Intellectual disability syndromic and non-syndromic
Gene: TMEM222 Green List (high evidence)Green List (high evidence)
Mode of inheritance
BIALLELIC, autosomal or pseudoautosomal
Phenotypes
Neurodevelopmental disorder with motor and speech delay and behavioural abnormalities, MIM# 619470
Green List (high evidence)
Polla et al (2021 - PMID: 33824500) report 17 individuals from 9 unrelated families, with biallelic TMEM222 pathogenic variants.
The phenotype included motor, speech delay and moderate to severe ID (as universal features). Other manifestations included hypotonia (10/15), broad gait (5/12), seizures (7/17 - belonging to 6/9 families), MRI abnormalities (5/8). Variable behavioral abnormalities were observed (aggressive behavior, shy character, stereotypic movements etc). Abnormal OFC was a feature in several with microcephaly in 7 subjects from 4 families (measurements not available for all 17). Nonspecific facial features were reported in 10/17. Rare features incl. body tremors, decreased lower extremity muscle mass or disorder of motor neurons.
TMEM222 variants were identified following exome sequencing. Previous investigations incl. metabolic studies, FMR1, chromosomes by standard karyotype or CMA, SMA, CMT1A were reported to be normal (available for some individuals).
TMEM222 variants missense and pLoF ones mostly found in homozygosity (7/9 families were consanguineous, compound heterozygosity reported in a single case from the 9 families). Sanger sequencing was used for confirmation of variants, parental carrier state as well as testing of sibs (unaffected sibs tested in 4 families).
Few individuals had additional genetic findings in other genes, though classified as VUS (3 families).
The gene encodes transmembrane protein 222 (208 residues) which however has unknown function. The protein comprises 3 transmembrane domains and a domain of unknown function. TMEMs are a group of transmembrane proteins spanning membranes with - most commonly - unclear function.
The authors measured expression by qPCR mRNA analysis, demonstrating highest fetal and adult brain expression (incl. parietal and occipital cortex). Expression levels from GTEx data also support a role in neurodevelopment.
Immunocytochemistry revealed highest levels in mature human iPSC-derived glutaminergic cortical neurons and moderate in immature ones. Additional studies supported that the gene is highly expressed in dendrites and might play a role in postsynaptic vesicles (colocalization with postsynaptic and early endosomal markers).
A previous study by Riazuddin et al (2017 - PMID: 27457812) had identified TMEM222 as a candidate gene for ID. This family (PKMR213) however appears to be included as family 2 in the aforementioned publication (same pedigree, variant and phenotype in both articles).
In OMIM there is currently no associated phenotype.
The gene is listed among the primary ID genes in SysID.
Please consider inclusion in the ID panel with green (or amber) rating. This gene may also be included in other panels e.g. for epilepsy, microcephaly, etc.
Sources: LiteratureCreated: 7 May 2021, 7:38 p.m.
Mode of inheritance
BIALLELIC, autosomal or pseudoautosomal
Phenotypes
Motor delay; Delayed speech and language development; Intellectual disability; Generalized hypotonia; Broad-based gait; Abnormality of nervous system morphology; Seizures; Microcephaly; Behavioral abnormality
Publications
Gene: tmem222 has been classified as Green List (High Evidence).
Phenotypes for gene: TMEM222 were changed from Motor delay; Delayed speech and language development; Intellectual disability; Generalized hypotonia; Broad-based gait; Abnormality of nervous system morphology; Seizures; Microcephaly; Behavioral abnormality to Neurodevelopmental disorder with motor and speech delay and behavioural abnormalities, MIM# 619470; Motor delay; Delayed speech and language development; Intellectual disability; Generalized hypotonia; Broad-based gait; Abnormality of nervous system morphology; Seizures; Microcephaly; Behavioral abnormality
Gene: tmem222 has been classified as Green List (High Evidence).
gene: TMEM222 was added gene: TMEM222 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature Mode of inheritance for gene: TMEM222 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TMEM222 were set to 33824500 Phenotypes for gene: TMEM222 were set to Motor delay; Delayed speech and language development; Intellectual disability; Generalized hypotonia; Broad-based gait; Abnormality of nervous system morphology; Seizures; Microcephaly; Behavioral abnormality Penetrance for gene: TMEM222 were set to Complete Review for gene: TMEM222 was set to GREEN
If promoting or demoting a gene, please provide comments to justify a decision to move it.
Genes included in a Genomics England gene panel for a rare disease category (green list) should fit the criteria A-E outlined below.
