Date | Panel | Item | Activity | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intellectual disability syndromic and non-syndromic v1.82 | MEG3 |
Zornitza Stark gene: MEG3 was added gene: MEG3 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list Mode of inheritance for gene: MEG3 was set to MONOALLELIC, autosomal or pseudoautosomal, paternally imprinted (maternal allele expressed) Publications for gene: MEG3 were set to 33010492; 33746039; 33067531; 38212313 Phenotypes for gene: MEG3 were set to Kagami-Ogata syndrome, MIM# 608149 Review for gene: MEG3 was set to GREEN Added comment: Small deletions of MAG3 reported in multiple patients as one of the mechanisms of disease. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v1.51 | SEL1L | Zornitza Stark Phenotypes for gene: SEL1L were changed from Neurodevelopmental disorder, MONDO:0700092, SEL1L-related to Neurodevelopmental disorder with hypotonia, poor growth, dysmorphic facies, and agammaglobulinaemia, MIM# 621068; Neurodevelopmental disorder with poor growth, absent speech, progressive ataxia, and dysmorphic facies, MIM# 621067 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v1.50 | SEL1L | Zornitza Stark reviewed gene: SEL1L: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with hypotonia, poor growth, dysmorphic facies, and agammaglobulinaemia, MIM# 621068, Neurodevelopmental disorder with poor growth, absent speech, progressive ataxia, and dysmorphic facies, MIM# 621067; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.6497 | SLC12A5 |
Zornitza Stark changed review comment from: Note LIMITED by ClinGen. However, note functional evidence including mouse model. Ten variants (missense, small in-frame deletions, and splicing) that have been reported in six probands in three publications (PMIDs: 26333769, 27436767, 31618474) are included in this curation. There is some preliminary evidence to suggest that the mechanism of pathogenicity may be loss of function. Electrophysiological studies showed reduced transporter activity of proteins with some variants, although few studies are available at this time (PMIDs: 26333769, 27436767). This gene-disease relationship is also supported by a knockout mouse model in which gentle handling or movement of the mother and littermates triggered seizures (PMID: 12000122). In summary, there is limited evidence to support this gene-disease relationship. Although more evidence is needed to support a causal role, no convincing evidence has emerged that contradicts the gene-disease relationship.; to: LIMITED by ClinGen. However, note functional evidence including mouse model and additional family in 38660387, again with supportive functional data. Ten variants (missense, small in-frame deletions, and splicing) that have been reported in six probands in three publications (PMIDs: 26333769, 27436767, 31618474) are included in this curation. There is some preliminary evidence to suggest that the mechanism of pathogenicity may be loss of function. Electrophysiological studies showed reduced transporter activity of proteins with some variants, although few studies are available at this time (PMIDs: 26333769, 27436767). This gene-disease relationship is also supported by a knockout mouse model in which gentle handling or movement of the mother and littermates triggered seizures (PMID: 12000122). In summary, there is limited evidence to support this gene-disease relationship. Although more evidence is needed to support a causal role, no convincing evidence has emerged that contradicts the gene-disease relationship. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.6327 | NAGA | Zornitza Stark Marked gene: NAGA as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.6327 | NAGA | Zornitza Stark Gene: naga has been classified as Green List (High Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.6327 | NAGA | Zornitza Stark Phenotypes for gene: NAGA were changed from Kanzaki disease, MIM# 609242; Schindler disease, type I and type II 609241; alpha-N-acetylgalactosaminidase deficiency MONDO:0017779 to Kanzaki disease, MIM# 609242; Schindler disease, type I and type II 609241; alpha-N-acetylgalactosaminidase deficiency MONDO:0017779 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.6327 | NAGA | Zornitza Stark Phenotypes for gene: NAGA were changed from to Kanzaki disease, MIM# 609242; Schindler disease, type I and type II 609241; alpha-N-acetylgalactosaminidase deficiency MONDO:0017779 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.6326 | NAGA | Zornitza Stark Publications for gene: NAGA were set to | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.6325 | NAGA | Zornitza Stark Mode of inheritance for gene: NAGA was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.6307 | NAGA | Chirag Patel reviewed gene: NAGA: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 11313741, 31468281, 15619430, 8782044; Phenotypes: Kanzaki disease, MIM# 609242, Schindler disease, type I and type II 609241, alpha-N-acetylgalactosaminidase deficiency MONDO:0017779; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.6025 | ATXN7L3 |
