Activity

Filter

Cancel
Date Panel Item Activity
198 actions
Intellectual disability syndromic and non-syndromic v1.90 SVBP Zornitza Stark edited their review of gene: SVBP: Added comment: PMID 39412222: 6 individuals from 3 families with spastic paraplegia and the same homozygous missense (L49P). Presented from birth or childhood with DD/ID and spastic paraplegia. Additional features: verbal apraxia, axonal neuropathy, ataxia, nystagmus, epilepsy, and aggressive behaviour. Brain MRIs were performed in 3 individuals and showed thinning of the corpus callosum, cerebellar atrophy, and ventriculomegaly; frontal ventricular hyperintensities suggestive of the 'ear of the lynx' sign in 2. Three individuals had a history of cancer of epithelial origin, including adenocarcinoma (patient 1), colonic tubular adenoma (patient 2), and breast cancer (patient 3).; Changed publications: 39412222; Changed phenotypes: Neurodevelopmental disorder with ataxia, hypotonia, and microcephaly, MIM #618569, Spastic paraplegia 94, autosomal recessive, MIM# 621150
Intellectual disability syndromic and non-syndromic v1.57 PTPMT1 Bryony Thompson gene: PTPMT1 was added
gene: PTPMT1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PTPMT1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PTPMT1 were set to 39279645; 37672386
Phenotypes for gene: PTPMT1 were set to inborn mitochondrial metabolism disorder MONDO:0004069
Review for gene: PTPMT1 was set to GREEN
Added comment: 6 cases from 3 independent families with biallelic variants in PTPMT1 (a mitochondrial tyrosine phosphatase required for de novo cardiolipin biosynthesis). All cases presented with a complex, neonatal/infantile onset neurological and neurodevelopmental syndrome including developmental delay, microcephaly, facial dysmorphism, epilepsy, spasticity, cerebellar ataxia and nystagmus, sensorineural hearing loss, optic atrophy and bulbar dysfunction. Supporting knockout zebrafish and mouse models.
Sources: Literature
Intellectual disability syndromic and non-syndromic v1.37 EEFSEC Zornitza Stark gene: EEFSEC was added
gene: EEFSEC was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: EEFSEC was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EEFSEC were set to 39753114
Phenotypes for gene: EEFSEC were set to Neurodevelopmental disorder, MONDO:0700092, EEFSEC-related
Review for gene: EEFSEC was set to GREEN
Added comment: Nine individuals from 8 unrelated families reported with bi-allelic variants in this gene and progressive neurodevelopmental disorder manifesting with global developmental delay, progressive spasticity, ataxia, and seizures. Cerebral MRI primarily demonstrated a cerebellar pathology, including hypoplasia and progressive atrophy. In line with the clinical phenotype, an eEFSec-RNAi Drosophila model displays progressive impairment of motor function, which is reflected in the synaptic defects in this model organisms.
Sources: Literature
Intellectual disability syndromic and non-syndromic v1.27 PIGG Ain Roesley Phenotypes for gene: PIGG were changed from Mental retardation, autosomal recessive 53, MIM#616917 to Neurodevelopmental disorder with or without hypotonia, seizures, and cerebellar atrophy MIM#616917
Intellectual disability syndromic and non-syndromic v1.23 RUNX1T1 Chirag Patel gene: RUNX1T1 was added
gene: RUNX1T1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: RUNX1T1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RUNX1T1 were set to PMID: 39568205, 19172993, 22644616, 31223340
Phenotypes for gene: RUNX1T1 were set to Neurodevelopmental disorder MONDO:0700092
Review for gene: RUNX1T1 was set to GREEN
Added comment: RUNX1T1 encodes a transcription regulator for hematopoietic genes and is well-known for its involvement in hematologic malignancies. Germline RUNX1T1 variants may also play a role in human congenital neurodevelopmental disorders.

PMID: 39568205
3 unrelated individuals with developmental delay, learning disability, ASD, ADHD, and dysmorphism (1 x heart defects). Trio WES identified de novo variants in RUNX1T1 gene (1 x nonsense variant in 5' region [p.Gln36Ter], 2 x missense variants in C-terminus [p.Gly412Arg and p.His521Tyr]).

PMID: 19172993
1 individual with mild-moderate ID and congenital heart disease, and chromosome t(5;8)(q32;q21.3) translocation. Molecular characterization revealed that one of the break points was within the RUNX1T1 gene. Analysis of RUNX1T1 expression in human embryonic and fetal tissues suggests a role of RUNX1T1 in brain and heart development.

PMID: 22644616
1 individual with mild ID and dysmorphism, and de novo deletion exons 3-7 in RUNX1T1.

PMID: 31223340
1 individual with ID, anaemia, atrial septal defect, dysmorphism, and seizures. Found to have a 2.1 Mb deletion at 8q21.3q22.1 involving entire RUNX1T1 gene (and 2 adjacent genes - SLC26A7 and TRIQK), and a benign familial 4.3 Mb duplication at 1p22.1p21.3 (present in unaffected healthy brother).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.6883 OPA3 Zornitza Stark Phenotypes for gene: OPA3 were changed from to 3-methylglutaconic aciduria, type III (MGA3) (MIM#258501), AR; Optic atrophy 3 with cataract (MIM#165300), AD
Intellectual disability syndromic and non-syndromic v0.6658 UBTF Zornitza Stark Phenotypes for gene: UBTF were changed from Neurodegeneration, childhood-onset, with brain atrophy, MIM# 617672; MONDO:0044701 to Neurodegeneration, childhood-onset, with brain atrophy, MIM# 617672; MONDO:0044701; Neurodevelopmental disorder, MONDO:0700092, UBTF-related
Intellectual disability syndromic and non-syndromic v0.6626 LINC01578 Zornitza Stark gene: LINC01578 was added
gene: LINC01578 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
new gene name tags were added to gene: LINC01578.
Mode of inheritance for gene: LINC01578 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: LINC01578 were set to 39442041
Phenotypes for gene: LINC01578 were set to Neurodevelopmental disorder, MONDO:0700092, CHASERR-related
Review for gene: LINC01578 was set to GREEN
Added comment: CHASERR encodes a human long noncoding RNA (lncRNA) adjacent to CHD2, a coding gene in which de novo loss-of-function variants cause developmental and epileptic encephalopathy. Three unrelated children reported with a syndromic, early-onset neurodevelopmental disorder, each of whom had a de novo deletion in the CHASERR locus. The children had severe encephalopathy, shared facial dysmorphisms, cortical atrophy, and cerebral hypomyelination - a phenotype that is distinct from the phenotypes of patients with CHD2 haploinsufficiency. CHASERR deletion results in increased CHD2 protein abundance in patient-derived cell lines and increased expression of the CHD2 transcript in cis, indicating bidirectional dosage sensitivity in human disease.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.6527 BORCS8 Zornitza Stark Phenotypes for gene: BORCS8 were changed from Neurodevelopmental disorder (MONDO#0700092), BORCS8-related to Neurodegeneration, infantile-onset, with optic atrophy and brain abnormalities, MIM# 620987
Intellectual disability syndromic and non-syndromic v0.6526 BORCS8 Zornitza Stark reviewed gene: BORCS8: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodegeneration, infantile-onset, with optic atrophy and brain abnormalities, MIM# 620987; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.6456 RAB18 Zornitza Stark changed review comment from: Autosomal recessive syndrome characterised by microcephaly, microphthalmia, microcornea, congenital cataracts, optic atrophy, cortical dysplasia, in particular corpus callosum hypoplasia, severe mental retardation, spastic diplegia, and hypogonadism. At least 7 families reported, including 4 Pakistani families with a founder variant, p.Leu24Gln; to: Autosomal recessive syndrome characterised by microcephaly, microphthalmia, microcornea, congenital cataracts, optic atrophy, cortical dysplasia, in particular corpus callosum hypoplasia, severe ID, spastic diplegia, and hypogonadism. At least 7 families reported, including 4 Pakistani families with a founder variant, p.Leu24Gln
Intellectual disability syndromic and non-syndromic v0.6302 ZDHHC16 Ain Roesley gene: ZDHHC16 was added
gene: ZDHHC16 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ZDHHC16 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZDHHC16 were set to 39313616
Phenotypes for gene: ZDHHC16 were set to neurodevelopmental disorder MONDO:0700092, ZDHHC16-related
Review for gene: ZDHHC16 was set to AMBER
gene: ZDHHC16 was marked as current diagnostic
Added comment: 6 families including a pair of siblings