These guidelines were developed as a combination of the ClinGen DEFINITIVE evidence for a causal role of the gene in the disease(a), and the Developmental Disorder Genotype-Phenotype (DDG2P) CONFIRMED DD Gene evidence level(b) (please see the original references provided below for full details). These help provide a guideline for expert reviewers when assessing whether a gene should be on the green or the red list of a panel.
A. There are plausible disease-causing mutations(i) within, affecting or encompassing an interpretable functional region(ii) of this gene identified in multiple (>3) unrelated cases/families with the phenotype(iii).
OR
B. There are plausible disease-causing mutations(i) within, affecting or encompassing cis-regulatory elements convincingly affecting the expression of a single gene identified in multiple (>3) unrelated cases/families with the phenotype(iii).
OR
C. As definitions A or B but in 2 or 3 unrelated cases/families with the phenotype, with the addition of convincing bioinformatic or functional evidence of causation e.g. known inborn error of metabolism with mutation in orthologous gene which is known to have the relevant deficient enzymatic activity in other species; existence of an animal model which recapitulates the human phenotype.
AND
D. Evidence indicates that disease-causing mutations follow a Mendelian pattern of causation appropriate for reporting in a diagnostic setting(iv).
AND
E. No convincing evidence exists or has emerged that contradicts the role of the gene in the specified phenotype.
(i)Plausible disease-causing mutations: Recurrent de novo mutations convincingly affecting gene function. Rare, fully-penetrant mutations - relevant genotype never, or very rarely, seen in controls. (ii) Interpretable functional region: ORF in protein coding genes miRNA stem or loop. (iii) Phenotype: the rare disease category, as described in the eligibility statement. (iv) Intermediate penetrance genes should not be included.
It’s assumed that loss-of-function variants in this gene can cause the disease/phenotype unless an exception to this rule is known. We would like to collect information regarding exceptions. An example exception is the PCSK9 gene, where loss-of-function variants are not relevant for a hypercholesterolemia phenotype as they are associated with increased LDL-cholesterol uptake via LDLR (PMID: 25911073).
If a curated set of known-pathogenic variants is available for this gene-phenotype, please contact us at panelapp@genomicsengland.co.uk
We classify loss-of-function variants as those with the following Sequence Ontology (SO) terms:
Term descriptions can be found on the PanelApp homepage and Ensembl.
If you are submitting this evaluation on behalf of a clinical laboratory please indicate whether you report variants in this gene as part of your current diagnostic practice by checking the box
Standardised terms were used to represent the gene-disease mode of inheritance, and were mapped to commonly used terms from the different sources. Below each of the terms is described, along with the equivalent commonly-used terms.
A variant on one allele of this gene can cause the disease, and imprinting has not been implicated.
A variant on the paternally-inherited allele of this gene can cause the disease, if the alternate allele is imprinted (function muted).
A variant on the maternally-inherited allele of this gene can cause the disease, if the alternate allele is imprinted (function muted).
A variant on one allele of this gene can cause the disease. This is the default used for autosomal dominant mode of inheritance where no knowledge of the imprinting status of the gene required to cause the disease is known. Mapped to the following commonly used terms from different sources: autosomal dominant, dominant, AD, DOMINANT.
A variant on both alleles of this gene is required to cause the disease. Mapped to the following commonly used terms from different sources: autosomal recessive, recessive, AR, RECESSIVE.
The disease can be caused by a variant on one or both alleles of this gene. Mapped to the following commonly used terms from different sources: autosomal recessive or autosomal dominant, recessive or dominant, AR/AD, AD/AR, DOMINANT/RECESSIVE, RECESSIVE/DOMINANT.
A variant on one allele of this gene can cause the disease, however a variant on both alleles of this gene can result in a more severe form of the disease/phenotype.
A variant in this gene can cause the disease in males as they have one X-chromosome allele, whereas a variant on both X-chromosome alleles is required to cause the disease in females. Mapped to the following commonly used term from different sources: X-linked recessive.
A variant in this gene can cause the disease in males as they have one X-chromosome allele. A variant on one allele of this gene may also cause the disease in females, though the disease/phenotype may be less severe and may have a later-onset than is seen in males. X-linked inactivation and mosaicism in different tissues complicate whether a female presents with the disease, and can change over their lifetime. This term is the default setting used for X-linked genes, where it is not known definitately whether females require a variant on each allele of this gene in order to be affected. Mapped to the following commonly used terms from different sources: X-linked dominant, x-linked, X-LINKED, X-linked.
The gene is in the mitochondrial genome and variants within this can cause this disease, maternally inherited. Mapped to the following commonly used term from different sources: Mitochondrial.
Mapped to the following commonly used terms from different sources: Unknown, NA, information not provided.
For example, if the mode of inheritance is digenic, please indicate this in the comments and which other gene is involved.