (PGM3) protein catalyzes the conversion of N-acetyl-d-glucosamine-6-phosphate (GlcNAc-6-P) to N-acetyl-d-glucosamine-1-phosphate (GlcNAc-1-P), which is required for the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) an important precursor for protein glycosylation. Bi-allelic variants in this gene are associated with a primary immunodeficiency syndrome characterised by onset of recurrent infections, usually respiratory or cutaneous, in early childhood. Immune workup usually shows neutropenia, lymphopenia, eosinophilia, and increased serum IgE or IgA. Neutrophil chemotactic defects have also been reported. Infectious agents include bacteria, viruses, and fungi. Many patients develop atopic dermatitis, eczema, and other signs of autoinflammation. Affected individuals may also show developmental delay or cognitive impairment of varying severity. More than 10 unrelated families reported.; to: Phosphoglucomutase 3 (PGM3) protein catalyzes the conversion of N-acetyl-d-glucosamine-6-phosphate (GlcNAc-6-P) to N-acetyl-d-glucosamine-1-phosphate (GlcNAc-1-P), which is required for the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) an important precursor for protein glycosylation. Bi-allelic variants in this gene are associated with a primary immunodeficiency syndrome characterised by onset of recurrent infections, usually respiratory or cutaneous, in early childhood. Immune workup usually shows neutropenia, lymphopenia, eosinophilia, and increased serum IgE or IgA. Neutrophil chemotactic defects have also been reported. Infectious agents include bacteria, viruses, and fungi. Many patients develop atopic dermatitis, eczema, and other signs of autoinflammation. Affected individuals may also show developmental delay or cognitive impairment of varying severity. More than 10 unrelated families reported. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5507 | CAPN15 |
Eleanor Williams changed review comment from: PMID: 32885237 - Zha et al 2020 - report 5 individuals with microphthalmia and/or coloboma from 4 independent families who, through WES, were identified as carrying homozygous or compound heterozygous missense variants in CAPN15 that are predicted to be damanging. the variants segregated with the disease in all 4 families, with parents being unaffected heterozygous carriers. Several individuals had additional phenotypes including growth deficits (2 families), developmental delay (2 families) and hearing loss (2 families). Sources: Literature; to: PMID: 32885237 - Zha et al 2020 - report 5 individuals with microphthalmia and/or coloboma from 4 independent families who, through WES, were identified as carrying homozygous or compound heterozygous missense variants in CAPN15 that are predicted to be damanging. the variants segregated with the disease in all 4 families, with parents being unaffected heterozygous carriers. Several individuals had additional phenotypes including growth deficits (2 families), developmental delay (2 families) and hearing loss (2 families). Capn15 knockout mice showed similar severe developmental eye defects, including anophthalmia, microphthalmia and cataract, and diminished growth. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5507 | CAPN15 |
Eleanor Williams gene: CAPN15 was added gene: CAPN15 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CAPN15 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CAPN15 were set to 32885237 Phenotypes for gene: CAPN15 were set to microphthalmia HP:0000568; coloboma HP:0000589 Review for gene: CAPN15 was set to GREEN Added comment: PMID: 32885237 - Zha et al 2020 - report 5 individuals with microphthalmia and/or coloboma from 4 independent families who, through WES, were identified as carrying homozygous or compound heterozygous missense variants in CAPN15 that are predicted to be damanging. the variants segregated with the disease in all 4 families, with parents being unaffected heterozygous carriers. Several individuals had additional phenotypes including growth deficits (2 families), developmental delay (2 families) and hearing loss (2 families). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5503 | TARS2 | Zornitza Stark edited their review of gene: TARS2: Added comment: Second family reported, single affected individual, compound heterozygous missense variants, computational data only in support of pathogenicity.; Changed publications: 24827421, 26811336, 33153448 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5473 | TMEM218 |
Bryony Thompson gene: TMEM218 was added gene: TMEM218 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TMEM218 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TMEM218 were set to https://doi.org/10.1016/j.xhgg.2020.100016; 25161209 Phenotypes for gene: TMEM218 were set to Joubert syndrome; retinal dystrophy; polycystic kidneys; occipital encephalocele Review for gene: TMEM218 was set to GREEN Added comment: 11 cases in 6 families with homozygous or compound heterozygous missense and nonsense (1) variants, with a Joubert/Meckel syndrome phenotype. Clinical features included the molar tooth sign (N=2), occipital encephalocele (N=5, all fetuses), retinal dystrophy (N=4, all living individuals), polycystic kidneys (N=2), and polydactyly (N=2), without liver involvement. A null mouse model had nephronophthisis and retinal degeneration. No OMIM entry. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5248 | NHLRC2 |
Paul De Fazio changed review comment from: 3 families with compound het variants in total, all share one missense variant (p.Asp148Ty) PMID 29423877: 3 patients from 2 Finnish families compound het for the same missense variant (122 hets 0 homs) and the same frameshift variant (12 hets 0 homs), main clinical features included progressive cerebropulmonary symptoms, malabsorption, progressive growth failure, recurrent infections, chronic haemolytic anaemia and transient liver dysfunction. Expression studies in patient-derived fibroblasts supported the frameshift variant leading to NMD. Zebrafish knockdown affected the integrity of cells in the midbrain region. PMID 32435055: patient with the same phenotype from a Ukrainian family chet for two missense variants, one shared with the Finnish families and one novel.; to: 3 families with compound het variants in total, all share one missense variant (p.Asp148Ty) PMID 29423877: 3 patients from 2 Finnish families compound het for the same missense variant (122 hets 0 homs) and the same frameshift variant (12 hets 0 homs), main clinical features included progressive cerebropulmonary symptoms, malabsorption, progressive growth failure, recurrent infections, chronic haemolytic anaemia and transient liver dysfunction. Expression studies in patient-derived fibroblasts supported the frameshift variant leading to NMD. Zebrafish knockdown affected the integrity of cells in the midbrain region. PMID 32435055: patient with the same phenotype from a Ukrainian family chet for two missense variants, one shared with the Finnish families and one novel. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5248 | NHLRC2 |
Paul De Fazio changed review comment from: 3 families with compound het variants in total, all share one missense variant (p.Asp148Ty) PMID 29423877: 3 patients from 2 Finnish families compound het for the same missense variant (122 hets 0 homs) and the same frameshift variant (12 hets 0 homs), main clinical features included progressive cerebropulmonary symptoms, malabsorption, progressive growth failure, recurrent infections, chronic haemolytic anaemia and transient liver dysfunction. Zebrafish knockdown affected the integrity of cells in the midbrain region. PMID 32435055: patient with the same phenotype from a Ukrainian family chet for two missense variants, one shared with the Finnish families and one novel.; to: 3 families with compound het variants in total, all share one missense variant (p.Asp148Ty) PMID 29423877: 3 patients from 2 Finnish families compound het for the same missense variant (122 hets 0 homs) and the same frameshift variant (12 hets 0 homs), main clinical features included progressive cerebropulmonary symptoms, malabsorption, progressive growth failure, recurrent infections, chronic haemolytic anaemia and transient liver dysfunction. Expression studies in patient-derived fibroblasts supported the frameshift variant leading to NMD. Zebrafish knockdown affected the integrity of cells in the midbrain region. PMID 32435055: patient with the same phenotype from a Ukrainian family chet for two missense variants, one shared with the Finnish families and one novel. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5222 | MPP5 |
Konstantinos Varvagiannis gene: MPP5 was added gene: MPP5 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MPP5 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: MPP5 were set to 33073849 Phenotypes for gene: MPP5 were set to Global developmental delay; Intellectual disability; Delayed speech and language development; Developmental regression; Behavioral abnormality Penetrance for gene: MPP5 were set to unknown Review for gene: MPP5 was set to GREEN Added comment: Sterling et al (2020 - PMID: 33073849) provide information on the phenotype of 3 individuals with de novo MPP5 variants. Common features included global developmental delay, intellectual disability (3/3 - severe in 2/3), speech delay/regression (the latter in at least 2) and behavioral abnormalities. Variable other features were reported, among others microcephaly (1/3), abnormal vision (1/3 : CVI, retinal dystrophy, nystagmus), brain MRI abnormalities (2/3), late-onset seizures (1/3). These subjects displayed variable and non-specific dysmorphic features. All were investigated by exome sequencing (previous investigations not mentioned). One subject was found to harbor a de novo mosaic (5/25 reads) stopgain variant, further confirmed by Sanger sequencing [NM_022474.4:c.1555C>T - p.(Arg519Ter). The specific variant is reported once in gnomAD (1/251338). Two de novo missense variants were identified in the remaining individuals [c.1289A>G - p.Glu430Gly / c.974A>C - p.His325Pro). All variants had in silico predictions in favor of a deleterious effect (CADD score >24). The authors comment that MPP5 encodes an apical complex protein with asymmetric localization to the apical side of polarized cells. It is expressed in brain, peripheral nervous system and other tissues. MPP5 is a member of the membrane-associated guanylate kinase family of proteins (MAGUK p55 subfamily), determining cell polarity at tight junctions. Previous animal models suggest that complete Mpp5(Pals1) KO in mice leads to near absence of cerebral cortical neurons. Htz KO display reduction in size of cerebral cortex and hippocampus. The gene is expressed in proliferating cell populations of cerebellum and important for establishment cerebellar architecture. Conditional KO of Mpp5(Pals1) in retinal progenitor cells mimics the retinal pathology observed in LCA. [Several refs. provided] The authors studied a heterozygous CNS-specific Mpp5 KO mouse model. These mice presented microcephaly, decreased cerebellar volume and cortical thickness, decreased ependymal cells and Mpp5 at the apical surface of cortical vertrical zone. The proportion of cortical cells undergoing apoptotic cell death was increased. Mice displayed behavioral abnormalities (hyperactivity) and visual deficits, with ERG traces further suggesting retinal blindness. Overall the mouse model was thought to recapitulate the behavioral abnormalities observed in affected subjects as well as individual rare features such as microcephaly and abnormal vision. Haploinsufficiency (rather than a dominant negative effect) is favored as the underlying disease mechanism. This is also in line with a dose dependent effect observed in mice. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5102 | PRKACB |