Amber because 5 of the families had non specific phenotypes listed
Abnormality of:
the nervous system, metabolism/homeostasis, head/neck, immune system, the integument, the digestive system, the respiratory system, the endocrine system, Growth abnormality the skeletal system, the musculature, the eye

Specific HPOs were provided for one individual (homoyzygous for a canonical splice)

Abnormality of the face; Cerebellar hypoplasia; Developmental regression; Encephalopathy; Hyperreflexia; Hypertonia; Hypotonia; Inguinal hernia; Laryngomalacia; Microcephaly; Motor delay; Optic atrophy; Seizure; Spastic paraparesis; Spasticity; Talipes equinovarus; Umbilical hernia
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.6248 OPA3 Chirag Patel reviewed gene: OPA3: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 25159689, 31119193, 31928268; Phenotypes: 3-methylglutaconic aciduria, type III (MGA3) (MIM#258501), AR, Optic atrophy 3 with cataract (MIM#165300), AD; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.6217 DYNC1H1 Ken Lee Wan changed review comment from: DYNC1H1 is definitively associated with autosomal dominant dyneinopathy.

A spectrum of diseases related to monoallelic variants in DYNC1H1 and characterized by variable neuromuscular and/or neurodevelopmental presentations.

DYNC1H1 have been reported with a predominantly neuromuscular presentation, including congenital myopathy, spinal muscular atrophy, Charcot-Marie-Tooth (CMT) and less frequently, intellectual disability and autism.

(https://search.clinicalgenome.org/CCID:004713) (http://purl.obolibrary.org/obo/MONDO_1040031) (OMIM: 600112); to: DYNC1H1 is definitively associated with autosomal dominant dyneinopathy.

A spectrum of diseases related to monoallelic variants in DYNC1H1 and characterized by variable neuromuscular and/or neurodevelopmental presentations.

DYNC1H1 have been reported with a predominantly neuromuscular presentation, including congenital myopathy, spinal muscular atrophy, Charcot-Marie-Tooth (CMT) and less frequently, intellectual disability and autism.

Mechanism of disease: gain of function
(https://search.clinicalgenome.org/CCID:004713) (http://purl.obolibrary.org/obo/MONDO_1040031) (OMIM: 600112)
Intellectual disability syndromic and non-syndromic v0.6214 DYNC1H1 Ken Lee Wan changed review comment from: DYNC1H1 is definitively associated with autosomal dominant dyneinopathy.

A spectrum of diseases related to monoallelic variants in DYNC1H1 and characterized by variable neuromuscular and/or neurodevelopmental presentations.

DYNC1H1 have been reported with a predominantly neuromuscular presentation, including congenital myopathy, spinal muscular atrophy, Charcot-Marie-Tooth (CMT), and less frequently, intellectual disability and autism.

(https://search.clinicalgenome.org/CCID:004713) (http://purl.obolibrary.org/obo/MONDO_1040031) (OMIM: 600112); to: DYNC1H1 is definitively associated with autosomal dominant dyneinopathy.

A spectrum of diseases related to monoallelic variants in DYNC1H1 and characterized by variable neuromuscular and/or neurodevelopmental presentations.

DYNC1H1 have been reported with a predominantly neuromuscular presentation, including congenital myopathy, spinal muscular atrophy, Charcot-Marie-Tooth (CMT) and less frequently, intellectual disability and autism.

(https://search.clinicalgenome.org/CCID:004713) (http://purl.obolibrary.org/obo/MONDO_1040031) (OMIM: 600112)
Intellectual disability syndromic and non-syndromic v0.6214 DYNC1H1 Ken Lee Wan changed review comment from: DYNC1H1 is definitively associated with autosomal dominant dyneinopathy.

A spectrum of diseases related to monoallelic variants in DYNC1H1 and characterized by variable neuromuscular and/or neurodevelopmental presentations.

DYNC1H1 have been reported with a predominantly neuromuscular presentation, including congenital myopathy, spinal muscular atrophy, Charcot-Marie-Tooth (CMT), and less frequently, intellectual disability and autism.

(https://search.clinicalgenome.org/CCID:004713) (http://purl.obolibrary.org/obo/MONDO_1040031) (OMIM#600112); to: DYNC1H1 is definitively associated with autosomal dominant dyneinopathy.

A spectrum of diseases related to monoallelic variants in DYNC1H1 and characterized by variable neuromuscular and/or neurodevelopmental presentations.

DYNC1H1 have been reported with a predominantly neuromuscular presentation, including congenital myopathy, spinal muscular atrophy, Charcot-Marie-Tooth (CMT), and less frequently, intellectual disability and autism.

(https://search.clinicalgenome.org/CCID:004713) (http://purl.obolibrary.org/obo/MONDO_1040031) (OMIM: 600112)
Intellectual disability syndromic and non-syndromic v0.6155 TTC19 Zornitza Stark changed review comment from: Mitochondrial complex III deficiency nuclear type 2 is an autosomal recessive severe neurodegenerative disorder that usually presents in childhood, but may show later onset, even in adulthood. Affected individuals have motor disability, with ataxia, apraxia, dystonia, and dysarthria, associated with necrotic lesions throughout the brain. Most patients also have cognitive impairment and axonal neuropathy and become severely disabled later in life. The disorder may present clinically as spinocerebellar ataxia or Leigh syndrome, or with psychiatric disturbances.

At least 4 unrelated families reported.; to: Mitochondrial complex III deficiency nuclear type 2 is an autosomal recessive severe neurodegenerative disorder that usually presents in childhood, but may show later onset, even in adulthood. Affected individuals have motor disability, with ataxia, apraxia, dystonia, and dysarthria, associated with necrotic lesions throughout the brain. Most patients also have cognitive impairment and axonal neuropathy and become severely disabled later in life. The disorder may present clinically as spinocerebellar ataxia or Leigh syndrome, or with psychiatric disturbances.

Included due to phenotypic overlap.

