Activity

Filter

Cancel
Date Panel Item Activity
32 actions
Callosome v0.537 BHLHE22 Zornitza Stark gene: BHLHE22 was added
gene: BHLHE22 was added to Callosome. Sources: Literature
Mode of inheritance for gene: BHLHE22 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: BHLHE22 were set to 39502664
Phenotypes for gene: BHLHE22 were set to Neurodevelopmental disorder, MONDO:0700092, BHLHE22-related
Review for gene: BHLHE22 was set to GREEN
Added comment: Four individuals with de novo missense variants within the highly conserved helix-loop-helix domain and seven individuals from five unrelated families with a recurrent homozygous frameshift variant, p.(Gly74Alafs*18).

Individuals presented with absent or limited speech, severely impaired motor abilities, intellectual disability (ID), involuntary movements, autistic traits with stereotypies, abnormal muscle tone. The majority of individuals had partial or complete agenesis of the corpus callosum (ACC). Additional symptoms comprised epilepsy, variable dysmorphic features, and eye anomalies. One additional individual had spastic paraplegia without delayed development and ACC, expanding the phenotype to milder and later onset forms.

Mice lacking bhlhe22 show nearly complete loss of three brain comminsure, including the corpus callosum.
Sources: Literature
Callosome v0.526 CSMD1 Krithika Murali gene: CSMD1 was added
gene: CSMD1 was added to Callosome. Sources: Literature
Mode of inheritance for gene: CSMD1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CSMD1 were set to PMID: 38816421
Phenotypes for gene: CSMD1 were set to complex neurodevelopmental disorder MONDO:0100038
Review for gene: CSMD1 was set to GREEN
Added comment: PMID 38816421 Werren et al 2024 report 8 individuals from 6 families with biallelic missense CSMD1 variants identified through exome sequencing and subsequent gene-sharing efforts. Shared phenotypic features included: GDD, ID, microcephaly and polymicrogyria. Other features included dysmorphism, IUGR, hypotonia, arthrogryposis, seizures, opthalmological anomalies and other brain white matter anomalies Heterozygous parents were unaffected.