Konstantinos Varvagiannis gene: PRKACB was added gene: PRKACB was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PRKACB was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: PRKACB were set to 33058759 Phenotypes for gene: PRKACB were set to Postaxial hand polydactyly; Postaxial foot polydactyly; Common atrium; Atrioventricular canal defect; Narrow chest; Abnormality of the teeth; Intellectual disability Penetrance for gene: PRKACB were set to unknown Mode of pathogenicity for gene: PRKACB was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments Review for gene: PRKACB was set to GREEN Added comment: Palencia-Campos et al (2020 - PMID: 33058759) report on the phenotype of 3 individuals heterozygous for PRKACA and 4 individuals heterozygous for PRKACB pathogenic variants. The most characteristic features in all individuals with PRKACA/PRKACB mutation, included postaxial polydactyly of hands (6/7 bilateral, 1/7 unilateral) and feet (4/7 bilateral, 1/7 unilateral), brachydactyly and congenital heart defects (CHD 5/7) namely a common atrium or AVSD. Two individuals with PRKACA variant who did not have CHD had offspring with the same variant and an AVSD. Other variably occurring features included short stature, limbs, narrow chest, abnormal teeth, oral frenula, nail dysplasia. One individual with PRKACB variant presented tumors. Intellectual disability was reported in 2/4 individuals with PRKACB variant (1/4: mild, 1/4: severe). The 3 individuals with PRKACA variant did not present ID. As the phenotype was overall suggestive of Ellis-van Creveld syndrome (or the allelic Weyers acrofacial dysostosis), although these diagnoses were ruled out following analysis of EVC and EVC2 genes. WES was carried out in all. PRKACA : A single heterozygous missense variant was identified in 3 individuals from 3 families (NM_002730.4:c.409G>A / p.Gly137Arg) with 1 of the probands harboring the variant in mosaic state (28% of reads) and having 2 similarly affected offspring. The variant was de novo in one individual and inherited in a third one having a similarly affected fetus (narrow thorax, postaxial polyd, AVSD). PRKACB : 4 different variants were identified (NM_002731.3: p.His88Arg/Asn, p.Gly235Arg, c.161C>T - p.Ser54Leu). One of the individuals was mosaic for the latter variant, while in all other cases the variant had occurred de novo. Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes. The authors provide evidence that the variants confer increased sensitivity of PKA holoenzymes to activation by cAMP (compared to wt). By performing ectopic expression of wt or mt PRKACA/B (variants studied : PRKACA p.Gly137Arg / PRKACB p.Gly235Arg) in NIH 3T3 fibroblasts, the authors demonstrate that inhibition of hedgehog signaling likely underlyies the developmental defects observed in affected individuals. As for PRKACA, the authors cite another study where a 31-month old female with EvC syndrome diagnosis was found to harbor the aforementioned variant (NM_001304349.1:c.637G>A:p.Gly213Arg corresponding to NM_002730.4:c.409G>A / p.Gly137Arg) as a de novo event. Without additional evidence at the time, the variant was considered to be a candidate for this subject's phenotype (Monies et al 2019 – PMID: 31130284). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5102 | PRKACA |
Konstantinos Varvagiannis gene: PRKACA was added gene: PRKACA was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PRKACA was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: PRKACA were set to 33058759; 31130284 Phenotypes for gene: PRKACA were set to Postaxial hand polydactyly; Postaxial foot polydactyly; Common atrium; Atrioventricular canal defect; Narrow chest; Abnormality of the teeth; Intellectual disability Penetrance for gene: PRKACA were set to unknown Mode of pathogenicity for gene: PRKACA was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments Review for gene: PRKACA was set to GREEN Added comment: Palencia-Campos et al (2020 - PMID: 33058759) report on the phenotype of 3 individuals heterozygous for PRKACA and 4 individuals heterozygous for PRKACB pathogenic variants. The most characteristic features in all individuals with PRKACA/PRKACB mutation, included postaxial polydactyly of hands (6/7 bilateral, 1/7 unilateral) and feet (4/7 bilateral, 1/7 unilateral), brachydactyly and congenital heart defects (CHD 5/7) namely a common atrium or AVSD. Two individuals with PRKACA variant who did not have CHD had offspring with the same variant and an AVSD. Other variably occurring features included short stature, limbs, narrow chest, abnormal teeth, oral frenula, nail dysplasia. One individual with PRKACB variant presented tumors. Intellectual disability was reported in 2/4 individuals with PRKACB variant (1/4: mild, 1/4: severe). The 3 individuals with PRKACA variant did not present ID. As the phenotype was overall suggestive of Ellis-van Creveld syndrome (or the allelic Weyers acrofacial dysostosis), although these diagnoses were ruled out following analysis of EVC and EVC2 genes. WES was carried out in all. PRKACA : A single heterozygous missense variant was identified in 3 individuals from 3 families (NM_002730.4:c.409G>A / p.Gly137Arg) with 1 of the probands harboring the variant in mosaic state (28% of reads) and having 2 similarly affected offspring. The variant was de novo in one individual and inherited in a third one having a similarly affected fetus (narrow thorax, postaxial polyd, AVSD). PRKACB : 4 different variants were identified (NM_002731.3: p.His88Arg/Asn, p.Gly235Arg, c.161C>T - p.Ser54Leu). One of the individuals was mosaic for the latter variant, while in all other cases the variant had occurred de novo. Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes. The authors provide evidence that the variants confer increased sensitivity of PKA holoenzymes to activation by cAMP (compared to wt). By performing ectopic expression of wt or mt PRKACA/B (variants studied : PRKACA p.Gly137Arg / PRKACB p.Gly235Arg) in NIH 3T3 fibroblasts, the authors demonstrate that inhibition of hedgehog signaling likely underlyies the developmental defects observed in affected individuals. As for PRKACA, the authors cite another study where a 31-month old female with EvC syndrome diagnosis was found to harbor the aforementioned variant (NM_001304349.1:c.637G>A:p.Gly213Arg corresponding to NM_002730.4:c.409G>A / p.Gly137Arg) as a de novo event. Without additional evidence at the time, the variant was considered to be a candidate for this subject's phenotype (Monies et al 2019 – PMID: 31130284). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4895 | RDH11 |
Zornitza Stark gene: RDH11 was added gene: RDH11 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: RDH11 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: RDH11 were set to 24916380; 15634683; 30731079; 18326732 Phenotypes for gene: RDH11 were set to Retinal dystrophy, juvenile cataracts, and short stature syndrome, MIM# 616108 Review for gene: RDH11 was set to RED Added comment: Single family reported with compound heterozygous LOF variants segregating with disease in three siblings. Some functional data, but note mouse KO did not have eye phenotype. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4867 | CCT2 |
Zornitza Stark gene: CCT2 was added gene: CCT2 was added to Mendeliome. Sources: NHS GMS Mode of inheritance for gene: CCT2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CCT2 were set to 27645772; 29450543 Phenotypes for gene: CCT2 were set to Leber's congenital amaurosis Review for gene: CCT2 was set to RED Added comment: Single family reported with compound het missense variants, functional data, including animal model. Sources: NHS GMS |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4862 | VPS41 |
Zornitza Stark gene: VPS41 was added gene: VPS41 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: VPS41 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: VPS41 were set to 32808683 Phenotypes for gene: VPS41 were set to Dystonia; intellectual disability Review for gene: VPS41 was set to RED Added comment: Single individual reported with homozygous canonical splice site variant resulting in exon 7 skipping, and global developmental delay and generalized dystonia. He attained a few words and voluntary limb movements but never sat unsupported. He had pale optic discs and an axonal neuropathy. From 6 years of age, his condition began to deteriorate, with reduced motor abilities and alertness. An MRI of the brain showed atrophy of the superior cerebellar vermis and slimming of the posterior limb of the corpus callosum. VPS41 is component of the HOPS complex and other genes in the complex have been implicated in movement disorders. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4774 | IL1RAP |