At least 4 unrelated families reported.
Intellectual disability syndromic and non-syndromic v0.6127 RFC4 Chirag Patel gene: RFC4 was added
gene: RFC4 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: RFC4 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RFC4 were set to PMID: 39106866
Phenotypes for gene: RFC4 were set to RFC4-related multisystem disorder
Review for gene: RFC4 was set to GREEN
gene: RFC4 was marked as current diagnostic
Added comment: 9 affected individuals (aged birth to 47yrs) from 8 unrelated families with a multisystem disorder. Clinical features included: muscle weakness/myopathy (9/9), motor incoordination/gait disturbance (8/8), delayed gross motor development (6/9), dysarthria (5/5), peripheral neuropathy (3/3 adults), bilateral sensorineural hearing impairment (6/9), decreased body weight (8/9), short stature (5/9), microcephaly (4/9), respiratory issues/insufficiency (6/9), cerebellar atrophy (4/9), pituitary hypoplasia (3/9).

WES or WGS identified biallelic loss-of-function variants in RFC4 (3 frameshift, 2 splice site, 1 single AA duplication, 2 single AA deletions, 2 missense), and almost all are likely to disrupt the C-terminal domain indispensable for Replication factor C (RFC) complex formation. All variants segregated with the disease.

The RFC complex (with 5 subunits) is central to process of regulation of DNA replication, and it loads proliferating cell nuclear antigen onto DNA to facilitate the recruitment of replication and repair proteins and enhance DNA polymerase processivity. RFC1 is associated with CANVAS but the contributions of RFC2-5 subunits on human Mendelian disorders is unknown.

Analysis of a previously determined cryo-EM structure of RFC bound to proliferating cell nuclear antigen suggested that the variants disrupt interactions within RFC4 and/or destabilize the RFC complex. Cellular studies using RFC4-deficient HeLa cells and primary fibroblasts demonstrated decreased RFC4 protein, compromised stability of the other RFC complex subunits, and perturbed RFC complex formation. Additionally, functional studies of the RFC4 variants affirmed diminished RFC complex formation, and cell cycle studies suggested perturbation of DNA replication and cell cycle progression.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.6123 MED22 Mark Cleghorn gene: MED22 was added
gene: MED22 was added to Intellectual disability syndromic and non-syndromic. Sources: Other
Mode of inheritance for gene: MED22 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: MED22 were set to complex neurodevelopmental disorder MONDO:0100038
Penetrance for gene: MED22 were set to unknown
Review for gene: MED22 was set to AMBER
Added comment: ESHG talk 2/6/24, unpublished
Elisa Cali, UCL

Recurrent homozygous MED22:c.397_399del (p.Glu133del) inframe variant in 8 individuals from 6 families w progressive NDD, microcepahly, cerebellar atrophy, dystonia, seizures

Rare in gnomad v4.1 (9 het alleles, no homozygotes)

Functional work on patient fibroblasts: quantity of protein comparable to controls, did not mentioned assays of protein function (?mechanism proposed)
Drosophilia heterozygous model with equivalent of p.Glu133del variant: structural anomalies, less movements, all died prior to pupae stage
Zebrafish: MED22 mutants less mobile, died prior to adulthood, reduced brain size
Sources: Other
Intellectual disability syndromic and non-syndromic v0.6123 TTL Mark Cleghorn gene: TTL was added
gene: TTL was added to Intellectual disability syndromic and non-syndromic. Sources: Other
Mode of inheritance for gene: TTL was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: TTL were set to complex neurodevelopmental disorder MONDO:0100038
Review for gene: TTL was set to AMBER
Added comment: TTL
Valentina Serpieri, University of Pavia
ESHG talk 1/6/24

FAM1 (Italy)
2 affected sisters born to consanguineous Pakistani parents
GDD, spastic tetraparesis, optic atrophy, brain anomalies resembling tubulinopathies (dysplasia of corpus callosum, basal ganglia, brainstem)
WES: homozygous TTL:c.1013G>A; p.Cys338Tyr in both affected sisters

Via genematcher
5 more families (9 individuals) w similar phenotypes and biallelic variants in TTL

FAM2 (Egypt): homozygous p.Arg46Pro
FAM3 (Egypt): homozygous p.Arg46Pro
FAM4 (Australia): homozygous p.Gln183Arg
FAM5 (France): homozygous p.Trp147*
FAM6 (Saudi Arabia): homozygous p.His243Tyr

TTL KO mice: death soon after birth, no overt malformations, but defects in organisation of cerebral layers