Loss of function is the postulated mechanism based on experimental data involving early-stage forebrain organoids differentiated from CSMD1 knockout human embryonic stem cells. ClinGen haploinsufficiency score of 1, however, this curation was last reviewed in 2018. This gene is within the scope of review for the ClinGen Autism and ID GCEP.
Sources: Literature
Callosome v0.506 U2AF2 Zornitza Stark Phenotypes for gene: U2AF2 were changed from Neurodevelopmental disorder, U2AF2-related (MONDO:0700092) to Developmental delay, dysmorphic facies, and brain anomalies, MIM# 620535
Callosome v0.487 YWHAE Yetong Chen gene: YWHAE was added
gene: YWHAE was added to Callosome. Sources: Literature
Mode of inheritance for gene: YWHAE was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: YWHAE were set to 36999555; 20452996; 19584063; 20599530
Phenotypes for gene: YWHAE were set to Neurodevelopmental disorder, MONDO:0700092
Review for gene: YWHAE was set to GREEN
Added comment: PMID 36999555 reports 10 patients, including 8 new individuals and 2 follow-up individuals with heterozygous YWHAE variants (3 splice site variants, 2 intragenic deletions and 10 large deletions encompassing YWHEA but not PAFAH1B1), who developed neurodevelopmental disease with brain abnormalities. The paper also references 5 patients from the following publications:
PMID 20452996 reports a patient with a YWHAE variant (deletion encompassing YWHEA but not PAFAH1B1) who had neurodevelopmental disease with brain abnormalities and developmental delay.
PMID 19584063 reports a patient with a YWHAE variant (deletion encompassing YWHEA but not PAHAF1B1) who had brain abnormalities and developmental delay. (Patients 2-5 with YWHAE deletions also presented developmental delay and brain abnormalities.)
PMID 20599530 reports a patient with a YWHAE variant (deletion encompassing YWHEA but not PAHAF1B1) who had brain abnormalities and developmental delay.
PMID 28542865 reports a patient with a YWHAE variant (intragenic deletion) who had myoclonic epilepsy and dysgraphia and learning disability related to mathematics. CT scan noted a Chiari Malformation Type I (CM), thin corpus callosum, cavum septum pellucidum and cavum vergae, but the patient's general and neurological exams were normal.
PMID 29458882 reports a fetus with a YWHAE variant (deletion encompassing YWHEA but not PAHAF1B1) who had facial dysmorphisms. The parents decided to terminate the pregnancy so detailed information regarding brain CT and development is not available. Although the authors concluded that the fetus did not have brain abnormalities, PMID 36999555 concludes that this patient had microcephaly (the last supplementary table).
Sources: Literature
Callosome v0.487 FRA10AC1 Zornitza Stark Phenotypes for gene: FRA10AC1 were changed from Neurodevelopmental disorder, MONDO:0700092, FRA10AC1-related to Neurodevelopmental disorder with growth retardation, dysmorphic facies, and corpus callosum abnormalities, MIM# 620113
Callosome v0.486 FRA10AC1 Zornitza Stark edited their review of gene: FRA10AC1: Changed phenotypes: Neurodevelopmental disorder with growth retardation, dysmorphic facies, and corpus callosum abnormalities, MIM# 620113
Callosome v0.456 RAC3 Alison Yeung gene: RAC3 was added
gene: RAC3 was added to Callosome. Sources: Literature
Mode of inheritance for gene: RAC3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RAC3 were set to 35851598
Phenotypes for gene: RAC3 were set to Neurodevelopmental disorder with structural brain anomalies and dysmorphic facies, MIM#618577
Review for gene: RAC3 was set to GREEN
Added comment: Corpus callosal abnormalities reported in 100% of cohort of 10 patients
Sources: Literature
Callosome v0.448 USP14 Zornitza Stark Phenotypes for gene: USP14 were changed from Distal arthrogryposis, corpus callosum anomalies, and dysmorphic features; no OMIM # to Syndromic disease MONDO:0002254, USP14-related; Distal arthrogryposis, corpus callosum anomalies, and dysmorphic features; no OMIM #
Callosome v0.445 ADD1 Chirag Patel gene: ADD1 was added
gene: ADD1 was added to Callosome. Sources: Literature
Mode of inheritance for gene: ADD1 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Publications for gene: ADD1 were set to PMID: 34906466
Phenotypes for gene: ADD1 were set to Intellectual disability, corpus callosum dysgenesis, and ventriculomegaly; no OMIM #
Review for gene: ADD1 was set to GREEN
Added comment: 4 unrelated individuals affected by ID and/or complete or partial agenesis of corpus callosum, and enlarged lateral ventricles. WES found loss-of-function variants - 1 recessive missense variant and 3 de novo variants. The recessive variant is associated with ACC and enlarged lateral ventricles, and the de novo variants were associated with complete or partial agenesis of corpus callosum, mild ID and attention deficit. Human variants impair ADD1 protein expression and/or dimerization with ADD2. Add1 knockout mice recapitulate corpus callosum dysgenesis and ventriculomegaly phenotypes. Three adducin genes (ADD1, ADD2, and ADD3) encode cytoskeleton proteins that are critical for osmotic rigidity and cell shape. ADD1, ADD2, and ADD3 form heterodimers (ADD1/ADD2, ADD1/ADD3), which further form heterotetramers. Adducins interconnect spectrin and actin filaments to form polygonal scaffolds beneath the cell membranes and form ring-like structures in neuronal axons. Adducins regulate mouse neural development, but their function in the human brain is unknown
Sources: Literature
Callosome v0.444 USP14 Chirag Patel gene: USP14 was added
gene: USP14 was added to Callosome. Sources: Literature
Mode of inheritance for gene: USP14 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: USP14 were set to PMID: 35066879
Phenotypes for gene: USP14 were set to Distal arthrogryposis, corpus callosum anomalies, and dysmorphic features; no OMIM #
Review for gene: USP14 was set to RED
Added comment: 3 fetuses from 2 different branches of a consanguineous family, presenting with distal arthrogryposis, underdevelopment of the corpus callosum, and dysmorphic facial features. Exome sequencing identified a biallelic 4-bp deletion (c.233_236delTTCC; p.Leu78Glnfs*11) in USP14, and sequencing of family members showed segregation with the phenotype. Ubiquitin-specific protease 14 (USP14) encodes a major proteasome-associated deubiquitinating enzyme with an established dual role as an inhibitor and an activator of proteolysis, maintaining protein homeostasis. Usp14-deficient mice show a phenotype similar to lethal human multiple congenital contractures phenotypes, with callosal anomalies, muscle wasting, and early lethality, attributed to neuromuscular junction defects due to decreased monomeric ubiquitin pool. RT-qPCR experiment in an unaffected heterozygote revealed that mutant USP14 was expressed, indicating that abnormal transcript escapes nonsense-mediated mRNA decay.
Sources: Literature
Callosome v0.380 NDUFAF4 Krithika Murali changed review comment from: Brain anomalies noted but not involving corpus callosum.