Chirag Patel gene: ATXN7L3 was added gene: ATXN7L3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature Mode of inheritance for gene: ATXN7L3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: ATXN7L3 were set to PMID: 38753057 Phenotypes for gene: ATXN7L3 were set to Neurodevelopmental disorder, MONDO_0100500 Review for gene: ATXN7L3 was set to GREEN gene: ATXN7L3 was marked as current diagnostic Added comment: This study reports 9 unrelated individuals with de novo heterozygous variants in ATXN7L3 identified through WES testing and GeneMatcher. Core clinical features included: global motor and language developmental delay, hypotonia, and dysmorphic features (hypertelorism, epicanthal folds, blepharoptosis, small nose, small mouth, and low-set posteriorly rotated ears). Variable features included: feeding difficulties, seizures, mild periventricular leukomalacia, and structural cardiac abnormalities. A recurrent nonsense variant [p.(Arg114Ter)] was found in 5/9 individuals. The other variants were 1 frameshift [p.(Ser112LysfsTer12)] and 3 missense variants [p.(Ile71Thr), p.(Ser92Arg), and p.(Leu106Pro)]. They investigated the effects of the recurrent nonsense variant [p.(Arg114Ter)] in fibroblasts of an affected individual. ATXN7L3 protein levels were reduced, and deubiquitylation was impaired (as indicated by an increase in histone H2Bub1 levels). This is consistent with the previous observation of increased H2Bub1 levels in Atxn7l3-null mouse embryos, which have developmental delay and embryonic lethality. Pathogenic variants in deubiquitinating enzymes (DUBs) have been implicated in neurodevelopmental disorders (ND) and congenital abnormalities. ATXN7L3 is a component of the DUB module of the SAGA complex, and two other related DUB modules, and serves as an obligate adaptor protein of 3 ubiquitin-specific proteases (USP22, USP27X or USP51). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.5627 | SEL1L |
Sarah Pantaleo gene: SEL1L was added gene: SEL1L was added to Intellectual disability syndromic and non-syndromic. Sources: Literature Mode of inheritance for gene: SEL1L was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SEL1L were set to PMID: 37943610; PMID: 37943617 Phenotypes for gene: SEL1L were set to Neurodevelopmental disorder, MONDO:0700092, SEL1L-related Penetrance for gene: SEL1L were set to Complete Review for gene: SEL1L was set to GREEN Added comment: Wang paper PMID: 37943610 SEL1L protein is involved in the SEL1L-HRD1 endoplasmic reticulum (ER)-associated degradation. Report two biallelic missense variants in SEL1L in six children from three independent families presenting with developmental delay, intellectual disability, microcephaly, facial dysmorphisms, hypotonia and/or ataxia (termed ERAD-associated neurodevelopment disorder with onset in infancy (ENDI). The variants were hypomorphic and impaired ERAD function. Identified by WES. Parents heterozygous and asymptomatic. P.(Gly585Asp) in Patient 1, p.(Met528Arg) in Patients 2 and 3 (siblings). All variants cause substrate accumulation. The extent of substrate accumulation in knockin cells was modest compared to those in knockout cells, pointing to a hypomorphic nature. They also had a variant in HRD1. Weis paper PMID: 37943617 Third variant p.(Cys141Tyr), biallelic, causing premature death in five patients from a consanguineous family with early-onset neurodevelopmental disorders and agammaglobulinaemia due to severe SEL1L-HRD1 ERAD dysfunction. This variant appears to have a more severe outcome, exhibiting B cell depletion and agammaglobulinaemia, causing the most severe dysfunction among all of the variants described by this group so far. They postulate that functionality of SEL1L-HRD1 ERAD is inversely correlated with disease severity in humans. Their symptoms were dev delay, neurological disorder and agammaglobulinaemia in childhood. Along with severe axial hypotonia, short stature and microcephaly. “Not a complete loss-of-function variant”. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.5399 | SDHA | Claire Fryer-Smith reviewed gene: SDHA: Rating: GREEN; Mode of pathogenicity: None; Publications: 1492653, 23322652; Phenotypes: Cardiomyopathy, dilated, 1GG MIM#613642, Mitochondrial complex II deficiency, nuclear type 1 MIM#252011, Neurodegeneration with ataxia and late-onset optic atrophy MIM#619259, Paragangliomas MIM#614165; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.3786 | UFSP2 |
Konstantinos Varvagiannis changed review comment from: Ni et al (2021 - PMID: 33473208) describe the phenotype of 8 children (belonging to 4 families - 2 of which consanguineous) homozygous for a UFSP2 missense variant [NM_018359.5:c.344T>A; p.(Val115Glu)]. Members of a broader consanguineous pedigree from Pakistan with 3 affected children with epilepsy and DD and ID underwent exome sequencing. All affected individuals were homozygous for the specific SNV with their parents (2 parent pairs, in both cases first cousins) being heterozygous. An unaffected sib was homozygous for the wt allele. Through genematching platforms 3 additional families with similarly affected individuals and homozygosity for the same variant were recruited. These additional families were from Pakistan (1/3) and Afganistan (2/3). Based on ROH analysis from the broader first pedigree and an additional family the authors concluded on a single shared region of homozygosity on chr 4q. Lack of ES data did not allow verification of whether 2/4 families shared the same haplotype with the other 2. The authors calculated the probability of the genotype-phenotype cosegragation occurring by chance (0.009) and this was lower than the recommended criterion (0.06) for strong evidence of pathogenicity. Shared features included abnormal tone in most (hypotonia 6/8, limb hypertonia 1/8), seizures (8/8 - onset 2d - 7m), severe DD with speech delay/absent speech (8/8), ID (8/8), strabismus (6/8). UFSP2 encodes UFM1-specific protease 2 involved in UFmylation, a post-translational