Functional work on patient fibroblasts
FAM1 – reduced quantity of TTL protein compared to control on Western blot, decreased function of TTL protein (increase in detyrosinated tubulin) compared to controls – infer LoF as mechanism
FAM3 – mentioned but no details
FAM4– mentioned but no details
Sources: Other
Intellectual disability syndromic and non-syndromic v0.6060 FDXR Zornitza Stark Phenotypes for gene: FDXR were changed from Neurodevelopmental disorder with mitochondrial abnormalities, optic atrophy, and developmental regression, MIM# 620887; Auditory neuropathy and optic atrophy, MIM# 617717 to Neurodevelopmental disorder with mitochondrial abnormalities, optic atrophy, and developmental regression, MIM# 620887; Auditory neuropathy and optic atrophy, MIM# 617717
Intellectual disability syndromic and non-syndromic v0.6059 FDXR Zornitza Stark Phenotypes for gene: FDXR were changed from Auditory neuropathy and optic atrophy, MIM# 617717 to Neurodevelopmental disorder with mitochondrial abnormalities, optic atrophy, and developmental regression, MIM# 620887; Auditory neuropathy and optic atrophy, MIM# 617717
Intellectual disability syndromic and non-syndromic v0.6057 FDXR Zornitza Stark edited their review of gene: FDXR: Added comment: Multiple reports of individuals with extra-ocular features, including ID and regression.; Changed rating: GREEN; Changed publications: 30250212, 29040572, 33348459, 37046037, 37481223; Changed phenotypes: Neurodevelopmental disorder with mitochondrial abnormalities, optic atrophy, and developmental regression, MIM# 620887, Auditory neuropathy and optic atrophy, MIM# 617717
Intellectual disability syndromic and non-syndromic v0.6038 RDH14 Zornitza Stark gene: RDH14 was added
gene: RDH14 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: RDH14 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RDH14 were set to 34848785
Phenotypes for gene: RDH14 were set to Neurodevelopmental disorder, MONDO:0700092, RDH14-related
Review for gene: RDH14 was set to RED
Added comment: Two related individuals with ID and cerebellar atrophy and homozygous LoF variant reported.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5949 TBCE Zornitza Stark Phenotypes for gene: TBCE were changed from to Encephalopathy, progressive, with amyotrophy and optic atrophy MIM:617207; Hypoparathyroidism-retardation-dysmorphism syndrome MIM:241410
Intellectual disability syndromic and non-syndromic v0.5881 TBCE Leanne Baxter reviewed gene: TBCE: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID:27666369: PMID:17699660: PMID:34356170: PMID: 34134906; Phenotypes: Encephalopathy, progressive, with amyotrophy and optic atrophy MIM:617207, Hypoparathyroidism-retardation-dysmorphism syndrome MIM:241410, Kenny-Caffey syndrome, type 1 MIM:244460; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.5773 SNF8 Zornitza Stark Phenotypes for gene: SNF8 were changed from Developmental and epileptic encephalopathy 115, MIM#620783 to Developmental and epileptic encephalopathy 115, MIM#620783; Neurodevelopmental disorder plus optic atrophy, MIM# 620784
Intellectual disability syndromic and non-syndromic v0.5772 SNF8 Zornitza Stark edited their review of gene: SNF8: Changed phenotypes: Developmental and epileptic encephalopathy 115, MIM#620783, Neurodevelopmental disorder plus optic atrophy, MIM# 620784
Intellectual disability syndromic and non-syndromic v0.5763 YKT6 Zornitza Stark gene: YKT6 was added
gene: YKT6 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: YKT6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: YKT6 were set to 38522068
Phenotypes for gene: YKT6 were set to Syndromic disease, MONDO:0002254, YKT6-related
Review for gene: YKT6 was set to AMBER
Added comment: Two individuals homozygous for YKT6 [NM_006555.3:c.554A>G p.(Tyr185Cys)] exhibited normal prenatal course followed by failure to thrive, developmental delay and progressive liver disease. Haplotype analysis identified a shared homozygous region flanking the variant, suggesting a common ancestry. The third individual homozygous for YKT6 [NM_006555.3:c.191A>G p.(Tyr64Cys)] exhibited neurodevelopmental disorders and optic atrophy. Supportive functional data in Drosophila. Amber rating due to homozygous missense variants and founder effect in two of the families.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5715 SNF8 Elena Savva Phenotypes for gene: SNF8 were changed from Severe developmental delay, epileptic encephalopathy, brain MRI abnormality; intellectual disability, childhood-onset optic atrophy, ataxia to Neurodevelopmental disorder (MONDO:0700092), SNF8-related
Intellectual disability syndromic and non-syndromic v0.5713 DIP2C Melanie Marty gene: DIP2C was added
gene: DIP2C was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: DIP2C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DIP2C were set to PMID: 38421105
Phenotypes for gene: DIP2C were set to Neurodevelopmental disorder (MONDO#0700092), DIP2C-related
Review for gene: DIP2C was set to GREEN
Added comment: PMID: 38421105 - Twenty three patients with het DIP2C variants (10 de novo).
All patients had developmental delays affecting expressive language and speech, most had mild dev delay and ID. Four patients had seizures. Additional phenotypic findings were non-specific but recurrent anomalies did include a high anterior hair-line, prominent forehead, and a broad nasal tip. Four patients had cardiac defects (hypertrophic cardiomyopathy, atrial septal defects,and bicuspid aortic valve)
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5712 SNF8 Chern Lim gene: SNF8 was added
gene: SNF8 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SNF8 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SNF8 were set to 38423010
Phenotypes for gene: SNF8 were set to Severe developmental delay, epileptic encephalopathy, brain MRI abnormality; intellectual disability, childhood-onset optic atrophy, ataxia
Review for gene: SNF8 was set to GREEN
gene: SNF8 was marked as current diagnostic
Added comment: PMID: 38423010
- Nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8. In total, three putative LoF variants and four missense variants were identified.
- The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile) as compound heterozygous.
- Functional studies using fibroblasts derived from patients and zebrafish model showed LoF is the disease mech.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5674 ATP6V0A1 Elena Savva Phenotypes for gene: ATP6V0A1 were changed from Developmental and epileptic encephalopathy 104 MIM#619970; Neurodevelopmental disorder with epilepsy and brain atrophy MIM#619971 to Developmental and epileptic encephalopathy 104 MIM#619970; Neurodevelopmental disorder with epilepsy and brain atrophy MIM#619971
Intellectual disability syndromic and non-syndromic v0.5673 ATP6V0A1 Elena Savva Phenotypes for gene: ATP6V0A1 were changed from Developmental and epileptic encephalopathy 104 MIM#619970; Neurodevelopmental disorder with epilepsy and brain atrophy MIM#619971 to Developmental and epileptic encephalopathy 104 MIM#619970; Neurodevelopmental disorder with epilepsy and brain atrophy MIM#619971
Intellectual disability syndromic and non-syndromic v0.5673 ATP6V0A1 Elena Savva Phenotypes for gene: ATP6V0A1 were changed from Neurodevelopmental disorder, MONDO:0700092, ATP6V0A1-related to Developmental and epileptic encephalopathy 104 MIM#619970; Neurodevelopmental disorder with epilepsy and brain atrophy MIM#619971
Intellectual disability syndromic and non-syndromic v0.5660 BORCS8 Lauren Rogers changed review comment from: 3 unrelated families with five affected children with homozygous or compound heterozygous loss of function missense and PTC variants.

HEK293T cells show the missense variants are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution. The BORCS8 PTC frameshift variant is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution. Zebrafish KO of the orthologous brocs8 causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease.
Sources: Literature; to: 3 unrelated families with five affected children with homozygous or compound heterozygous loss of function missense and PTC variants. 5/5 hypotonia, failure to thrive, global developmental delay, profound intellectual disability, muscle weakness and atrophy, dysmorphic features. 3/5 with microcephaly, 3/5 with seizures, 4/5 with spasticity, 3/5 with scoliosis, 4/4 with optic atrophy.