Zornitza Stark gene: IL1RAP was added gene: IL1RAP was added to Mendeliome. Sources: Literature Mode of inheritance for gene: IL1RAP was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: IL1RAP were set to 31954058 Phenotypes for gene: IL1RAP were set to Steroid-sensitive nephrotic syndrome Review for gene: IL1RAP was set to RED Added comment: A pair of siblings with compound heterozygous variants in this gene and steroid-sensitive nephrotic syndrome. Functional effect of variants demonstrated but mouse model does not have proteinuria. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4633 | PRIMPOL | Zornitza Stark edited their review of gene: PRIMPOL: Changed rating: RED | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4633 | PRIMPOL | Seb Lunke commented on gene: PRIMPOL | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4626 | PRIMPOL | Zornitza Stark Tag disputed tag was added to gene: PRIMPOL. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4626 | PRIMPOL | Zornitza Stark Classified gene: PRIMPOL as Red List (low evidence) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4626 | PRIMPOL | Zornitza Stark Gene: primpol has been classified as Red List (Low Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4623 | PRIMPOL | Sebastian Lunke reviewed gene: PRIMPOL: Rating: RED; Mode of pathogenicity: None; Publications: 23579484, 32375772, 25262353, 27230014, 25680975, 31560770; Phenotypes: ; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4520 | SLC12A2 |
Zornitza Stark edited their review of gene: SLC12A2: Added comment: Monoallelic : DD/ID was a feature in >= 6 individuals with monoallelic de novo SLC12A2. An individual with an exon 22 truncating variant was reported to have normal milestones and cognitive function. Exon 21 variants have been described in individuals with rather isolated hearing impairment (possibly some associated motor delay, but normal cognition). Hearing impairment was also reported in 2/6 patients with variants in other exons (1 missense / 1 frameshift). Biallelic : DD/ID was reported in at least 3 individuals in literature. Hearing impairment has been reported on 2 occasions (although this was not probably evaluated in all subjects). --- Monoallelic SLC12A2 mutations : ► Individuals with de novo mutations and developmental disorder were first identified by the DDD study (2017 - PMID: 28135719). 5 of them have been reported in detail by McNeill et al (below). ► McNeill et al (2020 - PMID: 32658972) report on 6 individuals with neurodevelopmental disorder due to de novo SLC12A2 mutation. All presented DD or ID ranging from mild to severe. ASD was reported in 3/6. Sensorineural hearing loss was a feature in 2/6 with the remaining having normal formal evaluations. Brain, cardiac and/or additional malformations were reported in a single individual. Following non-diagnostic prior work-up (CMA, FMR1 or other investigations) trio exome sequencing revealed missense (4/6) or truncating variants (2/6). Three additional individuals (incl. a father and his son) with missense variants in exon 21 (NM_001046.3 / p.Glu979Lys and p.Glu980Lys) presented with bilateral sensorineural hearing loss. Speech and/or motor delay reported in these cases were attributed to the hearing impairment/vestibular arreflexia (cognitive abilities not tested). SLC12A2 encodes sodium-potassium-chloride transporter 1 (also NKCC1). The GTEx project has identified 8 isoforms. In brain both exon 21-containing/deleted isoforms are expressed (cited Morita et al 2014 - PMID: 24695712). As the authors discuss, RNA-seq of the developing mouse cochlea suggests that the exon 21 containing isoform is the single transcript expressed. Evidence from RNA-seq data (BrainSpan project) and literature suggests that the significant amounts of exon 21 lacking isoforms in fetal brain compensate for the deleterious effects of exon 21 variants and explain the lack of NDD in relevant patients. Slc12a2 (NKCC1) null mouse model has demonstrated that the transporter plays a role in accumulation of the potassium rich endolymph in the inner ear, with NKCC1 absence causing sensorineural deafness and imbalance. Slc12a2 display cochlear malformations, loss of hair cells and hearing impairment (cited Delpire et al 1999 - PMID: 10369265). The brain phenotype has not been studied extensively, although loss of Slc12a2 has been shown to inhibit neurogenesis (cited: Magalhães and Rivera et al. - PMID: 27582690). Slc12a2 null zebrafish display a collapse of the otic vesicle and reduced endolymph (Abbas and Whitfield, 2009 - PMID: 19633174) relevant to the human hearing disorder. In vitro assessment of NKCC1 ion transporter function in Xenopus laevis, supported the deleterious effect of the identified variants (significant reduction in K+ influx). Using available single cell RNA-seq data the authors further demonstrated that SLC12A2 expressing cells display transcriptomic profiles reflective of active neurogenesis. ► Delpire et al (2016 - PMID: 27900370 - not reviewed in detail) described a 13 y.o. girl harboring a de novo 11-bp deletion in SLC12A2 exon 22. This individual reached developmental milestones on time and had a NORMAL cognitive function. Hearing was seemingly normal. Features included orthostatic intolerance, respiratory weakness, multiple endocrine abnormalities, pancreatic insufficiency and multiorgan failure incl. gut and bladder. Exome in the proband, parents and 3 unaffected sibs suggested SLC12A2 as the only candidate for her phenotype. Functional analyses in Xenopus laevis oocytes suggested that a non functional transporter was expressed and trafficked to the membrane as the wt. Detection of the truncated protein at higher molecular sizes suggested either enhanced dimerization or misfolded aggregate. There was no dominant-negative effect of mutant NKCC1. In patient fibroblasts a reduced total and NKCC1-mediated K+ influx. ► Mutai et al (2020 - PMID: 32294086) report on several individuals from 4 families, harboring variants within exon 21 or - in one case - at it's 3' splice-site (leading to skipping oe this exon at the mRNA level). All subjects were investigated for severe/profound hearing loss (in line with the role of exon 21-included isoforms in cochlea. The variant segregated with hearing impairment in 3 generations of a family while in all other subjects the variant had occured as de novo event. Despite motor delays (e.g. the subject from fam2 could not hold head or sit at the age of 10m / the proband in Fam3 was able to hold his head and walk at 6 and 20 m respectively) behavior and cognition were commented to be within normal range. ----- Biallelic SLC12A2 mutations: ► Anazi et al (2017 - PMID: 29288388) briefly reported on a 3 y.o. boy (17DG0776) with central hypotonia, neonatal respiratory distress, failure to thrive, global DD and microcephaly and a skeletal survey suggestive of osteopenia. After non-diagnostic prior investigations (CMA revealing a 1p duplication classified as VUS, extensive metabolic workup), WES revealed a homozygous SLC12A2 splicing variant [NM_001046.2:c.2617-2A>G]. ► Macnamara et al (2019 - PMID: 30740830) described a 5.5 y.o. male with sensorineural hearing loss, profound delays in all developmental areas among several other features (choanal atresia, failure to thrive, respiratory problems, absent sweat and tear production or salivation, GI abnormalities). Genetic testing for several disorders considered (cystic fibrosis, spinal muscular atrophy, sequencing and del/dup analysis of mtDNA) was normal. CMA revealed paternal uniparental isodisomy for chr. 5 and WGS a homozygous 22kb deletion in SLC12A2. This was followed by confirmation of homozygosity in the proband, heterozygosity of the unaffected father, delineation of breakpoints (chr5:127441491-127471419). mRNA studies in patient fibroblasts confirmed deletion of ex2-7, splicing of ex1 directly to ex8 and introduction of a premature stop codon in ex9. qRT-PCR confirmed that mRNA is likely subjected to NMD (expression ~80% of control). Western blot confirmed absence of the protein in the patient's fibroblasts. Again mouse models are thought to recapitulate the hearing defect but also the deficient saliva production (cited Evans et al 2000 - PMID: 10831596). Again the authors speculate a role of SLC12A2 in brain development based on evidence from murine models (migration, dendritic growth, increse in neuron density through regulation of GABAergic signalling (Young et al 2012 - PMID: 23015452). Hypotheses are also made on a regulatory relationship between NKCC1 and CFTR based on mRNA data from the ko mouse model. ► Stödberg et al (2020 - PMID: 32754646) reported 2 sibs with a complex neurodevelopmental disorder due to compound heterozygosity for a frameshift SLC12A2 variant and a splicing one (NM_001046:c.1431delT and c.2006-1G>A). Both presented hypotonia, neonatal S. aureus parotitis and respiratory problems (incl. apneas). While the older sib died at the age of 22 days, the younger one had persistent respiratory issues incl. a dry respiratory mucosa motivating metabolic, immunology investigations and testing for CF. She displayed microcephaly (OFC -2.5 SD, H was also -3.5SD), severe intellectual disability. MRI was suggestive of white matter and basal ganglia abnormalities. Other features incl. hearing impairment, and lack of tears,saliva and sweat, constipation and intestinal malrotation. There was facial dysmorphism. The variants were the only retained following WGS of the 2 affected sisters, parents and an unaffected brother. The splicing variant was shown to result in skipping of exon 13, while the indel in NMD. Again the authors discuss that the deficient saliva production, impaired hearing and GI problems are recapitulated in the mouse model (several refs provided).; Changed rating: GREEN; Changed publications: 28135719, 32658972, 27900370, 32294086, 29288388, 30740830, 32754646; Changed phenotypes: Kilquist syndrome, deafness, intellectual disability, dysmorphic features, absent salivation, ectodermal dysplasia, constipation, intestinal malrotation, multiple congenital anomalies; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4457 | PRIMPOL | Zornitza Stark Marked gene: PRIMPOL as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4457 | PRIMPOL | Zornitza Stark Gene: primpol has been classified as Amber List (Moderate Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4457 | PRIMPOL | Zornitza Stark Phenotypes for gene: PRIMPOL were changed from to Myopia 22, autosomal dominant, MIM# 615420 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4456 | PRIMPOL | Zornitza Stark Publications for gene: PRIMPOL were set to | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4455 | PRIMPOL | Zornitza Stark Mode of inheritance for gene: PRIMPOL was changed from Unknown to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4454 | PRIMPOL | Zornitza Stark Classified gene: PRIMPOL as Amber List (moderate evidence) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4454 | PRIMPOL | Zornitza Stark Gene: primpol has been classified as Amber List (Moderate Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4453 | PRIMPOL | Zornitza Stark reviewed gene: PRIMPOL: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Myopia 22, autosomal dominant, MIM# 615420; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4453 | PRIMPOL | Teresa Zhao reviewed gene: PRIMPOL: Rating: GREEN; Mode of pathogenicity: None; Publications: 23579484, 25262353, 27230014, 32375772; Phenotypes: Myopia 22 (MIM#615420) AD; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4275 | EXOSC5 |