PMID: 32949790 - report two siblings with facial dysmorphism and lactic acidosis diagnosed neonatally with subsequent fatal early encephalopathy with apneic episodes, irritability, central hypoventilation, liver involvement and hyperammonemia. Cerebral white matter anomalies reported in one patient and cardiomyopathy in the other. WES identified homozygous nonsense NDUFAF4 variants with absent NDUFAF4 expression in patient fibroblasts. OXPHOS assembly studies demonstrated almost undetectable levels of fully assembled complex I and complex I–containing supercomplexes and an abnormal accumulation of SCIII2IV1 supercomplexes. Morphologically, fibroblasts showed rounder mitochondria and a diminished degree of branching of the mitochondrial network.

PMID: 28853723 - report one patient born at 38 weeks after IOL for IUGR. Presented age 7 months with developmental regression, growth failure and central hypotonia. Brain MRI revealed diffuse bilateral signal alterations in the basal ganglia and thalami and an EEG showed generalized slowing with multifocal spikes consistent with an epileptogenic focus. Homozygous missense NDUFAF4 variants identified. Lentiviral complementation of patient fibroblasts with wild-type NDUFAF4 rescued complex I deficiency and assembly defect; to: Brain anomalies noted but not involving corpus callosum.

PMID: 32949790 - report two siblings with facial dysmorphism and lactic acidosis diagnosed neonatally with subsequent fatal early encephalopathy with apneic episodes, irritability, central hypoventilation, liver involvement and hyperammonemia. Cerebral white matter anomalies reported in one patient and cardiomyopathy in the other. WES identified homozygous nonsense NDUFAF4 variants with absent NDUFAF4 expression in patient fibroblasts. OXPHOS assembly studies demonstrated almost undetectable levels of fully assembled complex I and complex I–containing supercomplexes and an abnormal accumulation of SCIII2IV1 supercomplexes. Morphologically, fibroblasts showed rounder mitochondria and a diminished degree of branching of the mitochondrial network.

PMID: 28853723 - report one patient born at 38 weeks after IOL for IUGR. Presented age 7 months with developmental regression, growth failure and central hypotonia. Brain MRI revealed diffuse bilateral signal alterations in the basal ganglia and thalami and an EEG showed generalized slowing with multifocal spikes consistent with an epileptogenic focus. Homozygous missense NDUFAF4 variants identified. Lentiviral complementation of patient fibroblasts with wild-type NDUFAF4 rescued complex I deficiency and assembly defect