HEK293T cells show the missense variants are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution. The BORCS8 PTC frameshift variant is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution. Zebrafish KO of the orthologous brocs8 causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5657 PRICKLE2 Zornitza Stark Phenotypes for gene: PRICKLE2 were changed from Neurodevelopmental disorder; global developmental delay; behavioural difficulties ± epilepsy; autistic features; attention deficit hyperactive disorder; psychiatric symptoms to Neurodevelopmental disorder MONDO:0700092, PRICKLE2-related
Intellectual disability syndromic and non-syndromic v0.5621 TRAPPC4 Zornitza Stark Phenotypes for gene: TRAPPC4 were changed from intellectual disability; epilepsy; spasticity; microcephaly to Neurodevelopmental disorder with epilepsy, spasticity, and brain atrophy, MIM# 618741
Intellectual disability syndromic and non-syndromic v0.5620 TRAPPC4 Zornitza Stark edited their review of gene: TRAPPC4: Changed phenotypes: Neurodevelopmental disorder with epilepsy, spasticity, and brain atrophy, MIM# 618741
Intellectual disability syndromic and non-syndromic v0.5584 ATR Zornitza Stark Marked gene: ATR as ready
Intellectual disability syndromic and non-syndromic v0.5584 ATR Zornitza Stark Gene: atr has been classified as Green List (High Evidence).
Intellectual disability syndromic and non-syndromic v0.5584 ATR Zornitza Stark Phenotypes for gene: ATR were changed from to Seckel syndrome 1, MIM# 210600
Intellectual disability syndromic and non-syndromic v0.5583 ATR Zornitza Stark Mode of inheritance for gene: ATR was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.5582 ATR Zornitza Stark reviewed gene: ATR: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Seckel syndrome 1, MIM# 210600; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.5508 ATRX Zornitza Stark Marked gene: ATRX as ready
Intellectual disability syndromic and non-syndromic v0.5508 ATRX Zornitza Stark Gene: atrx has been classified as Green List (High Evidence).
Intellectual disability syndromic and non-syndromic v0.5508 ATRX Zornitza Stark Phenotypes for gene: ATRX were changed from to ATR-X-related syndrome MONDO:0016980
Intellectual disability syndromic and non-syndromic v0.5507 ATRX Zornitza Stark Mode of inheritance for gene: ATRX was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Intellectual disability syndromic and non-syndromic v0.5506 ATRX Zornitza Stark reviewed gene: ATRX: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: ATR-X-related syndrome MONDO:0016980; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Intellectual disability syndromic and non-syndromic v0.5399 SDHA Claire Fryer-Smith reviewed gene: SDHA: Rating: GREEN; Mode of pathogenicity: None; Publications: 1492653, 23322652; Phenotypes: Cardiomyopathy, dilated, 1GG MIM#613642, Mitochondrial complex II deficiency, nuclear type 1 MIM#252011, Neurodegeneration with ataxia and late-onset optic atrophy MIM#619259, Paragangliomas MIM#614165; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.5377 HIKESHI Zornitza Stark gene: HIKESHI was added
gene: HIKESHI was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: HIKESHI was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HIKESHI were set to 34111619; 26545878
Phenotypes for gene: HIKESHI were set to Leukodystrophy, hypomyelinating, 13, MIM# 616881
Review for gene: HIKESHI was set to GREEN
Added comment: Over 10 individuals reported with recurrent homozygous c.160G>C;p.(Val54Leu) variant, high carrier frequency in the Ashkenazi Jewish population. Optic atrophy reported in several.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.5370 PTCD3 Zornitza Stark gene: PTCD3 was added
gene: PTCD3 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert Review
Mode of inheritance for gene: PTCD3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PTCD3 were set to 30607703; 19427859; 36450274
Phenotypes for gene: PTCD3 were set to Combined oxidative phosphorylation deficiency-51, MIM#619057; Intellectual disability; optic atrophy; Leigh-like syndrome
Review for gene: PTCD3 was set to GREEN
Added comment: Four families and functional data. ID is a feature.
Sources: Expert Review
Intellectual disability syndromic and non-syndromic v0.5296 TSPOAP1 Zornitza Stark Phenotypes for gene: TSPOAP1 were changed from Dystonia, intellectual disability and cerebellar atrophy to Dystonia 22, MIM# 620453
Intellectual disability syndromic and non-syndromic v0.5234 ACBD6 Lucy Spencer gene: ACBD6 was added
gene: ACBD6 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ACBD6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ACBD6 were set to 36457943; 21937992; 35446914
Phenotypes for gene: ACBD6 were set to Neurodevelopmental disorder (MONDO#0700092), ACBD6-related
Review for gene: ACBD6 was set to GREEN
Added comment: PMID: 36457943
2 siblings with a neurodevelopmental disorder: severely delayed development, obesity, pancytopenia, diabetes, liver cirrhosis, intravertebral disc herniation, mild brain atrophy. Consanguineous family both siblings found to have a homozygous frameshift.

This paper also mentioned 3 other reported variants in 6 individuals (only 3 unrelated) all homozygous, 2 frameshift, 1 canonical splice. All reported to have a neurodevelopmental disorder, some with limited information but one family also has obesity, spasticity, and dysmorphism. PMIDs: 21937992, 35446914
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5226 INTS11 Zornitza Stark Phenotypes for gene: INTS11 were changed from Global developmental delay; launguage delay; intellectual disability; impaired motor development; brain atrophy to intellectual disability, MONDO:0001071
Intellectual disability syndromic and non-syndromic v0.5216 INTS11 Melanie Marty gene: INTS11 was added
gene: INTS11 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: INTS11 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: INTS11 were set to PMID: 37054711
Phenotypes for gene: INTS11 were set to Global developmental delay; launguage delay; intellectual disability; impaired motor development; brain atrophy
Review for gene: INTS11 was set to GREEN
Added comment: PMID: 37054711 - 15 individuals from 10 unrelated families with bi-allelic variants in INTS11 with global developmental and language delay, intellectual disability, impaired motor development, and brain atrophy.

Functional studies in Drosophila showed that dIntS11 (fly ortholog of INTS11) is essential and expressed in the central nervous systems in a subset of neurons and most glia in larval and adult stages.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5127 CLDN5 Suliman Khan gene: CLDN5 was added
gene: CLDN5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CLDN5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CLDN5 were set to PMID: 36477332
Phenotypes for gene: CLDN5 were set to seizures; developmental delay; microcephaly; brain calcifications
Penetrance for gene: CLDN5 were set to Complete
Mode of pathogenicity for gene: CLDN5 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: CLDN5 was set to GREEN
Added comment: PMID: 36477332 identified de novo heterozygous missense variants in CLDN5 in fifteen unrelated patients who presented with a shared constellation of features including developmental delay, seizures (primarily infantile onset focal epilepsy), microcephaly and a recognizable pattern of pontine atrophy and brain calcifications.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5079 ELP2 Renee Crooks changed review comment from: Phenotype of Intellectual Disability has been observed in the PMIDs listed above in the following forms;
-spastic diplegia
-cortico-cerebullar
-nodular heterotopia
-epilepsy
-severe motor development delay
-short stature
-neuropsychiatric problems
-choreoathetosis
-nystagmus; to: Phenotype of Intellectual Disability has been observed in the PMIDs listed above in the following forms;
-spastic diplegia
-cortico-cerebullar
-nodular heterotopia
-epilepsy
-severe motor development delay
-short stature
-neuropsychiatric problems
-choreoathetosis
-nystagmus

NB - review submit by Renée Crooks ( aka using google account as Lee Ren)
Intellectual disability syndromic and non-syndromic v0.5076 BCKDK Zornitza Stark changed review comment from: At least 5 unrelated families reported. ID if untreated. Treatment available.; to: At least 5 unrelated families reported. ID/autism/seizures are part of the phenotype.