protein modification. As summarized by the authors the cysteine protease encoded by this gene (as is also the case for UFSP1) cleaves UFM1 in the initial step of UFMylation. Apart from producing mature UFM1, the 2 proteases have also the ability to release UFM1 from UFMylated proteins, in the process of de-UFMylation. [several refs. provided] UFMylation is important in brain development with mutations in genes encoding other components of the pathway reported in other NDD disorders (incl. UFM1, UBA5, UFC1). Additional studies were carried to provide evidence for pathogenicity of this variant. Skin biopsies from 3 individuals were carried out to establish fibroblast cultures. Immunoblotting revealed reduced UFSP2 levels relative to controls. mRNA levels measured by qRT-PCR revealed no differences compared to controls altogether suggesting normal mRNA but reduced protein stability. The authors demonstrated increased levels of UFM1-conjugated proteins (incl. DDRGK1, or TRIP4). Ectopic expression of wt UFSP2 normalized the levels of UFMylated proteins in the fibroblasts which was not the case for the V115E variant. Further the variant was difficult to detect by immunoblotting consistent with an effect on protein destabilization. Although disruption of UFMylation induces ER stress, this was not shown to occur in patient fibroblast lines, when assessed for ER stress markers. Evaluation of data from the GTEx project, concerning UFSP2 as well as well as DDRGK1 or TRIP4 - an UFMylation target - revealed relevant expression in multiple regions of the human brain. Overall the authors provide evidence for defective de-UFMylation in patient fibroblasts (presence of increased UFMylation marks). The authors stress out that the effect of the variant in UFMylation in brain is unknown, as UFSP1 or other enzymes might compensate in the presence of hypomorphic UFSP2 mutants. Biallelic UFSP2 variants have previously been reported in 2 skeletal dysplasias [# 142669. BEUKES HIP DYSPLASIA; BHD and # 617974. SPONDYLOEPIMETAPHYSEAL DYSPLASIA, DI ROCCO TYPE; SEMDDR]. These disorders are not characterized by neurological dysfunction or epilepsy. The authors underscore the fact that variants identified in these disorders (Y290H, D526A, H428R) localize within the C-terminal catalytic (peptidase) domain [aa 278 – 461] while the variant here identified lies in the N-terminal substrate binding domain affecting protein stability/abundance. In OMIM, only the 2 aforementioned disorders are currently associated with biallelic UFSP2 mutations. There is no associated phenotype in G2P. SysID includes UFSP2 among the primary ID genes. You may consider inclusion in the current panel with amber/green rating. Sources: Literature; to: Ni et al (2021 - PMID: 33473208) describe the phenotype of 8 children (belonging to 4 families - 2 of which consanguineous) homozygous for a UFSP2 missense variant [NM_018359.5:c.344T>A; p.(Val115Glu)]. Members of a broader consanguineous pedigree from Pakistan with 3 affected children with epilepsy and DD and ID underwent exome sequencing. All affected individuals were homozygous for the specific SNV with their parents (2 parent pairs, in both cases first cousins) being heterozygous. An unaffected sib was homozygous for the wt allele. Through genematching platforms 3 additional families with similarly affected individuals and homozygosity for the same variant were recruited. These additional families were from Pakistan (1/3) and Afganistan (2/3). Based on ROH analysis from the broader first pedigree and an additional family the authors concluded on a single shared region of homozygosity on chr 4q. Lack of ES data did not allow verification of whether 2/4 families shared the same haplotype with the other 2. The authors calculated the probability of the genotype-phenotype cosegragation occurring by chance (0.009) and this was lower than the recommended criterion (0.06) for strong evidence of pathogenicity. Shared features included abnormal tone in most (hypotonia 6/8, limb hypertonia 1/8), seizures (8/8 - onset 2d - 7m), severe DD with speech delay/absent speech (8/8), ID (8/8), strabismus (6/8). UFSP2 encodes UFM1-specific protease 2 involved in UFmylation, a post-translational protein modification. As summarized by the authors the cysteine protease encoded by this gene (as is also the case for UFSP1) cleaves UFM1 in the initial step of UFMylation. Apart from producing mature UFM1, the 2 proteases have also the ability to release UFM1 from UFMylated proteins, in the process of de-UFMylation. [several refs. provided] UFMylation is important in brain development with mutations in genes encoding other components of the pathway reported in other NDD disorders (incl. UFM1, UBA5, UFC1). Additional studies were carried to provide evidence for pathogenicity of this variant. Skin biopsies from 3 individuals were carried out to establish fibroblast cultures. Immunoblotting revealed reduced UFSP2 levels relative to controls. mRNA levels measured by qRT-PCR revealed no differences compared to controls altogether suggesting normal mRNA but reduced protein stability. The authors demonstrated increased levels of UFM1-conjugated proteins (incl. DDRGK1, or TRIP4). Ectopic expression of wt UFSP2 normalized the levels of UFMylated proteins in the fibroblasts which was not the case for the V115E variant. Further the variant was difficult to detect by immunoblotting consistent with an effect on protein destabilization. Although disruption of UFMylation induces ER stress, this was not shown to occur in patient fibroblast