PMID 18179882 - report multiple affected individuals from one family. Most presented soon after birth with severe metabolic acidosis and high plasma lactate levels. Patients who survived longer were repeatedly admitted because of exacerbation of the acidosis during intercurrent infections. One long-term survivor had profound ID. Seizures occurred in 2 individuals during decompensation episodes. Brain MRI of one patient at 16 months of age revealed severe atrophy of both gray and white matter, with demyelination, most prominent at the anterior aspects of the brain, leaving a cortical ribbon. At the occipito-parietal region there were subventricular cysts, emphasizing the ventricular walls. The cerebellum, basal ganglia, pons, and medulla were severely atrophic
Callosome v0.355 FRA10AC1 Zornitza Stark gene: FRA10AC1 was added
gene: FRA10AC1 was added to Callosome. Sources: Literature
Mode of inheritance for gene: FRA10AC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FRA10AC1 were set to 34694367
Phenotypes for gene: FRA10AC1 were set to Neurodevelopmental disorder, MONDO:0700092, FRA10AC1-related
Review for gene: FRA10AC1 was set to GREEN
Added comment: PMID 34694367: 5 individuals from 3 unrelated families reported. Variable ID, possibly related to variant type with LoF variants associated with more severe ID. All individuals had microcephaly, hypoplasia or agenesis of the corpus callosum, growth retardation, and craniofacial dysmorphism.
Sources: Literature
Callosome v0.310 SUPT16H Zornitza Stark Phenotypes for gene: SUPT16H were changed from Intellectual disability; Abnormality of the corpus callosum to Neurodevelopmental disorder with dysmorphic facies and thin corpus callosum, MIM# 619480; Intellectual disability; Abnormality of the corpus callosum
Callosome v0.309 SUPT16H Zornitza Stark edited their review of gene: SUPT16H: Changed phenotypes: Neurodevelopmental disorder with dysmorphic facies and thin corpus callosum, MIM# 619480, Intellectual disability, Abnormality of the corpus callosum
Callosome v0.308 CLCN3 Zornitza Stark gene: CLCN3 was added
gene: CLCN3 was added to Callosome. Sources: Literature
Mode of inheritance for gene: CLCN3 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Publications for gene: CLCN3 were set to 34186028
Phenotypes for gene: CLCN3 were set to Neurodevelopmental disorder
Mode of pathogenicity for gene: CLCN3 was set to Other
Review for gene: CLCN3 was set to GREEN
Added comment: 11 individuals reported, 9 that carried 8 different rare heterozygous missense variants in CLCN3, and 2 siblings that were homozygous for an NMD-predicted frameshift variant likely abolishing ClC-3 function. All missense variants were confirmed to be de novo in eight individuals for whom parental data was available.

The 11 individuals in the cohort share clinical features of variable severity. All 11 have GDD or ID and dysmorphic features, and a majority has mood or behavioural disorders and structural brain abnormalities:
- Structural brain abnormalities on MRI (9/11) included partial or full agenesis of the corpus callosum (6/9), disorganized cerebellar folia (4/9), delayed myelination (3/9), decreased white matter volume (3/9), pons hypoplasia (3/9), and dysmorphic dentate nuclei (3/9). Six of those with brain abnormalities also presented with seizures.
- Nine have abnormal vision, including strabismus in four and inability to fix or follow in the two with homozygous loss-of-function variants.
- Hypotonia ranging from mild to severe was reported in 7 of the 11 individuals.
- Six have mood or behavioural disorders, particularly anxiety (3/6).
- Consistent dysmorphic facial features included microcephaly, prominent forehead, hypertelorism, down-slanting palpebral fissures, full cheeks, and micrognathia.

The severity of disease in the two siblings with homozygous disruption of ClC-3 is consistent with the drastic phenotype seen in Clcn3 KO mice. The disease was more severe in two siblings carrying homozygous loss-of-function variants with the presence of GDD, absent speech, seizures, and salt and pepper fundal pigmentation in both individuals, with one deceased at 14 months of age. The siblings also had significant neuroanatomical findings including diffusely decreased white matter volume, thin corpora callosa, small hippocampi, and disorganized cerebellar folia. Supporting biallelic inheritance for LoF variants, disruption of mouse Clcn3 results in drastic neurodegeneration with loss of the hippocampus a few months after birth and early retinal degeneration. Clcn3−/− mice display severe neurodegeneration, whereas heterozygous Clcn3+/− mice appear normal.

Patch-clamp studies were used to investigate four of the missense variants. These suggested a gain of function in two variants with increased current in HEK cells, however they also showed reduced rectification of voltage and a loss of transient current, plus decreased current amplitude, glycosylation and surface expression when expressed in oocytes, and were suspected to interfere with channel gating and a negative feedback mechanism. These effects were also shown to vary depending on pH levels. The current of the remaining two variants did not differ from WT. For heterozygous missense variants, the disruption induced may be at least partially conferred to mutant/WT homodimers and mutant/ClC-4 heterodimers.