Arina Puzriakova changed review comment from: - PMID: 32504085 (2020) - Five patients from four families with biallelic variants in EXCOSC5. Clinical features included short stature (3/5), developmental delays that affect motor skills (3/5), hypotonia (4/5), ataxia (3/4), cerebellar hypoplasia/atrophy (4/5). Cognitive function was generally preserved, but included mild speech delays in one patient. Cerebellar ataxia was described in two sibs and one singleton - all of whom were compound heterozygous for the p.Thr114Ile variant, inherited in trans with a frameshift variant (p.His30Thrfs*35) or deletion involving exons 5–6 of EXOSC5, respectively. A LoF zebrafish model resulted in a variety of morphological defects including shortened and curved tails/bodies, reduced eye/head size and oedema. Functional studies of the variants in budding yeast and cultured cells showed some defects in RNA exosome function and interactions, that could not be explained by decrease in the steady-state level of EXOSC5. - PMID: 29302074 (2019) - Three sibs with a homozygous EXCOSC5 variant (p.Thr114Ile), associated with mild motor delays, cerebellar ataxia, nystagmus, dysarthria, and moderate ID. The family is also described in PMID: 30950035. No functional studies of the variant were undertaken.; to: - PMID: 32504085 (2020) - Five patients from four families with biallelic variants in EXOSC5. Clinical features included short stature (3/5), developmental delays that affect motor skills (3/5), hypotonia (4/5), ataxia (3/4), cerebellar hypoplasia/atrophy (4/5). Cognitive function was generally preserved, but included mild speech delays in one patient. Cerebellar ataxia was described in two sibs and one singleton - all of whom were compound heterozygous for the p.Thr114Ile variant, inherited in trans with a frameshift variant (p.His30Thrfs*35) or deletion involving exons 5–6 of EXOSC5, respectively. A LoF zebrafish model resulted in a variety of morphological defects including shortened and curved tails/bodies, reduced eye/head size and oedema. Functional studies of the variants in budding yeast and cultured cells showed some defects in RNA exosome function and interactions, that could not be explained by decrease in the steady-state level of EXOSC5. - PMID: 29302074 (2019) - Three sibs with a homozygous EXOSC5 variant (p.Thr114Ile), associated with mild motor delays, cerebellar ataxia, nystagmus, dysarthria, and moderate ID. The family is also described in PMID: 30950035. No functional studies of the variant were undertaken. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4230 | MCM10 |
Zornitza Stark gene: MCM10 was added gene: MCM10 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MCM10 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MCM10 were set to 32865517 Phenotypes for gene: MCM10 were set to Susceptibility to CMV Review for gene: MCM10 was set to RED Added comment: Compound heterozygous variants in minichromosomal maintenance complex member 10 (MCM10) reported as a cause of NK-cell deficiency in a child with fatal susceptibility to CMV. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4134 | TOGARAM1 |
Arina Puzriakova gene: TOGARAM1 was added gene: TOGARAM1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TOGARAM1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TOGARAM1 were set to 32747439 Phenotypes for gene: TOGARAM1 were set to Cleft of the lip and palate; Microphthalmia; Cerebral dysgenesis; Hydrocephalus Added comment: PMID: 32747439 (2020) - Novel gene-disease association. In two sibling fetuses with a malformation disorder characterised by microcephaly, severe cleft lip and palate, microphthalmia, and brain anomalies, WES revealed compound heterozygous variants ([c.1102C>T, p.Arg368Trp] and [c.3619C>T, p.Arg1207*]) in the TOGARAM1 gene. Functional analysis of the missense variant in a C. elegans model showed impaired lipophilic dye uptake, with shorter and altered cilia in sensory neurons. In vitro analysis revealed faster microtubule polymerisation compared to wild-type, suggesting aberrant tubulin binding. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4097 | CHCHD10 | Zornitza Stark Phenotypes for gene: CHCHD10 were changed from to Frontotemporal dementia and/or amyotrophic lateral sclerosis 2 615911; Spinal muscular atrophy, Jokela type 615048; Myopathy, isolated mitochondrial, autosomal dominant 616209 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4093 | CHCHD10 | Zornitza Stark reviewed gene: CHCHD10: Rating: GREEN; Mode of pathogenicity: Other; Publications: 24934289, 25428574, 25193783, 32042922, 31690696, 30877432, 30874923; Phenotypes: Frontotemporal dementia and/or amyotrophic lateral sclerosis 2 615911, Spinal muscular atrophy, Jokela type 615048, Myopathy, isolated mitochondrial, autosomal dominant 616209; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3942 | NPRL2 | Zornitza Stark Phenotypes for gene: NPRL2 were changed from to Epilepsy, familial focal, with variable foci 2, MIM# 617116; focal seizures; frontal lobe epilepsy; nocturnal frontal lobe epilepsy; temporal lobe epilepsy; focal cortical dysplasia | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3939 | NPRL2 | Dean Phelan reviewed gene: NPRL2: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 26505888, 27173016, 28199897, 31594065; Phenotypes: focal seizures, frontal lobe epilepsy, nocturnal frontal lobe epilepsy, temporal lobe epilepsy, focal cortical dysplasia; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3846 | HNRNPA2B1 |
Zornitza Stark gene: HNRNPA2B1 was added gene: HNRNPA2B1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: HNRNPA2B1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: HNRNPA2B1 were set to 23455423; 30279180; 29358076; 26744327; 23635965 Phenotypes for gene: HNRNPA2B1 were set to Inclusion body myopathy with early-onset Paget disease with or without frontotemporal dementia 2 MIM#615422 Review for gene: HNRNPA2B1 was set to AMBER Added comment: One family reported that segregates cognitive impairment as part of the phenotype, and extensive functional analysis of protein, including a drosophila model. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3675 | PIGQ |
Zornitza Stark edited their review of gene: PIGQ: Added comment: Homozygous or compound heterozygous mutations in PIGQ cause Epileptic encephalopathy, early infantile, 77 (MIM #618548). Johnstone et al (2020 - PMID: 32588908) describe the phenotype of 7 children (from 6 families) with biallelic PIGQ pathogenic variants. The authors also review the phenotype of 3 subjects previously reported in the literature (by Martin et al, Alazami et al, Starr et al - respective PMIDs: 24463883, 25558065, 31148362). Affected individuals displayed severe to profound global DD/ID and seizures with onset in the first year of life. There were variable other features incl. - among others - genitourinary, cardiac, skeletal, ophthalmological anomalies, gastrointestinal issues. Within the cohort there was significant morbidity/mortality. PIGQ encodes phosphatidylinositol glycan anchor biosynthesis class Q protein, playing a role (early) in the biosynthesis of the GPI-anchor. Several genes in the GPI biosynthesis pathway cause multi-system disease with DD/ID and seizures. Flow cytometry has been used in individuals with PIGQ-related disorder. Serum ALP was elevated in some (4) although - as the authors comment - elevations are more typical in disorders affecting later steps of GPI biosynthesis. More than 10 variants have been reported to date (missense / pLoF).; Changed phenotypes: Epileptic encephalopathy, early infantile, 77, MIM# 618548 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3662 | RELN | Zornitza Stark edited their review of gene: RELN: Changed phenotypes: Lissencephaly 2 (Norman-Roberts type), MIM# 257320, {Epilepsy, familial temporal lobe, 7} 616436 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3662 | RELN | Zornitza Stark Phenotypes for gene: RELN were changed from Lissencephaly 2 (Norman-Roberts type), MIM# 257320; ankylosing spondylitis to Lissencephaly 2 (Norman-Roberts type), MIM# 257320; {Epilepsy, familial temporal lobe, 7}, MIM# 616436; ankylosing spondylitis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3657 | M1AP |
Ee Ming Wong gene: M1AP was added gene: M1AP was added to Mendeliome. Sources: Literature Mode of inheritance for gene: M1AP was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: M1AP were set to PMID: 32673564 Phenotypes for gene: M1AP were set to non-obstructive azoospermia (NOA); severe spermatogenic failure; male infertility Review for gene: M1AP was set to GREEN gene: M1AP was marked as current diagnostic Added comment: - One frameshift variant identified in 9 infertile men either in homozygous or compound heterozygous form - One missense variant segregated with infertility in five men from a consanguineous Turkish family Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3643 | NARS |