lines, when assessed for ER stress markers. Evaluation of data from the GTEx project, concerning UFSP2 as well as well as DDRGK1 or TRIP4 - an UFMylation target - revealed relevant expression in multiple regions of the human brain. Overall the authors provide evidence for defective de-UFMylation in patient fibroblasts (presence of increased UFMylation marks). The authors stress out that the effect of the variant in UFMylation in brain is unknown, as UFSP1 or other enzymes might compensate in the presence of hypomorphic UFSP2 mutants. **Monoallelic** (correction to previous review) UFSP2 variants have previously been reported in 2 skeletal dysplasias [# 142669. BEUKES HIP DYSPLASIA; BHD and # 617974. SPONDYLOEPIMETAPHYSEAL DYSPLASIA, DI ROCCO TYPE; SEMDDR]. These disorders are not characterized by neurological dysfunction or epilepsy. The authors underscore the fact that variants identified in these disorders (Y290H, D526A, H428R) localize within the C-terminal catalytic (peptidase) domain [aa 278 – 461] while the variant here identified lies in the N-terminal substrate binding domain affecting protein stability/abundance. In OMIM, only the 2 aforementioned disorders are currently associated with biallelic UFSP2 mutations. There is no associated phenotype in G2P. SysID includes UFSP2 among the primary ID genes. You may consider inclusion in the current panel with amber/green rating. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.3785 | UFSP2 |
Konstantinos Varvagiannis gene: UFSP2 was added gene: UFSP2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature Mode of inheritance for gene: UFSP2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: UFSP2 were set to 33473208 Phenotypes for gene: UFSP2 were set to Abnormal muscle tone; Seizures; Global developmental delay; Delayed speech and language development; Intellectual disability; Strabismus Penetrance for gene: UFSP2 were set to Complete Review for gene: UFSP2 was set to AMBER Added comment: Ni et al (2021 - PMID: 33473208) describe the phenotype of 8 children (belonging to 4 families - 2 of which consanguineous) homozygous for a UFSP2 missense variant [NM_018359.5:c.344T>A; p.(Val115Glu)]. Members of a broader consanguineous pedigree from Pakistan with 3 affected children with epilepsy and DD and ID underwent exome sequencing. All affected individuals were homozygous for the specific SNV with their parents (2 parent pairs, in both cases first cousins) being heterozygous. An unaffected sib was homozygous for the wt allele. Through genematching platforms 3 additional families with similarly affected individuals and homozygosity for the same variant were recruited. These additional families were from Pakistan (1/3) and Afganistan (2/3). Based on ROH analysis from the broader first pedigree and an additional family the authors concluded on a single shared region of homozygosity on chr 4q. Lack of ES data did not allow verification of whether 2/4 families shared the same haplotype with the other 2. The authors calculated the probability of the genotype-phenotype cosegragation occurring by chance (0.009) and this was lower than the recommended criterion (0.06) for strong evidence of pathogenicity. Shared features included abnormal tone in most (hypotonia 6/8, limb hypertonia 1/8), seizures (8/8 - onset 2d - 7m), severe DD with speech delay/absent speech (8/8), ID (8/8), strabismus (6/8). UFSP2 encodes UFM1-specific protease 2 involved in UFmylation, a post-translational protein modification. As summarized by the authors the cysteine protease encoded by this gene (as is also the case for UFSP1) cleaves UFM1 in the initial step of UFMylation. Apart from producing mature UFM1, the 2 proteases have also the ability to release UFM1 from UFMylated proteins, in the process of de-UFMylation. [several refs. provided] UFMylation is important in brain development with mutations in genes encoding other components of the pathway reported in other NDD disorders (incl. UFM1, UBA5, UFC1). Additional studies were carried to provide evidence for pathogenicity of this variant. Skin biopsies from 3 individuals were carried out to establish fibroblast cultures. Immunoblotting revealed reduced UFSP2 levels relative to controls. mRNA levels measured by qRT-PCR revealed no differences compared to controls altogether suggesting normal mRNA but reduced protein stability. The authors demonstrated increased levels of UFM1-conjugated proteins (incl. DDRGK1, or TRIP4). Ectopic expression of wt UFSP2 normalized the levels of UFMylated proteins in the fibroblasts which was not the case for the V115E variant. Further the variant was difficult to detect by immunoblotting consistent with an effect on protein destabilization. Although disruption of UFMylation induces ER stress, this was not shown to occur in patient fibroblast lines, when assessed for ER stress markers. Evaluation of data from the GTEx project, concerning UFSP2 as well as well as DDRGK1 or TRIP4 - an UFMylation target - revealed relevant expression in multiple regions of the human brain. Overall the authors provide evidence for defective de-UFMylation in patient fibroblasts (presence of increased UFMylation marks). The authors stress out that the effect of the variant in UFMylation in brain is unknown, as UFSP1 or other enzymes might compensate in the presence of hypomorphic UFSP2 mutants. Biallelic UFSP2 variants have previously been reported in 2 skeletal dysplasias [# 142669. BEUKES HIP DYSPLASIA; BHD and # 617974. SPONDYLOEPIMETAPHYSEAL DYSPLASIA, DI ROCCO TYPE; SEMDDR]. These disorders are not characterized by neurological dysfunction or epilepsy. The authors underscore the fact that variants identified in these disorders (Y290H, D526A, H428R) localize within the C-terminal catalytic (peptidase) domain [aa 278 – 461] while the variant here identified lies in the N-terminal substrate binding domain affecting protein stability/abundance. In OMIM, only the 2 aforementioned disorders are currently associated with biallelic UFSP2 mutations. There is no associated phenotype in G2P. SysID includes UFSP2 among the primary ID genes. You may consider inclusion in the current panel with amber/green rating. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.3733 | MED25 | Zornitza Stark Phenotypes for gene: MED25 were changed from to Basel-Vanagait-Smirin-Yosef syndrome, MIM# 616449; Congenital cataract-microcephaly-naevus flammeus syndrome MONDO:0014643 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.3730 | MED25 | Zornitza Stark changed review comment from: Basel-Vanagaite-Smirin-Yosef syndrome is an autosomal recessive multiple congenital anomaly disorder characterized by severely delayed psychomotor development resulting in mental retardation, as well as variable eye, brain, cardiac, and palatal abnormalities. 7 individuals from 4 families reported initially, founder variant p.Tyr39Cys. Over 20 individuals reported since, including other variants.; to: Basel-Vanagaite-Smirin-Yosef syndrome is an autosomal recessive multiple congenital anomaly disorder characterized by severely delayed psychomotor development resulting in intellectual disability, as well as variable eye, brain, cardiac, and palatal abnormalities. 7 individuals from 4 families reported initially, founder variant p.Tyr39Cys. Over 20 individuals reported since, including other variants. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.3730 | MED25 | Zornitza Stark reviewed gene: MED25: Rating: GREEN; Mode of pathogenicity: None; Publications: 25792360, 32816121; Phenotypes: Basel-Vanagait-Smirin-Yosef syndrome, MIM# 616449, Congenital cataract-microcephaly-naevus flammeus syndrome MONDO:0014643; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.3053 | NEMF |
Konstantinos Varvagiannis changed review comment from: Biallelic (and possibly monoallelic) pathogenic variants in this gene are associated with DD/ID. Martin et al (2020 - PMID:32934225) report on 8 individuals from 6 families with a juvenile neuromuscular disease due to biallelic NEMF variants. (In one of these 8 cases it could not be ruled out that a de novo and maternally inherited variant were on the same allele, as phase was not determined). A ninth individual with similar presentation was found to harbor a single NEMF missense SNV as de novo event (due to a speculated dominant-negative effect). This individual had a similar presentation. Features incl. hypotonia (4/8 with biallelic variant (B) | 1/1 monoallelic (M) ), DD/ID (7/8B | 0/1M) with speech delay as universal feature (8/8B | 1/1M), axonal neuropathy (3/3B | 1/1M), ataxia (3/8B | 0/1M). Other findings included tremor (1/7B | 1/1M), abnormal brain imaging (2/6B / ?/1M), kyphosis/scoliosis (4/8B | 0/1M), respiratory distress (1/8B | 0/1M). NEMF (Rqc2 in yeast) encodes the nuclear export mediator factor, a component of the Ribosome-associated Quality Control (RCQ) complex which is involved in proteolytic targeting of incomplete polypeptides prodduced by ribosome stalling. NEMF facilitates the recruitment of E3 ligase Listerin (LTN1) which ubiquitinates nascent polypeptide chains for subsequent proteasomal degradation. The author provide evidence that mice homozygous for Nemf missense mutations display progressive motor phenotypes, exhibit neurogenic atrophy and progressive axonal degeneration. A further NEMF-null mouse model displayed more severe phenotype (with heterozygous mice being unaffected). Equivalent mutations (of those in the above mouse model) in yeast (Rqc2) were shown to interfere with its ability to modify aberrant translation products with C-terminal tails which assist RQC-mediated protein degradation. Mutation of Ltn1 (belonging to the same protein control pathway) has been also shown to lead to neurodegeneration im mice. Overall NEMF is thought to play a role in neuronal translational homeostasis and the disorder to be mediated by dysfunction of the RQC pathway (normally protecting neurons against degeneration).; to: Biallelic (and possibly monoallelic) pathogenic variants in this gene are associated with DD/ID. Martin et al (2020 - PMID:32934225) report on 8 individuals from 6 families with a juvenile neuromuscular disease due to biallelic NEMF variants. (In one of these 8 cases it could not be ruled out that a de novo and maternally inherited variant were on the same allele, as phase was not determined). A ninth individual with similar presentation was found to harbor a single NEMF missense SNV as de novo event (due to a speculated dominant-negative effect). This individual had a similar presentation. Features incl. hypotonia (4/8 with biallelic variant (B) | 1/1 monoallelic (M) ), DD/ID (7/8B | 0/1M) with speech delay as universal feature (8/8B | 1/1M), axonal neuropathy (3/3B | 1/1M), ataxia (3/8B | 0/1M). Other findings included tremor (1/7B | 1/1M), abnormal brain imaging (2/6B / ?