Both loss and gain of function in this gene resulted in the same phenotype.
Sources: Literature
Callosome v0.305 ZNF148 Zornitza Stark gene: ZNF148 was added
gene: ZNF148 was added to Callosome. Sources: Literature
Mode of inheritance for gene: ZNF148 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ZNF148 were set to 27964749
Phenotypes for gene: ZNF148 were set to Global developmental delay, absent or hypoplastic corpus callosum, and dysmorphic facies; MIM#617260
Review for gene: ZNF148 was set to GREEN
Added comment: Four unrelated individuals with de novo heterozygous nonsense or frameshift mutations (all resulting in premature termination codons in the last exon of ZNF148, predicted to escape nonsense-mediated mRNA decay and result in expression of a truncated protein). Phenotype characterised by underdevelopment of the corpus callosum, mild to moderate developmental delay and ID, variable microcephaly or mild macrocephaly, short stature, feeding problems, facial dysmorphisms, and cardiac and renal malformations. No functional studies to date.
Sources: Literature
Callosome v0.302 PPP2R1A Zornitza Stark Phenotypes for gene: PPP2R1A were changed from to Mental retardation, autosomal dominant 36, MIM#616362; Microcephaly-corpus callosum hypoplasia-intellectual disability-facial dysmorphism syndrome, MONDO:0014605
Callosome v0.299 PPP2R1A Zornitza Stark reviewed gene: PPP2R1A: Rating: GREEN; Mode of pathogenicity: None; Publications: 26168268, 33106617; Phenotypes: Mental retardation, autosomal dominant 36, MIM#616362, Microcephaly-corpus callosum hypoplasia-intellectual disability-facial dysmorphism syndrome, MONDO:0014605; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Callosome v0.298 BCAS3 Paul De Fazio gene: BCAS3 was added
gene: BCAS3 was added to Callosome. Sources: Literature
Mode of inheritance for gene: BCAS3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BCAS3 were set to 34022130
Phenotypes for gene: BCAS3 were set to Syndromic neurodevelopmental disorder
gene: BCAS3 was marked as current diagnostic
Added comment: 15 individuals from eight unrelated families with germline bi-allelic loss-of-function variants in BCAS3. All probands share a global developmental delay accompanied by pyramidal tract involvement, microcephaly, short stature, strabismus, dysmorphic facial features, and seizures. Patient fibroblasts confirmed absence of BCAS3 protein.

Most patients had thin corpus callosum.
Sources: Literature
Callosome v0.219 SHMT2 Zornitza Stark gene: SHMT2 was added
gene: SHMT2 was added to Callosome. Sources: Literature
Mode of inheritance for gene: SHMT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SHMT2 were set to 33015733
Phenotypes for gene: SHMT2 were set to Congenital microcephaly; Infantile axial hypotonia; Spastic paraparesis; Global developmental delay; Intellectual disability; Abnormality of the corpus callosum; Abnormal cortical gyration; Hypertrophic cardiomyopathy; Abnormality of the face; Proximal placement of thumb; 2-3 toe syndactyly
Review for gene: SHMT2 was set to GREEN
Added comment: García‑Cazorla et al. (2020 - PMID: 33015733) report 5 individuals (from 4 families) with a novel brain and heart developmental syndrome caused by biallelic SHMT2 pathogenic variants.

All affected subjects presented similar phenotype incl. microcephaly at birth (5/5 with OFC < -2 SD though in 2/5 cases N OFC was observed later), DD and ID (1/5 mild-moderate, 1/5 moderate, 3/5 severe), motor dysfunction in the form of spastic (5/5) paraparesis, ataxia/dysmetria (3/4), intention tremor (in 3/?) and/or peripheral neuropathy (2 sibs). They exhibited corpus callosum hypoplasia (5/5) and perisylvian microgyria-like pattern (4/5). Cardiac problems were reported in all, with hypertrophic cardiomyopathy in 4/5 (from 3 families) and atrial-SD in the 5th individual (1/5). Common dysmorphic features incl. long palpebral/fissures, eversion of lateral third of lower eylids, arched eyebrows, long eyelashes, thin upper lip, short Vth finger, fetal pads, mild 2-3 toe syndactyly, proximally placed thumbs.

Biallelic variants were identified following exome sequencing in all (other investigations not mentioned). Identified variants were in all cases missense SNVs or in-frame del, which together with evidence from population databases and mouse model might suggest a hypomorphic effect of variants and intolerance/embryonic lethality for homozygous LoF ones.