Treatment available: Branched-chain amino acid supplementation: improves psychomotor/cognitive development/IQ; improves behavioural/psychiatric disturbance(s); improves systemic manifestations
Intellectual disability syndromic and non-syndromic v0.5053 EPRS Lucy Spencer gene: EPRS was added
gene: EPRS was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: EPRS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EPRS were set to 29576217, 36411955
Phenotypes for gene: EPRS were set to Leukodystrophy, hypomyelinating, 15 (MIM#617951)
Review for gene: EPRS was set to GREEN
Added comment: 5 patients across 2 papers, with delayed development (3/5) and/or regression, ataxia, dystonia, hypomyelinating leukodystrophy or periventricular white matter, 2 with epilepsy, 3 with optic atrophy, 2 with deafness, 2 with micrcephaly, 1 noted to have some facial dysmorphism.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5040 EXOSC3 Michelle Dang changed review comment from: Association with global developmental delay, hypotonia, hyperreflexia, cerebellar (+/- pontine) atrophy with variable severity. Assessment of cognitive function/IQ limited by motor and speech impairments. Severe forms associated with early deaths during infancy periods. Intellectual impairment/psychomotor retardation (to varying degrees) reported in all cases across varying degrees of severity (23284067). Zanni et al (23975261) identified 2 individuals with compound heterozygous mutations resulting in intellectual impairment and early onset spasticity. Wan et al (22544365) described global developmental delay in addition to cerebellar features and spinal motor degeneration.; to: Association with global developmental delay, hypotonia, hyperreflexia, cerebellar (+/- pontine) atrophy with variable severity. Assessment of cognitive function/IQ limited by motor and speech impairments. Severe forms associated with early deaths during infancy periods.
Intellectual impairment/psychomotor retardation (to varying degrees) reported in all cases across varying degrees of severity (23284067). Zanni et al (23975261) identified 2 individuals with compound heterozygous mutations resulting in intellectual impairment and early onset spasticity. Wan et al (22544365) described global developmental delay in addition to cerebellar features and spinal motor degeneration, with functional effects of the mutation reproduced with knocked down endogenous expression of exosc3 in zebrafish embryos and subsequent rescue of the phenotype by co-injection with wild-type zebrafish exosc3 mRNA.
Intellectual disability syndromic and non-syndromic v0.5040 EXOSC3 Michelle Dang changed review comment from: Association with global developmental delay, hypotonia, hyperreflexia, cerebellar (+/- pontine) atrophy with variable severity. Assessment of cognitive function/IQ limited by motor and speech impairments. Severe forms associated with early deaths during infancy periods. Intellectual impairment/psychomotor retardation (to varying degrees) reported in all cases across various severity (23284067). Zanni et al (23975261) identified 2 individuals with compound heterozygous mutations resulting in intellectual impairment and early onset spasticity. Wan et al (22544365) described global developmental delay in addition to cerebellar features and spinal motor degeneration.; to: Association with global developmental delay, hypotonia, hyperreflexia, cerebellar (+/- pontine) atrophy with variable severity. Assessment of cognitive function/IQ limited by motor and speech impairments. Severe forms associated with early deaths during infancy periods. Intellectual impairment/psychomotor retardation (to varying degrees) reported in all cases across varying degrees of severity (23284067). Zanni et al (23975261) identified 2 individuals with compound heterozygous mutations resulting in intellectual impairment and early onset spasticity. Wan et al (22544365) described global developmental delay in addition to cerebellar features and spinal motor degeneration.
Intellectual disability syndromic and non-syndromic v0.5040 EXOSC3 Michelle Dang edited their review of gene: EXOSC3: Added comment: Association with global developmental delay, hypotonia, hyperreflexia, cerebellar (+/- pontine) atrophy with variable severity. Assessment of cognitive function/IQ limited by motor and speech impairments. Severe forms associated with early deaths during infancy periods. Intellectual impairment/psychomotor retardation (to varying degrees) reported in all cases across various severity (23284067). Zanni et al (23975261) identified 2 individuals with compound heterozygous mutations resulting in intellectual impairment and early onset spasticity. Wan et al (22544365) described global developmental delay in addition to cerebellar features and spinal motor degeneration.; Changed phenotypes: Cerebellar atrophy, Developmental delay, Lower motor neuron degeneration, Upper motor neuron features, Spasticity/hyperreflexia (+/-)
Intellectual disability syndromic and non-syndromic v0.5040 EXOSC3 Michelle Dang changed review comment from: Association with global developmental delay, hypotonia, hyperreflexia, cerebellar (+/- pontine) atrophy. Variable severity. Assessment of cognitive function/IQ limited by motor and speech impairments. Severe forms associated with early deaths during infancy periods. Intellectual impairment (to varying degrees) reported in all cases across various severity.; to: Association with global developmental delay, hypotonia, hyperreflexia, cerebellar (+/- pontine) atrophy with variable severity. Assessment of cognitive function/IQ limited by motor and speech impairments. Severe forms associated with early deaths during infancy periods. Intellectual impairment/psychomotor retardation (to varying degrees) reported in all cases across various severity (23284067). Zanni et al (23975261) identified 2 individuals with compound heterozygous mutations resulting in intellectual impairment and early onset spasticity. Wan et al (22544365) described global developmental delay in addition to cerebellar features and spinal motor degeneration.
Intellectual disability syndromic and non-syndromic v0.4995 HEATR3 Zornitza Stark Phenotypes for gene: HEATR3 were changed from Bone marrow failure, short stature, facial and acromelic dysmorphic features, and mild intellectual disability; Diamond Blackfan anaemia MONDO:0015253, HEATR3 related to Bone marrow failure, short stature, facial and acromelic dysmorphic features, and mild intellectual disability; Diamond-Blackfan anaemia 21, MIM# 620072
Intellectual disability syndromic and non-syndromic v0.4994 HEATR3 Zornitza Stark reviewed gene: HEATR3: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Diamond-Blackfan anaemia 21, MIM# 620072; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.4985 ADGRL1 Zornitza Stark Phenotypes for gene: ADGRL1 were changed from Neurodevelopmental disorder, ADGRL1-related (MONDO#0700092) to Developmental delay, behavioral abnormalities, and neuropsychiatric disorders, MIM# 620065
Intellectual disability syndromic and non-syndromic v0.4983 ADGRL1 Zornitza Stark reviewed gene: ADGRL1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Developmental delay, behavioral abnormalities, and neuropsychiatric disorders, MIM# 620065; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Intellectual disability syndromic and non-syndromic v0.4974 LETM1 Ee Ming Wong gene: LETM1 was added
gene: LETM1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: LETM1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LETM1 were set to 36055214
Phenotypes for gene: LETM1 were set to Mitochondrial disease MONDO#0044970, LETM1-related
Review for gene: LETM1 was set to GREEN
gene: LETM1 was marked as current diagnostic
Added comment: -18 affected individuals from 11 unrelated families harbouring ultra-rare bi-allelic missense and loss-of-function LETM1 variants
-Most of the affected individuals (14/18, 78%) had an infantile-onset disease manifestation,
and 4/18 (22%) presented first symptoms between the ages of 1.5 and 2 years
-Variant types included missense, frameshift, stop loss, in-frame deletion and splice defect
-From biochemical and morphological studies, bi-allelic LETM1 variants are associated with defective mitochondrial K efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4973 MED11 Ain Roesley gene: MED11 was added
gene: MED11 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: MED11 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MED11 were set to 36001086
Phenotypes for gene: MED11 were set to neurodevelopmental disorder MONDO#0700092, MED11-related
Review for gene: MED11 was set to GREEN
gene: MED11 was marked as current diagnostic
Added comment: 7 affected from 5 families (3x consang) with the same recurrent variant of p.(Arg109*).

Protein truncating, NOT NMD as proven by RT-PCR and western blot. Zebrafish knockout model recapitulates key clinical phenotypes

NO evidence of founder effect from haplotype analysis

7/7 cerebral dysgyria, cortical atrophy
5/7 limb contracture
4/7 epilepsy
3/7 families with IUGR
3/7 GDD
3/7 hearing loss
3/7 undescended testis
2/7 nystagmus
1/7 congenital cataract
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4973 MED11 Ain Roesley gene: MED11 was added
gene: MED11 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: MED11 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MED11 were set to 36001086
Phenotypes for gene: MED11 were set to neurodevelopmental disorder MONDO#0700092, MED11-related
Review for gene: MED11 was set to GREEN
gene: MED11 was marked as current diagnostic
Added comment: 7 affected from 5 families (3x consang) with the same recurrent variant of p.(Arg109*).