/1M), kyphosis/scoliosis (4/8B | 0/1M), respiratory distress (1/8B | 0/1M). NEMF (Rqc2 in yeast) encodes the nuclear export mediator factor, a component of the Ribosome-associated Quality Control (RCQ) complex which is involved in proteolytic targeting of incomplete polypeptides produced by ribosome stalling. NEMF facilitates the recruitment of E3 ligase Listerin (LTN1) which ubiquitinates nascent polypeptide chains for subsequent proteasomal degradation. The author provide evidence that mice homozygous for Nemf missense mutations display progressive motor phenotypes, exhibit neurogenic atrophy and progressive axonal degeneration. A further NEMF-null mouse model displayed more severe phenotype (with heterozygous mice being unaffected). Equivalent mutations (of those in the above mouse model) in yeast (Rqc2) were shown to interfere with its ability to modify aberrant translation products with C-terminal tails which assist RQC-mediated protein degradation. Mutation of Ltn1 (belonging to the same protein control pathway) has been also shown to lead to neurodegeneration in mice. Overall NEMF is thought to play a role in neuronal translational homeostasis and the disorder to be mediated by dysfunction of the RQC pathway (normally protecting neurons against degeneration). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.3053 | NEMF |
Konstantinos Varvagiannis changed review comment from: Biallelic (and possibly monoallelic) pathogenic variants in this gene are associated with DD/ID. Martin et al (2020 - PMID:32934225) report on 8 individuals from 6 families with a juvenile neuromuscular disease due to biallelic NEMF variants. (In one of these 8 cases it could not be ruled out that a de novo and maternally inherited variants were on the same allele, as phase was not been determined). A ninth individual with similar presentation was found to harbor a single NEMF missense SNV as de novo event (due to a speculated dominant-negative effect). This individual had a similar presentation. Features incl. hypotonia (4/8 with biallelic variant (B) | 1/1 monoallelic (M) ), DD/ID (7/8B | 0/1M) with speech delay as universal feature (8/8B | 1/1M), axonal neuropathy (3/3B | 1/1M), ataxia (3/8B | 0/1M). Other findings included tremor (1/7B | 1/1M), abnormal brain imaging (2/6B / ?/1M), kyphosis/scoliosis (4/8B | 0/1M), respiratory distress (1/8B | 0/1M). NEMF (Rqc2 in yeast) encodes the nuclear export mediator factor, a component of the Ribosome-associated Quality Control (RCQ) complex which is involved in proteolytic targeting of incomplete polypeptides prodduced by ribosome stalling. NEMF facilitates the recruitment of E3 ligase Listerin (LTN1) which ubiquitinates nascent polypeptide chains for subsequent proteasomal degradation. The author provide evidence that mice homozygous for Nemf missense mutations display progressive motor phenotypes, exhibit neurogenic atrophy and progressive axonal degeneration. A further NEMF-null mouse model displayed more severe phenotype (with heterozygous mice being unaffected). Equivalent mutations (of those in the above mouse model) in yeast (Rqc2) were shown to interfere with its ability to modify aberrant translation products with C-terminal tails which assist RQC-mediated protein degradation. Mutation of Ltn1 (belonging to the same protein control pathway) has been also shown to lead to neurodegeneration im mice. Overall NEMF is thought to play a role in neuronal translational homeostasis and the disorder to be mediated by dysfunction of the RQC pathway (normally protecting neurons against degeneration).; to: Biallelic (and possibly monoallelic) pathogenic variants in this gene are associated with DD/ID. Martin et al (2020 - PMID:32934225) report on 8 individuals from 6 families with a juvenile neuromuscular disease due to biallelic NEMF variants. (In one of these 8 cases it could not be ruled out that a de novo and maternally inherited variant were on the same allele, as phase was not determined). A ninth individual with similar presentation was found to harbor a single NEMF missense SNV as de novo event (due to a speculated dominant-negative effect). This individual had a similar presentation. Features incl. hypotonia (4/8 with biallelic variant (B) | 1/1 monoallelic (M) ), DD/ID (7/8B | 0/1M) with speech delay as universal feature (8/8B | 1/1M), axonal neuropathy (3/3B | 1/1M), ataxia (3/8B | 0/1M). Other findings included tremor (1/7B | 1/1M), abnormal brain imaging (2/6B / ?/1M), kyphosis/scoliosis (4/8B | 0/1M), respiratory distress (1/8B | 0/1M). NEMF (Rqc2 in yeast) encodes the nuclear export mediator factor, a component of the Ribosome-associated Quality Control (RCQ) complex which is involved in proteolytic targeting of incomplete polypeptides prodduced by ribosome stalling. NEMF facilitates the recruitment of E3 ligase Listerin (LTN1) which ubiquitinates nascent polypeptide chains for subsequent proteasomal degradation. The author provide evidence that mice homozygous for Nemf missense mutations display progressive motor phenotypes, exhibit neurogenic atrophy and progressive axonal degeneration. A further NEMF-null mouse model displayed more severe phenotype (with heterozygous mice being unaffected). Equivalent mutations (of those in the above mouse model) in yeast (Rqc2) were shown to interfere with its ability to modify aberrant translation products with C-terminal tails which assist RQC-mediated protein degradation. Mutation of Ltn1 (belonging to the same protein control pathway) has been also shown to lead to neurodegeneration im mice. Overall NEMF is thought to play a role in neuronal translational homeostasis and the disorder to be mediated by dysfunction of the RQC pathway (normally protecting neurons against degeneration). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.3053 | NEMF |