Zornitza Stark gene: NARS was added gene: NARS was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NARS was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: NARS were set to 32738225 Phenotypes for gene: NARS were set to Abnormal muscle tone; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Ataxia; Abnormality of the face; Demyelinating peripheral neuropathy Review for gene: NARS was set to GREEN Added comment: [Please note that HGNC Approved Gene Symbol for this gene is NARS1] Manole et al (2020 - PMID: 32738225) provide evidence that both biallelic and monoallelic (de novo) pathogenic NARS1 variants cause a neurodevelopmental disorder. In total 32 individuals from 21 families are reported, with biallelic variants identified in individuals from 13 families and de novo in 8 families. Similar features were reported for AR/AD occurrences of the disorder and included microcephaly (90% - most often primary), epilepsy (23/32 or 74% - variable semiology incl. partial/myoclonic/generalized tonic-clonic seizures), DD and ID (as a universal feature), abnormal tone in several (hypotonia/spasticity), ataxia, demyelinating peripheral neuropathy (in 3 or more for each inheritance mode - or a total of 25%). Some individuals had dysmorphic features. NARS1 encodes an aminoacyl-tRNA synthetase (ARS) [asparaginyl-tRNA synthetase 1]. Aminoacyl-tRNA synthetases constitute a family of enzymes catalyzing attachment of amino-acids to their cognate tRNAs. As the authors comment, mutations in genes encoding several other ARSs result in neurological disorders ranging from peripheral neuropathy to severe multi-systemic NDD. Dominant, recessive or both modes for inheritance for mutations in the same gene (e.g. AARS1, YARS1, MARS1, etc) have been reported. Some variants were recurrent, e.g. the c.1600C>T / p.Arg534* which occurred in 6 families as a de novo event or c.1633C>T p.Arg545Cys (homozygous in 6 families). 3 different variants were reported to have occured de novo (c.965G>T - p.Arg322Leu, c.1525G>A - p.Gly509Ser, p.Arg534*) with several other variants identified in hmz/compound htz individuals. A single SNV (c.1067A>C - p.Asp356Ala) was suggested to be acting as modifier and pathogenic only when in trans with a severe variant. [NM_004539.4 used as RefSeq for all]. The authors provide several lines of evidence for a partial loss-of-function effect (e.g. reduction in mRNA expression, enzyme levels and activity in fibroblasts or iNPCs) underlying pathogenicity of the variants identified in individuals with biallelic variants. A gain-of-function (dominant-negative) effect is proposed for de novo variants (such effect also demonstrated for the p.Arg534* in a zebrafish model). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3590 | GNPNAT1 |
Arina Puzriakova changed review comment from: Four affected sibs from a consanguineous Pakistani family with skeletal dysplasia, characterised by severe short stature, rhizomelic shortening of the limbs, and metacarpal and metatarsal length irregularities in the hands and feet. WGS revealed a homozygous missense variant (c.226G>A; p.Glu76Lys) in GNPNAT1, which segregating with the phenotype. Gnpnat1 gene knockdown in primary rat chondrocytes decreased cellular proliferation and expression of chondrocyte differentiation markers, indicating the importance of Gnpnat1 for growth plate chondrocyte proliferation and differentiation. Sources: Literature; to: PMID: 32591345 (2020) - Four affected sibs from a consanguineous Pakistani family with skeletal dysplasia, characterised by severe short stature, rhizomelic shortening of the limbs, and metacarpal and metatarsal length irregularities in the hands and feet. WGS revealed a homozygous missense variant (c.226G>A; p.Glu76Lys) in GNPNAT1, which segregating with the phenotype. Gnpnat1 gene knockdown in primary rat chondrocytes decreased cellular proliferation and expression of chondrocyte differentiation markers, indicating the importance of Gnpnat1 for growth plate chondrocyte proliferation and differentiation. Additional cases required to validate pathogenicity of GNPNAT1. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3590 | GNPNAT1 |
Arina Puzriakova gene: GNPNAT1 was added gene: GNPNAT1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GNPNAT1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: GNPNAT1 were set to 32591345 Phenotypes for gene: GNPNAT1 were set to Rhizomelic skeletal dysplasia Review for gene: GNPNAT1 was set to RED Added comment: Four affected sibs from a consanguineous Pakistani family with skeletal dysplasia, characterised by severe short stature, rhizomelic shortening of the limbs, and metacarpal and metatarsal length irregularities in the hands and feet. WGS revealed a homozygous missense variant (c.226G>A; p.Glu76Lys) in GNPNAT1, which segregating with the phenotype. Gnpnat1 gene knockdown in primary rat chondrocytes decreased cellular proliferation and expression of chondrocyte differentiation markers, indicating the importance of Gnpnat1 for growth plate chondrocyte proliferation and differentiation. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3561 | TRIM63 |
Ain Roesley gene: TRIM63 was added gene: TRIM63 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TRIM63 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TRIM63 were set to 30681346; 32451364 Phenotypes for gene: TRIM63 were set to Hypertrophic cardiomyopathy Penetrance for gene: TRIM63 were set to unknown Review for gene: TRIM63 was set to GREEN Added comment: PMID: 30681346; LIMITED by Clingen working group (last evaluated 2018) PMID: 32451364 - 16 index cases with rare homozygous or compound heterozygous variants (15 HCM and one restrictive cardiomyopathy). None of these variants have homozygote counts in gnomAD. - segregated in 3 families - 1 index had another pathogenic truncating variant in MYBPC3 - 5 missense and 3 PTCs - Familial evaluation showed that only homozygous and compound heterozygous had signs of disease, whereas all heterozygous family members were healthy Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3331 | MCM5 |
Crystle Lee gene: MCM5 was added gene: MCM5 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: MCM5 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MCM5 were set to 28198391 Phenotypes for gene: MCM5 were set to ?Meier-Gorlin syndrome 8 (MIM#617564) Review for gene: MCM5 was set to RED Added comment: Compound heterozgyous variants reported in one patient. Insufficient evidence supporting gene disease association Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3323 | EXOC2 |
Zornitza Stark gene: EXOC2 was added gene: EXOC2 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: EXOC2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: EXOC2 were set to 32639540 Phenotypes for gene: EXOC2 were set to Global developmental delay; Intellectual disability; Abnormality of the face; Abnormality of brain morphology Review for gene: EXOC2 was set to AMBER Added comment: Van Bergen et al (2020 - PMID: 32639540) report on 3 individuals from 2 families, harboring biallelic EXOC2 mutations. Clinical presentation included DD, ID (severe in 2 subjects from fam1, borderline intellectual functioning in fam2), dysmorphic features and brain abnormalities. Cerebellar anomalies were common to all with a molar tooth sign observed in one (1/3). Other findings limited to subjects from one family included acquired microcephaly, congenital contractures, spastic quadriplegia (each observed 2/3). Previous investigations were in all cases non-diagnostic. WES identified biallelic EXOC2 mutations in all affected individuals. EXOC2 encodes an exocyst subunit. The latter is an octameric complex, component of the membrane transport machinery, required for tethering and fusion of vesicles at the plasma membrane. As discussed ,vesicle transport is important for the development of brain and the function of neurons and glia. Exocyst function is also important for delivery of Arl13b to the primary cilium (biallelic ARL13B mutations cause Joubert syndrome 8) and ciliogenesis. Affected subjects from a broader consanguineous family (fam1) were homozygous for a truncating variant. Fibroblast studies revealed mRNA levels compatible with NMD (further restored in presence of CHX) as well as reduced protein levels. The female belonging to the second non-consanguineous family was found to harbor 2 missense variants in trans configuration. An exocytosis defect was demonstrated in fibroblasts from individuals belonging to both families. Ciliogenesis appeared to be normal, however Arl13b localization/recruitment to the cilia was reduced compared with control cells with the defect rescued upon exogenous expression of wt EXOC2. Mutations in other genes encoding components of the exocyst complex have been previously reported in individuals with relevant phenotypes (e.g. EXOC8 in a boy with features of Joubert s. or EXOC4 in nephrotic syndrome). The authors discuss on the essential role of EXOC2 based on model organism studies (e.g. impaired neuronal membrane traffic, failure of neuronal polarization and neuromuscular junction expansion seen in Drosophila Sec5 (EXOC2) null mutants). Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3250 | CFAP74 |
Zornitza Stark gene: CFAP74 was added gene: CFAP74 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CFAP74 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CFAP74 were set to 32555313 Phenotypes for gene: CFAP74 were set to Primary ciliary dyskinesia; infertility Review for gene: CFAP74 was set to AMBER Added comment: Two unrelated individuals with compound het missense variants reported. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3185 | MCM3AP | Eleanor Williams changed review comment from: PMID: 32202298 - Woldegebriel et al - report a further two families, one in the Netherlands and one in Estonia, with probands with compound heterozygous variants in MCM3AP and a peripheral neuropathy with or without impaired intellectual development (MIM 618124) phenotype. The child from the Netherlands presented with severe hypotonia and intellectual disability. The two siblings from the Estonian family had severe generalized epilepsy and mild spastic diplegia. Functional studies using skin fibroblasts from these and other affected patients showed that disease variants result in depletion of GANP (encoded by MCM3AP) except when they alter critical residues in the Sac3 mRNA binding domain. GANP depletion was associated with more severe phenotypes compared with the Sac3 variants.; to: PMID: 32202298 - Woldegebriel et al 2020 - report a further two families, one in the Netherlands and one in Estonia, with probands with compound heterozygous variants in MCM3AP and a peripheral neuropathy with or without impaired intellectual development (MIM 618124) phenotype. The child from the Netherlands presented with severe hypotonia and intellectual disability. The two siblings from the Estonian family had severe generalized epilepsy and mild spastic diplegia. Functional studies using skin fibroblasts from these and other affected patients showed that disease variants result in depletion of GANP (encoded by MCM3AP) except when they alter critical residues in the Sac3 mRNA binding domain. GANP depletion was associated with more severe phenotypes compared with the Sac3 variants. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3174 | TSHZ1 | Zornitza Stark changed review comment from: Two individuals reported with LoF variants, both with a phenotype of congenital aural atresia and hyposmia (PMID: 22152683). Temporal and spatial expression of Tshz1 mRNA during development of the middle ear is consistent with the phenotype (PMID: 17586487). Tsh2 null mouse model showed a middle ear malformation, and neonatal lethality. A conditional nervous system-specific Tshz1 knock out mouse model demonstrated hyposmia (PMIDs: 24487590; 17586487).; to: Two individuals reported with LoF variants, both with a phenotype of congenital aural atresia and hyposmia (PMID: 22152683). Temporal and spatial expression of Tshz1 mRNA during development of the middle ear is consistent with the phenotype (PMID: 17586487). Tsh2 null mouse model showed a middle ear malformation, and neonatal lethality. A conditional nervous system-specific Tshz1 knock out mouse model demonstrated hyposmia (PMIDs: 24487590; 17586487). Also note original report contains four individuals with deletions of this gene, further supporting gene-disease association. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3106 | HFM1 |
Bryony Thompson gene: HFM1 was added gene: HFM1 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: HFM1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: HFM1 were set to 23555294; 24597873; 31279343 Phenotypes for gene: HFM1 were set to Premature ovarian failure 9 MIM#615724 Review for gene: HFM1 was set to GREEN Added comment: Three cases from 2 unrelated families with compound heterozygous variants, and a single family with a heterozygous variant have been reported with ovarian failure. There is also a supporting null mouse model. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3088 | DCAF8 |
Bryony Thompson gene: DCAF8 was added gene: DCAF8 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: DCAF8 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: DCAF8 were set to 24500646 Phenotypes for gene: DCAF8 were set to Giant axonal neuropathy 2, autosomal dominant MIM#610100 Review for gene: DCAF8 was set to AMBER Added comment: A single large family segregating a missense variant and in vitro functional assays demonstrating the variant reduces the association of DCAF8 and DDB1, which is important in Cul4-ubiquitin E3 function Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3044 | C16orf62 |
Zornitza Stark changed review comment from: HGNC approved name: VPS35L. Two variants have been reported as compound heterozygotes in two sibs with features of 3C/Ritscher-Schinzel syndrome. Functional studies show that loss of VPS35L function results in impared autophagy and VPS35L knockout mouse resulted in early embrionic lethality (PMID 25434475). Sources: Expert list; to: HGNC approved name: VPS35L. Two variants have been reported as compound heterozygotes in two sibs with features of 3C/Ritscher-Schinzel syndrome. Functional studies show that loss of VPS35L function results in impared autophagy and VPS35L knockout mouse resulted in early embrionic lethality (PMID 25434475;31712251). Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3037 | C16orf62 |
Zornitza Stark gene: C16orf62 was added gene: C16orf62 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: C16orf62 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: C16orf62 were set to 25434475 Phenotypes for gene: C16orf62 were set to 3C/Ritscher-Schinzel-like syndrome Review for gene: C16orf62 was set to AMBER Added comment: HGNC approved name: VPS35L. Two variants have been reported as compound heterozygotes in two sibs with features of 3C/Ritscher-Schinzel syndrome. Functional studies show that loss of VPS35L function results in impared autophagy and VPS35L knockout mouse resulted in early embrionic lethality (PMID 25434475). Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3015 | ADCY6 |
Zornitza Stark gene: ADCY6 was added gene: ADCY6 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ADCY6 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ADCY6 were set to 24319099; 26257172; 31846058 Phenotypes for gene: ADCY6 were set to Lethal congenital contracture syndrome 8, OMIM # 616287 Review for gene: ADCY6 was set to GREEN Added comment: Laquerriere et al. (2014): 2 sibs from a consanguineous family with an axoglial form of lethal congenital contracture syndrome, and homozygous missense ADCY6 mutation (R1116C). The parents were heterozygous for the mutation. Knocked down ADCY6 orthologs in zebrafish showed a loss of myelin basic protein expression in the peripheral nervous system but no defects in Schwann cell migration and axonal growth. Gonzaga‐Jauregui et al. (2015): 1 patient with congenital hypotonia, distal joint contractures, hypomyelinating neuropathy, and vocal cord paralysis, and a homozygous missense ADCY6 variant. No functional studies. Deceased sister with a similar phenotype with hypotonia, areflexia, and hypomyelinating neuropathy who died at 18 months of respiratory insufficiency. Agolini et al. (2020): 1 patient with severe form of AMC, with two novel compound heterozygous variants in ADCY6 (parents confirmed carriers), but no functional studies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2940 | SORD |
Seb Lunke gene: SORD was added gene: SORD was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SORD was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SORD were set to 32367058 Phenotypes for gene: SORD were set to isolated hereditary neuropathy Review for gene: SORD was set to GREEN gene: SORD was marked as current diagnostic Added comment: 45 individuals from 38 families across multiple ancestries carrying the nonsense c.757delG (p.Ala253GlnfsTer27) variant in SORD, in either a homozygous or compound heterozygous state Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2786 | TOMM70 |
Zornitza Stark gene: TOMM70 was added gene: TOMM70 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: TOMM70 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: TOMM70 were set to 31907385; 32356556 Phenotypes for gene: TOMM70 were set to Severe anaemia, lactic acidosis, developmental delay; White matter abnormalities, developmental delay, regression, movement disorder Review for gene: TOMM70 was set to AMBER Added comment: TOM70 is a member of the TOM complex that transports cytosolic proteins into mitochondria. Bi-allelic disease: one individual reported with compound heterozygous variants in TOMM70 [c.794C>T (p.T265M) and c.1745C>T (p.A582V)]. Clinical features included severe anaemia, lactic acidosis, and developmental delay. Some functional data: in vitro cell model compensatory experiments. Monoallelic disease: de novo mono allelic variants in the C-terminal region of TOMM70 reported in two individuals. While both individuals exhibited shared symptoms including hypotonia, hyperreflexia, ataxia, dystonia, and significant white matter abnormalities, there were differences between the two individuals, most prominently the age of symptom onset, with one experiencing episodes of regression. Some functional data. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2767 | UGDH |
Zornitza Stark gene: UGDH was added gene: UGDH was added to Mendeliome. Sources: Literature Mode of inheritance for gene: UGDH was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: UGDH were set to 32001716 Phenotypes for gene: UGDH were set to Epileptic encephalopathy, early infantile, 84 - MIM #618792 Review for gene: UGDH was set to GREEN Added comment: 36 individuals with biallelic UGDH pathogenic variants reported. The phenotype corresponded overall to a developmental epileptic encephalopathy with hypotonia, feeding difficulties, severe global DD, moderate or commonly severe ID in all. Hypotonia and motor disorder (incl. spasticity, dystonia, ataxia, chorea, etc) often occurred prior to the onset of seizures. A single individual did not present seizures and 2 sibs had only seizures in the setting of fever. There were no individuals with biallelic pLoF variants identified. Parental/sib studies were all compatible with AR inheritance mode. UGDH encodes the enzyme UDP-glucose dehydrogenase which converts UDP-glucose to UDP-glucuronate, the latter being a critical component of the glycosaminoglycans, hyaluronan, chondroitin sulfate, and heparan sulfate. Patient fibroblast and biochemical assays suggested a LoF effect of variants leading to impairment of UGDH stability, oligomerization or enzymatic activity (decreased UGDH-catalyzed reduction of NAD+ to NADH / hyaluronic acid production which requires UDP-glucuronate). Attempts to model the disorder using an already developped zebrafish model (for a hypomorphic LoF allele) were unsuccessful as fish did not exhibit seizures spontaneously or upon induction with PTZ. Modelling of the disorder in vitro using patient-derived cerebral organoids demonstrated smaller organoids due to reduced number of proliferating neural progenitors Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2764 | YIF1B |
Zornitza Stark gene: YIF1B was added gene: YIF1B was added to Mendeliome. Sources: Literature Mode of inheritance for gene: YIF1B was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: YIF1B were set to 32006098; 26077767 Phenotypes for gene: YIF1B were set to Central hypotonia; Failure to thrive; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Spasticity; Abnormality of movement Review for gene: YIF1B was set to GREEN Added comment: 6 individuals (from 5 families) with biallelic YIF1B truncating variants reported. Presenting features: hypotonia, failure to thrive, microcephaly (5/6), severe global DD and ID as well as features suggestive of a motor disorder (dystonia/spasticity/dyskinesia). Seizures were reported in 2 unrelated individuals (2/6). MRI abnormalities were observed in some with thin CC being a feature in 3. Affected individuals were found to be homozygous for truncating variants (4/5 families being consanguineous). The following 3 variants were identified (NM_001039672.2) : c.186dupT or p.Ala64fs / c.360_361insACAT or p.Gly121fs / c.598G>T or p.Glu200*. Yif1B KO mice demonstrate a disorganized Golgi architecture in pyramidal hippocampal neurons (Alterio et al 2015 - PMID: 26077767). Functional/network analysis of genes co-regulated with YIF1B based on available RNAseq data, suggest enrichement in in genes important for nervous system development and function. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2668 | PSMB10 |