Protein truncating, NOT NMD as proven by RT-PCR and western blot. Zebrafish knockout model recapitulates key clinical phenotypes

NO evidence of founder effect from haplotype analysis

7/7 cerebral dysgyria, cortical atrophy
5/7 limb contracture
4/7 epilepsy
3/7 families with IUGR
3/7 GDD
3/7 hearing loss
3/7 undescended testis
2/7 nystagmus
1/7 congenital cataract
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4965 MTSS1 Elena Savva gene: MTSS1 was added
gene: MTSS1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: MTSS1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MTSS1 were set to PMID: 36067766
Phenotypes for gene: MTSS1 were set to Intellectual disability, MTSS1-related (MONDO#0001071)
Review for gene: MTSS1 was set to GREEN
Added comment: Alt gene name: MTSS2

Huang (2022): recurring de novo missense variant (p.R671W) causing syndromic intellectual disability in 5 unrelated individuals.
- Individuals present with GDD, mild ID (5/5), nystagmus (3/5), optic atrophy (1/5), ptosis (2/5), sensorineural hearing loss (2/4), microcephaly or relative microcephaly (5/5), and shared mild facial dysmorphisms.
- Overexpression supports a DN mechanism
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4964 MTSS1L Elena Savva gene: MTSS1L was added
gene: MTSS1L was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: MTSS1L was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MTSS1L were set to PMID: 36067766
Phenotypes for gene: MTSS1L were set to Intellectual disability, MTSS2-related (MONDO#0001071)
Review for gene: MTSS1L was set to GREEN
Added comment: Alt gene name: MTSS2

Huang (2022): recurring de novo missense variant (p.R671W) causing syndromic intellectual disability in 5 unrelated individuals.
- Individuals present with GDD, mild ID (5/5), nystagmus (3/5), optic atrophy (1/5), ptosis (2/5), sensorineural hearing loss (2/4), microcephaly or relative microcephaly (5/5), and shared mild facial dysmorphisms.
- Overexpression supports a DN mechanism
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4959 DOHH Zornitza Stark Phenotypes for gene: DOHH were changed from Neurodevelopmental disorder, DOHH-related (MONDO#0700092) to Neurodevelopmental disorder with microcephaly, cerebral atrophy, and visual impairment, MIM# 620066
Intellectual disability syndromic and non-syndromic v0.4958 DOHH Zornitza Stark reviewed gene: DOHH: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with microcephaly, cerebral atrophy, and visual impairment, MIM# 620066; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.4924 SLC31A1 Daniel Flanagan gene: SLC31A1 was added
gene: SLC31A1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: SLC31A1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC31A1 were set to PMID: 35913762
Phenotypes for gene: SLC31A1 were set to Neurodevelopmental disorder, SLC31A1-related (MONDO#0700092)
Review for gene: SLC31A1 was set to RED
Added comment: SLC31A1 is also referred to as CTR1.
Monozygotic twins with hypotonia, global developmental delay, seizures, and rapid brain atrophy, consistent with profound central nervous system copper deficiency. Homozygous for a novel missense variant (p.(Arg95His)) in copper transporter CTR1, both parents heterozygous. A mouse knock-out model of CTR1 deficiency resulted in prenatal lethality.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.4864 TAF8 Zornitza Stark Phenotypes for gene: TAF8 were changed from Neurodevelopmental disorder, MONDO:0700092, TAF8-related to Neurodevelopmental disorder with severe motor impairment, absent language, cerebral hypomyelination, and brain atrophy, MIM# 619972
Intellectual disability syndromic and non-syndromic v0.4863 TAF8 Zornitza Stark edited their review of gene: TAF8: Changed phenotypes: Neurodevelopmental disorder with severe motor impairment, absent language, cerebral hypomyelination, and brain atrophy, MIM# 619972
Intellectual disability syndromic and non-syndromic v0.4814 HEATR3 Zornitza Stark Marked gene: HEATR3 as ready
Intellectual disability syndromic and non-syndromic v0.4814 HEATR3 Zornitza Stark Gene: heatr3 has been classified as Amber List (Moderate Evidence).
Intellectual disability syndromic and non-syndromic v0.4814 HEATR3 Zornitza Stark Classified gene: HEATR3 as Amber List (moderate evidence)
Intellectual disability syndromic and non-syndromic v0.4814 HEATR3 Zornitza Stark Gene: heatr3 has been classified as Amber List (Moderate Evidence).
Intellectual disability syndromic and non-syndromic v0.4813 HEATR3 Chern Lim gene: HEATR3 was added
gene: HEATR3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: HEATR3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HEATR3 were set to PMID: 35213692
Phenotypes for gene: HEATR3 were set to Bone marrow failure, short stature, facial and acromelic dysmorphic features, and mild intellectual disability; Diamond Blackfan anaemia MONDO:0015253, HEATR3 related
Review for gene: HEATR3 was set to AMBER
gene: HEATR3 was marked as current diagnostic
Added comment: PMID: 35213692:
- 4 unrelated individuals with biallelic HEATR3 variants (missense and splice site variants), exhibiting bone marrow failure, short stature, facial and acromelic dysmorphic features, and mild intellectual disability.
- Functional analysis showed HEATR3 variants destabilised the protein, resulting in a reduction of nuclear uL18 and impaired ribosome biogenesis.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4740 DROSHA Lucy Spencer gene: DROSHA was added
gene: DROSHA was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: DROSHA was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: DROSHA were set to 35405010
Phenotypes for gene: DROSHA were set to Neurodevelopmental disorder (MONDO#0700092), DROSHA-related
Review for gene: DROSHA was set to AMBER
Added comment: 2 individuals with profound intellectual disability, epilepsy, white matter atrophy, microcephaly, and dysmorphic features, who carry damaging de novo heterozygous variants in DROSHA. Both variants are missense, absent from gnomad. Both individuals noted to have Rett-like features.

Functional studies in patient fibroblasts showed one of the missense altered the expression of mature miRNA. Fruit fly models with homozygous LOF variants die during larval stages. introduction of the missense seen in the patients was able to partially rescue this phenotype suggesting LOF is not the mechanism.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4690 PIDD1 Zornitza Stark Phenotypes for gene: PIDD1 were changed from Global developmental delay; Intellectual disability; Seizures; Autism; Behavioral abnormality; Psychosis; Pachygyria; Lissencephaly; Abnormality of the corpus callosum to Intellectual developmental disorder, autosomal recessive 75, with neuropsychiatric features and variant lissencephaly, MIM# 619827
Intellectual disability syndromic and non-syndromic v0.4689 PIDD1 Zornitza Stark reviewed gene: PIDD1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual developmental disorder, autosomal recessive 75, with neuropsychiatric features and variant lissencephaly, MIM# 619827; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.4484 SOD1 Naomi Baker gene: SOD1 was added
gene: SOD1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SOD1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SOD1 were set to PMID: 31314961; 31332433; 34788402
Phenotypes for gene: SOD1 were set to Spastic tetraplegia and axial hypotonia, progressive, MIM#618598
Review for gene: SOD1 was set to GREEN
Added comment: Phenotypes include one individual with axial hypotonia and loss of gross and fine motor function beginning at 6 months of age, after which severe, progressive spastic tetraparesis developed and Babinski’s sign was present in both feet. MRI of brain detected mild frontoparietal atrophy.