Konstantinos Varvagiannis changed review comment from: Biallelic (and possibly monoallelic) pathogenic variants in this gene are associated with DD/ID. Martin et al (2020 - PMID:32934225) report on 8 individuals from 6 families with a juvenile neuromuscular disease due to biallelic NEMF variants. (In one of these 8 cases it could be ruled out that the de novo and maternally inherited variants were on the same allele, as phase was not been determined). A ninth individual with similar presentation was found to harbor a single NEMF missense SNV as de novo event (due to a speculated dominant-negative effect). This individual had a similar presentation. Features incl. hypotonia (4/8 with biallelic variant (B) | 1/1 monoallelic (M) ), DD/ID (7/8B | 0/1M) with speech delay as universal feature (8/8B | 1/1M), axonal neuropathy (3/3B | 1/1M), ataxia (3/8B | 0/1M). Other findings included tremor (1/7B | 1/1M), abnormal brain imaging (2/6B / ?/1M), kyphosis/scoliosis (4/8B | 0/1M), respiratory distress (1/8B | 0/1M). NEMF (Rqc2 in yeast) encodes the nuclear export mediator factor, a component of the Ribosome-associated Quality Control (RCQ) complex which is involved in proteolytic targeting of incomplete polypeptides prodduced by ribosome stalling. NEMF facilitates the recruitment of E3 ligase Listerin (LTN1) which ubiquitinates nascent polypeptide chains for subsequent proteasomal degradation. The author provide evidence that mice homozygous for Nemf missense mutations display progressive motor phenotypes, exhibit neurogenic atrophy and progressive axonal degeneration. A further NEMF-null mouse model displayed more severe phenotype (with heterozygous mice being unaffected). Equivalent mutations (of those in the above mouse model) in yeast (Rqc2) were shown to interfere with its ability to modify aberrant translation products with C-terminal tails which assist RQC-mediated protein degradation. Mutation of Ltn1 (belonging to the same protein control pathway) has been also shown to lead to neurodegeneration im mice. Overall NEMF is thought to play a role in neuronal translational homeostasis and the disorder to be mediated by dysfunction of the RQC pathway (normally protecting neurons against degeneration).; to: Biallelic (and possibly monoallelic) pathogenic variants in this gene are associated with DD/ID. Martin et al (2020 - PMID:32934225) report on 8 individuals from 6 families with a juvenile neuromuscular disease due to biallelic NEMF variants. (In one of these 8 cases it could not be ruled out that a de novo and maternally inherited variants were on the same allele, as phase was not been determined). A ninth individual with similar presentation was found to harbor a single NEMF missense SNV as de novo event (due to a speculated dominant-negative effect). This individual had a similar presentation. Features incl. hypotonia (4/8 with biallelic variant (B) | 1/1 monoallelic (M) ), DD/ID (7/8B | 0/1M) with speech delay as universal feature (8/8B | 1/1M), axonal neuropathy (3/3B | 1/1M), ataxia (3/8B | 0/1M). Other findings included tremor (1/7B | 1/1M), abnormal brain imaging (2/6B / ?/1M), kyphosis/scoliosis (4/8B | 0/1M), respiratory distress (1/8B | 0/1M). NEMF (Rqc2 in yeast) encodes the nuclear export mediator factor, a component of the Ribosome-associated Quality Control (RCQ) complex which is involved in proteolytic targeting of incomplete polypeptides prodduced by ribosome stalling. NEMF facilitates the recruitment of E3 ligase Listerin (LTN1) which ubiquitinates nascent polypeptide chains for subsequent proteasomal degradation. The author provide evidence that mice homozygous for Nemf missense mutations display progressive motor phenotypes, exhibit neurogenic atrophy and progressive axonal degeneration. A further NEMF-null mouse model displayed more severe phenotype (with heterozygous mice being unaffected). Equivalent mutations (of those in the above mouse model) in yeast (Rqc2) were shown to interfere with its ability to modify aberrant translation products with C-terminal tails which assist RQC-mediated protein degradation. Mutation of Ltn1 (belonging to the same protein control pathway) has been also shown to lead to neurodegeneration im mice. Overall NEMF is thought to play a role in neuronal translational homeostasis and the disorder to be mediated by dysfunction of the RQC pathway (normally protecting neurons against degeneration). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.3049 | PRKD1 | Zornitza Stark Added comment: Comment when marking as ready: Literature reviewed again: ID/DD reported in 2/5 but unclear at present if this is part of the phenotype given low number of affected individuals. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.2750 | PAX1 |