SHMT2 encodes the mitohondrial form of serine hydroxymethyltransferase. The enzyme transfers one-carbon units from serine to tetrahydrofolate (THF) and generates glycine and 5,10,methylene-THF.

Mitochondrial defect was suggested by presence of ragged red fibers in myocardial biopsy of one patient. Quadriceps and myocardial biopsies of the same individual were overall suggestive of myopathic changes.

While plasma metabolites were within N range and SHMT2 protein levels not significantly altered in patient fibroblasts, the authors provide evidence for impaired enzymatic function eg. presence of the SHMT2 substrate (THF) in patient but not control (mitochondria-enriched) fibroblasts , decrease in glycine/serine ratios, impared folate metabolism. Patient fibroblasts displayed impaired oxidative capacity (reduced ATP levels in a medium without glucose, diminished oxygen consumption rates). Mitochondrial membrane potential and ROS levels were also suggestive of redox malfunction.

Shmt2 ko in mice was previously shown to be embryonically lethal attributed to severe mitochondrial respiration defects, although there was no observed brain metabolic defect.

The authors performed Shmt2 knockdown in motoneurons in Drosophila, demonstrating neuromuscular junction (# of satellite boutons) and motility defects (climbing distance/velocity).
Sources: Literature
Callosome v0.147 SMO Zornitza Stark Tag somatic tag was added to gene: SMO.
Callosome v0.147 SMO Zornitza Stark Marked gene: SMO as ready
Callosome v0.147 SMO Zornitza Stark Gene: smo has been classified as Green List (High Evidence).
Callosome v0.147 SMO Zornitza Stark Phenotypes for gene: SMO were changed from to Curry-Jones syndrome, somatic mosaic 601707
Callosome v0.146 SMO Zornitza Stark Publications for gene: SMO were set to
Callosome v0.145 SMO Zornitza Stark Mode of inheritance for gene: SMO was changed from Unknown to Other
Callosome v0.144 SMO Zornitza Stark reviewed gene: SMO: Rating: GREEN; Mode of pathogenicity: None; Publications: 27236920; Phenotypes: Curry-Jones syndrome, somatic mosaic 601707; Mode of inheritance: Other
Callosome v0.92 SNIP1 Zornitza Stark Phenotypes for gene: SNIP1 were changed from Psychomotor retardation, epilepsy, and craniofacial dysmorphism, 614501 to Psychomotor retardation, epilepsy, and craniofacial dysmorphism, 614501
Callosome v0.92 SNIP1 Zornitza Stark Phenotypes for gene: SNIP1 were changed from to Psychomotor retardation, epilepsy, and craniofacial dysmorphism, 614501
Callosome v0.88 SNIP1 Zornitza Stark reviewed gene: SNIP1: Rating: RED; Mode of pathogenicity: None; Publications: 22279524; Phenotypes: Psychomotor retardation, epilepsy, and craniofacial dysmorphism, 614501; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Callosome v0.41 MAST1 Zornitza Stark gene: MAST1 was added
gene: MAST1 was added to Callosome_VCGS. Sources: Literature
Mode of inheritance for gene: MAST1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MAST1 were set to 31721002; 30449657
Phenotypes for gene: MAST1 were set to Mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations; OMIM #618273
Review for gene: MAST1 was set to GREEN
Added comment: 6 unrelated patients with mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations (MCCCHCM) with de novo heterozygous mutations in MAST1 gene. In vitro functional studies showed that 1 of the variants (lys276del) increased MAST1 binding to microtubules compared to controls. Mutant mice heterozygous for a Mast1 leu278del allele showed a thicker corpus callosum compared to wildtype, and an overall reduction in cortical volume and thickness and decreased cerebellar volume and number of granule and Purkinje cells due to increased apoptosis compared to controls.

1 Emirati patient with ID, microcephaly, and dysmorphic features, with missense variant in MAST1.
Sources: Literature
Callosome v0.0 SMO Zornitza Stark gene: SMO was added
gene: SMO was added to Corpus callosum agenesis, Callosome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services
Mode of inheritance for gene: SMO was set to Unknown