Zornitza Stark gene: PSMB10 was added gene: PSMB10 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PSMB10 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PSMB10 were set to 31783057 Phenotypes for gene: PSMB10 were set to Autoinflammatory syndrome Review for gene: PSMB10 was set to RED Added comment: PSMB10 is part of the immunoproteasome, and other components cause auto inflammatory disorders. Single individual with homozygous missense variant reported. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2620 | GALM |
Hazel Phillimore gene: GALM was added gene: GALM was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GALM was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: GALM were set to PMID: 30451973; 30910422 Phenotypes for gene: GALM were set to galactosaemia; type IV galactosaemia Review for gene: GALM was set to GREEN Added comment: Homozygous and compound heterozygous variants (missense, nonsense and frameshift) found in 8 Japanese patients from unrelated families with unexplained galactosaemia. (No variants in GALT, GALK1, and GALE). This is therefore type IV galactosaemia. In vitro expression analysis and enzyme activity assay of the patients’ peripheral blood mononuclear cells showed total lack of or compromised expression of GALM protein. Loss-of-function mechanism. One homozygote for one of these variants p.(Gly142Arg) in gnomAD (African population). (Wada, Y. et al 2019; PMID: 30451973) In vitro expression assay and an enzyme activity assay of 67 GALM variants, taken from ExAc database (missense, nonsense, frameshift and splice). 30 variants concluded to be pathogenic due to no protein expression or faint expression. 5 variants with mildly lower levels were determined as likely pathogenic. All concluded to be loss-of-function mechanism. Incidence of galactosaemia by GALM deficiency is comparable to that of other galactosaemias. Carrier frequency and incidence was estimated for different populations. (Iwasawa, S. et al. (2019); PMID: 30910422) Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2573 | NKX2-3 |
Zornitza Stark gene: NKX2-3 was added gene: NKX2-3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NKX2-3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: NKX2-3 were set to 31498527 Phenotypes for gene: NKX2-3 were set to Intestinal varicosities Review for gene: NKX2-3 was set to RED Added comment: Single multiplex family where truncating variant in this gene segregated with intestinal varicosities with a LOD score of 3.3. NKX2‐3 is a component of a molecular pathway underlying spleen and gut vasculature development in mice. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2440 | TMPRSS9 |
Chern Lim gene: TMPRSS9 was added gene: TMPRSS9 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TMPRSS9 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TMPRSS9 were set to 31943016 Phenotypes for gene: TMPRSS9 were set to autism spectrum disorder Review for gene: TMPRSS9 was set to RED Added comment: Association with Mendelian disease not established. Is a candidate gene for autism spectrum disorder: single patient, compound heterozygous nonsense variants. Functional studies showed Tmprss9 gene is expressed in mouse brain, knockout mice had decreased social interest and social recognition. (PMID: 31943016) Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2434 | CYLD | Zornitza Stark Phenotypes for gene: CYLD were changed from to Brooke-Spiegler syndrome, 605041; Cylindromatosis, familial, 132700; Trichoepithelioma, multiple familial, 1, 601606; Frontotemporal dementia and amyotrophic lateral sclerosis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2372 | CYLD | Kristin Rigbye reviewed gene: CYLD: Rating: GREEN; Mode of pathogenicity: None; Publications: 10835629, 16307661, 12950348, 19807742; Phenotypes: Brooke-Spiegler syndrome, 605041, Cylindromatosis, familial, 132700, Trichoepithelioma, multiple familial, 1, 601606, Frontotemporal dementia and amyotrophic lateral sclerosis; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2365 | FUS |
Elena Savva gene: FUS was added gene: FUS was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FUS was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: FUS were set to PMID: 32281455; 20668259; 20385912 Phenotypes for gene: FUS were set to Amyotrophic lateral sclerosis 6, with or without frontotemporal dementia 608030; Essential tremor, hereditary, 4 614782 Mode of pathogenicity for gene: FUS was set to Other Review for gene: FUS was set to GREEN Added comment: PMID: 32281455 - Reports a case of Pediatric Amyotrophic Lateral Sclerosis. Reviews and shows multiple other reports of ALS casued by FUS PMID: 20668259 - additional reports of ALS PMID: 20385912 - postulated that disruption of this region may disrupt subcellular distribution of FUS, in turn affecting transcription and RNA processing and conferring a toxic gain of function. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2365 | C9orf72 |
Elena Savva gene: C9orf72 was added gene: C9orf72 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: C9orf72 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: C9orf72 were set to PMID: 30120348; 23284068 Phenotypes for gene: C9orf72 were set to Frontotemporal dementia and/or amyotrophic lateral sclerosis 1 105550 Review for gene: C9orf72 was set to AMBER Added comment: Possibly RED Caused by expansion of GGGGCC repeats, dont know if these qualify for mendeliome Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2364 | CFAP65 |
Daniel Flanagan gene: CFAP65 was added gene: CFAP65 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CFAP65 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CFAP65 were set to 31501240; 31413122 Phenotypes for gene: CFAP65 were set to Spermatogenic failure 40 618664 Penetrance for gene: CFAP65 were set to unknown Review for gene: CFAP65 was set to GREEN gene: CFAP65 was marked as current diagnostic Added comment: 9 patients with multiple morphological abnormalities of the sperm flagella (MMAF) or completely immotile spermatozoa, in which, homozygous or compound heterozygous truncating CFAP65 variants were identified. Cfap65-mutated male mice displayed typical MMAF phenotypes with severe morphological abnormalities of the sperm flagella (PMID: 31501240, 31413122). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2304 | XRCC1 |
Bryony Thompson gene: XRCC1 was added gene: XRCC1 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: XRCC1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: XRCC1 were set to 28002403; 29472272 Phenotypes for gene: XRCC1 were set to Spinocerebellar ataxia, autosomal recessive 26 MIM#617633 Review for gene: XRCC1 was set to GREEN Added comment: Three South Asian cases (one with early adult onset and the other two with onset in childhood) reported with slowly progressive cerebellar ataxia accompanied by sensorimotor neuropathy. All with the recurrent splice variant (c.1293G>C, 2 homozygotes and a compound heterozygote). Mice with conditional deletion of the Xrcc1 gene in the brain showed cerebellar ataxia. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2259 | MARS2 | Zornitza Stark changed review comment from: 1 family with 2 sibs with combined oxidative phosphorylation deficiency-25 (with ID) with compound heterozygous mutations in the MARS2 gene. Patient fibroblasts showed decreased activities of mitochondrial complexes I and IV, consistent with a mitochondrial translation defect. Immunoblot analysis showed reduced MARS2 protein levels as well as reduced levels of selected subunits of complexes I and IV.; to: 1 family with 2 sibs with combined oxidative phosphorylation deficiency-25 (with ID) with compound heterozygous mutations in the MARS2 gene. Patient fibroblasts showed decreased activities of mitochondrial complexes I and IV, consistent with a mitochondrial translation defect. Immunoblot analysis showed reduced MARS2 protein levels as well as reduced levels of selected subunits of complexes I and IV. Spastic ataxia association: note complex chromosomal rearrangements rather than SNVs reported in group of 54 French Canadians. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1815 | PTCD3 |
Zornitza Stark gene: PTCD3 was added gene: PTCD3 was added to Mendeliome. Sources: NHS GMS Mode of inheritance for gene: PTCD3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PTCD3 were set to 30607703; 19427859 Phenotypes for gene: PTCD3 were set to Intellectual disability; optic atrophy; Leigh-like syndrome Review for gene: PTCD3 was set to AMBER Added comment: One compound heterozygote case and functional assays. Essential subunit of oxidative phosphorylation (OXPHOS) complexes. Sources: NHS GMS |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1807 | NSUN3 |
Zornitza Stark gene: NSUN3 was added gene: NSUN3 was added to Mendeliome. Sources: NHS GMS Mode of inheritance for gene: NSUN3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: NSUN3 were set to 27356879 Phenotypes for gene: NSUN3 were set to combined mitochondrial respiratory chain complex deficiency Review for gene: NSUN3 was set to AMBER Added comment: A single compound heterozygous case. Patient-derived fibroblasts exhibited severe defects in mitochondrial translation that can be rescued by exogenous expression of NSun3. In vitro functional assays also conducted. Sources: NHS GMS |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1805 | NDUFB10 |