Konstantinos Varvagiannis gene: PAX1 was added gene: PAX1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature,Radboud University Medical Center, Nijmegen Mode of inheritance for gene: PAX1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PAX1 were set to 29681087; 23851939; 28657137 Phenotypes for gene: PAX1 were set to Otofaciocervical syndrome 2, 615560 Penetrance for gene: PAX1 were set to Complete Review for gene: PAX1 was set to AMBER Added comment: Biallelic PAX1 pathogenic variants cause Otofaciocervical syndrome 2 (OMIM 615560). Brief review of the literature suggests 3 relevant publications to date (04-07-2020). 2 individuals with DD and ID have been reported (Patil et al, 2018 - PMID: 29681087 and Pohl et al, 2013 - PMID: 23851939). Other subjects reported were only evaluated as newborns(mostly)/infants [Paganini et al, 2017 - PMID: 28657137, Patil et al, 2018 - PMID: 29681087]. While the first report by Pohl et al identified a homozygous missense variant supported by functional studies [NM_006192.5:c.497G>T - p.(Gly166Val)] subsequent ones identified homozygosity for pLoF mutations [Patil et al: NM_006192.4:c.1173_1174insGCCCG / Paganini et al: NM_006192:c.1104C>A - p.(Cys368*)]. As discussed by Pohl et al: PAX1 encodes a transcription factor with critical role in pattern formation during embryogenesis. Study of the mouse Gly157Val (equivalent to human Gly166Val) Pax1 variant suggested reduced binding affinity (reduced transactivation of a regulatory sequence of the Nkx3-2 promoter) and hypofunctional nature of this variant. Mouse models seem to recapitulate features of the disorder (skeletal, immunodeficiency) while the role of Pax1 in hearing process was thought to be supported by early expression (P6) in mouse cochlea. Overall this gene can be considered for inclusion in the ID panel with amber/green rating. Sources: Literature, Radboud University Medical Center, Nijmegen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.2546 | FEM1B |
Zornitza Stark gene: FEM1B was added gene: FEM1B was added to Intellectual disability syndromic and non-syndromic. Sources: Literature Mode of inheritance for gene: FEM1B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: FEM1B were set to 31036916 Phenotypes for gene: FEM1B were set to Syndromic intellectual disability Review for gene: FEM1B was set to AMBER Added comment: No OMIM phenotype PMID: 31036916 - a single de novo patient reported in a neurodevelopmental disorder cohort. Authors note another de novo case with the exact same variant (p.Arg126Gln) from the DDD study, and a 3rd patient from GeneMatcher with the same de novo missense again. Decipher shows this variant to be in a highly constrained region of the protein. Cannot be certain the DDD and GeneMatcher individuals are unrelated, therefore treat as two reports for now. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.2387 | NDUFB3 | Zornitza Stark changed review comment from: Ten families and functional data.; to: Ten families and functional data. In particular, the 8 families of shared Irish ancestry only had short stature and dysmorphic features, without marked metabolic disturbance. One of the other reported individuals died in infancy, again making it difficult to know whether ID would have been part of the phenotype. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.2268 | SUZ12 | Zornitza Stark Phenotypes for gene: SUZ12 were changed from no OMIM number yet. to Imagawa-Matsumoto syndrome, MIM# 618786; Intellectual disability; Overgrowth | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.2267 | SUZ12 | Zornitza Stark reviewed gene: SUZ12: Rating: GREEN; Mode of pathogenicity: None; Publications: 31736240, 30019515, 28229514; Phenotypes: Imagawa-Matsumoto syndrome, MIM# 618786, Intellectual disability, Overgrowth; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.2001 | GORAB | Zornitza Stark edited their review of gene: GORAB: Added comment: Reviewed against assessment by GEL curation team: agree ID is not a predominant feature of this condition.; Changed rating: AMBER | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.1877 | COQ9 | Zornitza Stark edited their review of gene: COQ9: Added comment: Reviewed again: severe neonatal presentation with metabolic decompensation, including neurological features such as abnormal tone and seizures, but not intellectual disability as such. Downgrade to Amber on this panel.; Changed rating: AMBER | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.1771 | BSND | Zornitza Stark edited their review of gene: BSND: Added comment: Downgrade to Amber after review against GEL panel; ID not a consistent/predominant feature of Bartter syndrome.; Changed rating: AMBER | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.1429 | ZSWIM6 | Elizabeth Palmer reviewed gene: ZSWIM6: Rating: GREEN; Mode of pathogenicity: Other; Publications: (PMID:: 29198722); Phenotypes: NEURODEVELOPMENTAL DISORDER WITH MOVEMENT ABNORMALITIES, ABNORMAL GAIT, AND AUTISTIC FEATURES, NEDMAGA; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, maternally imprinted (paternal allele expressed) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.696 | AGA | Zornitza Stark Marked gene: AGA as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.696 | AGA | Zornitza Stark Gene: aga has been classified as Green List (High Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.696 | AGA | Zornitza Stark Phenotypes for gene: AGA were changed from to Aspartylglucosaminuria, MIM#208400 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.695 | AGA | Zornitza Stark Mode of inheritance for gene: AGA was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.0 | AGA | Zornitza Stark reviewed gene: AGA: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Aspartylglucosaminuria, MIM#208400; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.0 | NAGA |
Zornitza Stark gene: NAGA was added gene: NAGA was added to Intellectual disability, syndromic and non-syndromic_GHQ. Sources: Expert Review Green,Genetic Health Queensland Mode of inheritance for gene: NAGA was set to Unknown |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.0 | AGA |
Zornitza Stark gene: AGA was added gene: AGA was added to Intellectual disability, syndromic and non-syndromic_GHQ. Sources: Expert Review Green,Genetic Health Queensland Mode of inheritance for gene: AGA was set to Unknown |