Zornitza Stark gene: NDUFB10 was added gene: NDUFB10 was added to Mendeliome. Sources: NHS GMS Mode of inheritance for gene: NDUFB10 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: NDUFB10 were set to 28040730; 32025618 Phenotypes for gene: NDUFB10 were set to fatal infantile lactic acidosis; cardiomyopathy Review for gene: NDUFB10 was set to AMBER Added comment: Single compound heterozygote case and mitochondrial phenotype. Assays of respiratory chain enzyme activities and functions in patient tissues/fibroblasts and in vitro functional assays. Plant model system supporting mitochondrial complex I dysfunction. Sources: NHS GMS |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1799 | MRPL3 | Zornitza Stark changed review comment from: 1 French family with 4 sibs with severe mitochondrial disorder - compound heterozygous mutations in the MRPL3 gene, no functional studies. 1 male infant with a severe mitochondrial disorder - compound heterozygous mutations in the MRPL3 gene, no functional studies.; to: 1 French family with 4 sibs with severe mitochondrial disorder - compound heterozygous mutations in the MRPL3 gene, some functional studies. 1 male infant with a severe mitochondrial disorder - compound heterozygous mutations in the MRPL3 gene, no functional studies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1779 | TIMM22 |
Zornitza Stark gene: TIMM22 was added gene: TIMM22 was added to Mendeliome. Sources: NHS GMS Mode of inheritance for gene: TIMM22 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TIMM22 were set to 30452684 Phenotypes for gene: TIMM22 were set to mitochondrial myopathy; hypotonia; gastroesophageal reflux disease Review for gene: TIMM22 was set to AMBER Added comment: One compound heterozygote case identified with supporting in vitro and patient cell functional assays. Sources: NHS GMS |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1775 | TMEM65 |
Zornitza Stark gene: TMEM65 was added gene: TMEM65 was added to Mendeliome. Sources: NHS GMS Mode of inheritance for gene: TMEM65 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TMEM65 were set to 28295037 Phenotypes for gene: TMEM65 were set to Mitochondrial encephalomyopathy Review for gene: TMEM65 was set to AMBER Added comment: One homozygous case with a mitochondrial encephalomyopathy and functional assays showing the protein is important for mitochondrial respiration and mtDNA copy number maintenance. Sources: NHS GMS |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1435 | WDR81 | Kristin Rigbye changed review comment from: A homozygous and compound heterozygous nonsense and missense variants reported. Variants shown to result in a loss of function (PMID: 28969387).; to: Homozygous and compound heterozygous nonsense and missense variants reported. Variants shown to result in a loss of function (PMID: 28969387). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1435 | WDR81 | Kristin Rigbye changed review comment from: A few homozygous families reported to date. Variants are expected to results in a loss of function, although functional studies have not been performed.; to: A homozygous and compound heterozygous nonsense and missense variants reported. Variants shown to result in a loss of function (PMID: 28969387). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.778 | KIAA1161 |
Zornitza Stark gene: KIAA1161 was added gene: KIAA1161 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: KIAA1161 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: KIAA1161 were set to 30656188; 30649222; 30460687; 29910000 Phenotypes for gene: KIAA1161 were set to Basal ganglia calcification, idiopathic, 7, autosomal recessive; OMIM #618317 Review for gene: KIAA1161 was set to GREEN Added comment: Total 9 families, but no functional evidence: 12 patients from 6 unrelated Chinese families reported by Yao et al. (2018) and homozygous or compound heterozygous mutations in the MYORG gene. Functional studies of the variants and studies of patient cells were not performed, but the presence of nonsense mutations suggested a loss of function. 1 Chinese woman identified with homozygous nonsense mutation in the MYORG gene, segregated with the disorder in the family. Functional studies of the variant and studies of patient cells were not performed. 2 unrelated Middle Eastern families with homozygous mutations in the MYORG gene, which segregated with the disorder in the families. Functional studies of the variants were not performed. 4 sibs from one Turkish family with homozygous missense mutation in the MYORG gene, which segregated with the disorder in the family. Functional studies of the variant and studies of patient cells were not performed. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.551 | GLS |
Zornitza Stark gene: GLS was added gene: GLS was added to Mendeliome_VCGS. Sources: Expert list Mode of inheritance for gene: GLS was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: GLS were set to 30575854; 30970188 Phenotypes for gene: GLS were set to Epileptic encephalopathy, early infantile, 71, MIM# 618328; Global developmental delay, progressive ataxia, and elevated glutamine, MIM# 618412 Review for gene: GLS was set to GREEN Added comment: Three individuals from two unrelated families reported with early neonatal refractory seizures, structural brain abnormalities and oedema; significantly increased glutamine levels (PMID: 30575854). Another three unrelated individuals described with compound het variants, one of which is a triplet expansion in the 5' UTR (PMID: 30970188). Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.534 | SPATC1L |
Zornitza Stark gene: SPATC1L was added gene: SPATC1L was added to Mendeliome_VCGS. Sources: Expert list Mode of inheritance for gene: SPATC1L was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SPATC1L were set to 30177775 Phenotypes for gene: SPATC1L were set to Deafness Review for gene: SPATC1L was set to AMBER Added comment: Two families with compound het variants, and one family with heterozygous variant and dominant pattern of hearing loss described, some functional data. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.326 | TARS |
Zornitza Stark gene: TARS was added gene: TARS was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: TARS was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TARS were set to 31374204 Phenotypes for gene: TARS were set to Trichothiodystrophy 7, nonphotosensitive; OMIM #618546 Review for gene: TARS was set to AMBER Added comment: Clinical features of trichothiodystrophy (TTD) include ichthyosis, intellectual disability, decreased fertility, short stature. 2 unrelated patients with non-photosensitive-TTD, in whom limited clinical information was available (one with DD): one compound heterozygous TARS variants, second homozygous for TARS variant. They showed that the variants had a profound effect on TARS protein stability and enzymatic function. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.315 | SCAPER |
Zornitza Stark gene: SCAPER was added gene: SCAPER was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: SCAPER was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SCAPER were set to 28794130; 31069901; 31192531; 30723319 Phenotypes for gene: SCAPER were set to Intellectual disability; retinitis pigmentosa Review for gene: SCAPER was set to GREEN Added comment: 28 patients from 14 unrelated families with ID and retinitis pigmentosa (some with BBS phenotype), and homozygous or compound heterozygous mutations in SCAPER gene. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.308 | PISD | Zornitza Stark commented on gene: PISD: 4 individuals in 2 unrelated but consanguineous families from Portugal and Brazil affected by early-onset retinal degeneration, sensorineural hearing loss, microcephaly, intellectual disability, and skeletal dysplasia with scoliosis and short stature (Liberfarb syndrome). Affected individuals shared a homozygous 10-bp deletion immediately upstream of the last exon of the PISD gene. In HEK293T cells, this variant led to aberrant splicing of PISD transcripts. 1 family with 2 sisters with congenital cataracts, short stature, and white matter changes identified compound heterozygous variants in the PISD gene. Decreased conversion of phosphatidylserine to PE in patient fibroblasts is consistent with impaired phosphatidylserine decarboxylase (PISD) enzyme activity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.297 | P4HTM |
Zornitza Stark gene: P4HTM was added gene: P4HTM was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: P4HTM was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: P4HTM were set to 25078763; 30940925 Phenotypes for gene: P4HTM were set to Hypotonia, hypoventilation, impaired intellectual development, dysautonomia, epilepsy, and eye abnormalities; OMIM #618493 Review for gene: P4HTM was set to GREEN Added comment: 12 patients from 5 families with hypotonia, intellectual disability, and eye abnormalities, and homozygous or compound heterozygous pathogenic P4HTM gene variants. Segregated with the disorder in the families. In vitro functional expression studies of 3 of the P4HTM variants showed that they caused a significant decrease in the amount of soluble protein compared to wildtype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.262 | DTYMK |
Zornitza Stark gene: DTYMK was added gene: DTYMK was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: DTYMK was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: DTYMK were set to 31271740 Phenotypes for gene: DTYMK were set to Intellectual disability; microcephaly Review for gene: DTYMK was set to RED Added comment: Single family, two affected sibs with compound het variants reported. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.119 | CPA6 | Zornitza Stark reviewed gene: CPA6: Rating: GREEN; Mode of pathogenicity: None; Publications: 25875328, 21922598, 23105115; Phenotypes: Epilepsy, familial temporal lobe, 5, MIM#614417, Febrile seizures, familial, 11, MIM#614418; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.0 | TMPO |
Zornitza Stark gene: TMPO was added gene: TMPO was added to Mendeliome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services Mode of inheritance for gene: TMPO was set to Unknown |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.0 | PRIMPOL |
Zornitza Stark gene: PRIMPOL was added gene: PRIMPOL was added to Mendeliome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services Mode of inheritance for gene: PRIMPOL was set to Unknown |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.0 | MPO |
Zornitza Stark gene: MPO was added gene: MPO was added to Mendeliome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services Mode of inheritance for gene: MPO was set to Unknown |