The second individual had severe and marked by progressive loss of motor abilities from 9 months of age, tetraspasticity with predominance in the lower extremities, mild cerebellar atrophy, and hyperekplexia-like symptoms. Dysmorphic features such as low set, posteriorly rotated ears, and overlapping toes

The third individual is an infant with severe global developmental delay, axial hypotonia and limb spasticity. No dysmorphic facial features were noted, but she had a high arched palate, bilateral 5th finger clinodactyly, partial toe syndactyly of the second and third toes, and a single hyperpigmented macule tongue fasciculations, axial hypotonia with limb spasticity (more pronounced in the lower limbs), ankle clonus, and brisk patellar deep tendon reflexes.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4351 ASXL2 Zornitza Stark commented on gene: ASXL2: Shashi-Pena syndrome is a neurodevelopmental syndrome characterized by delayed psychomotor development, variable intellectual disability, hypotonia, facial dysmorphism, and some unusual features, including enlarged head circumference, glabellar nevus flammeus, and deep palmar creases. Some patients may also have atrial septal defect, episodic hypoglycaemia, changes in bone mineral density, and/or seizures.

At least 7 unrelated individuals reported.
Intellectual disability syndromic and non-syndromic v0.4322 FOXR2 Paul De Fazio changed review comment from: 1 patient described with a de novo missense variant. Phenotypes include: postnatal microcephaly, progressive brain atrophy, skeletal abnormalities, brain abnormalities, ophthalmic abnormalities, neuromuscular abnormalities, and dysmorphic features. A variant in ATP1A3 was considered to have contributed to the final phenotype.

In vitro functional evidence is supportive of pathogenicity (variant causes protein instability and abnormal nuclear aggregation).

A mouse knockout has comparable phenotypes, and a severe survival deficit.

Rated amber (1 patient, functional evidence, mouse model).
Sources: Literature; to: Geme added incorrectly.
Intellectual disability syndromic and non-syndromic v0.4322 FOXR1 Paul De Fazio gene: FOXR1 was added
gene: FOXR1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: FOXR1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: FOXR1 were set to 34723967
Phenotypes for gene: FOXR1 were set to Postnatal microcephaly, progressive brain atrophy and global developmental delay
Mode of pathogenicity for gene: FOXR1 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: FOXR1 was set to AMBER
gene: FOXR1 was marked as current diagnostic
Added comment: 1 patient described with a de novo missense variant. Phenotypes include: postnatal microcephaly, progressive brain atrophy, skeletal abnormalities, brain abnormalities, ophthalmic abnormalities, neuromuscular abnormalities, and dysmorphic features. A variant in ATP1A3 was considered to have contributed to the final phenotype.

In vitro functional evidence is supportive of pathogenicity (variant causes protein instability and abnormal nuclear aggregation).

A mouse knockout has comparable phenotypes, and a severe survival deficit.

Rated amber (1 patient, functional evidence, mouse model).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4322 FOXR2 Paul De Fazio gene: FOXR2 was added
gene: FOXR2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: FOXR2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: FOXR2 were set to 34723967
Phenotypes for gene: FOXR2 were set to Postnatal microcephaly, progressive brain atrophy and global developmental delay
Review for gene: FOXR2 was set to AMBER
gene: FOXR2 was marked as current diagnostic
Added comment: 1 patient described with a de novo missense variant. Phenotypes include: postnatal microcephaly, progressive brain atrophy, skeletal abnormalities, brain abnormalities, ophthalmic abnormalities, neuromuscular abnormalities, and dysmorphic features. A variant in ATP1A3 was considered to have contributed to the final phenotype.

In vitro functional evidence is supportive of pathogenicity (variant causes protein instability and abnormal nuclear aggregation).

A mouse knockout has comparable phenotypes, and a severe survival deficit.

Rated amber (1 patient, functional evidence, mouse model).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4255 MYH10 Krithika Murali gene: MYH10 was added
gene: MYH10 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list,Literature
Mode of inheritance for gene: MYH10 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MYH10 were set to 24825879; 24901346; 25356899; 22495309; 25003005
Phenotypes for gene: MYH10 were set to Microcephaly; Intellectual Disability
Review for gene: MYH10 was set to GREEN
Added comment: De novo variants were identified in 5 unrelated individuals with moderate-severe ID and developmental delay.

Other reported phenotypic features include microcephaly (4/5), IUGR/failure to thrive (4/5), cerebral atrophy (3/5), hydrocephalus (2/5), congenital bilateral hip dysplasia (2/5), cerebellar atrophy (1/5), congenital diaphragmatic hernia (1/5), cranial nerve palsy (1/5), nystagmus (1/5), dysplastic kidney (1/5).

Defects in heart development, body wall closure and other birth defects noted in mouse models.
Sources: Expert list, Literature
Intellectual disability syndromic and non-syndromic v0.4214 ZNHIT3 Zornitza Stark gene: ZNHIT3 was added
gene: ZNHIT3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ZNHIT3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZNHIT3 were set to 28335020; 28335020; 31048081
Phenotypes for gene: ZNHIT3 were set to PEHO syndrome, MIM# 260565
Review for gene: ZNHIT3 was set to GREEN
Added comment: PEHO is a severe autosomal recessive neurodevelopmental disorder characterized by extreme cerebellar atrophy due to almost total loss of granule neurons. Affected individuals present in early infancy with hypotonia, profoundly delayed psychomotor development, optic atrophy, progressive atrophy of the cerebellum and brainstem, and dysmyelination. Most patients also develop infantile seizures that are often associated with hypsarrhythmia on EEG, and many have peripheral oedema. More than 20 affected individuals reported of Finnish origin, p.Ser31Leu is a founder variant. One compound het reported and supportive animal model.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4202 GABRD Zornitza Stark gene: GABRD was added
gene: GABRD was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: GABRD was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GABRD were set to 15115768; 34633442
Phenotypes for gene: GABRD were set to Intellectual disability; Epilepsy; Susceptibility to epilepsy, MIM#613060
Review for gene: GABRD was set to GREEN
Added comment: Susceptibility to epilepsy, MIM#613060: Limited reports. The variant originally reported in PMID 15115768 in association with epilepsy is present in >4,000 hets in gnomad and 55 homs which is not consistent with a Mendelian disorder.

PMID 34633442: 10 individuals with 7 unique variants reported in individuals with neurodevelopmental disorders and epilepsy. Six of the variants were demonstrated to be GoF, and those individuals with neurodevelopmental disorders with behavioural issues, various degrees of intellectual disability, generalized epilepsy with atypical absences and generalized myoclonic and/or bilateral tonic-clonic seizures. In contrast, the one individual carrying a loss-of-function variant had normal intelligence, no seizure history but has a diagnosis of autism spectrum disorder and suffering from elevated internalizing psychiatric symptoms.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4162 ATP11A Elena Savva gene: ATP11A was added
gene: ATP11A was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ATP11A was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: ATP11A were set to PMID: 34403372
Phenotypes for gene: ATP11A were set to Neurological disorder
Mode of pathogenicity for gene: ATP11A was set to Other
Review for gene: ATP11A was set to AMBER
Added comment: PMID: 34403372:
- Single de novo missense variant reported in a patient with developmental delay and neurological deterioration.
- Patient MRI showed severe cerebral atrophy, ventriculomegaly, hypomyelination leukodystrophy, thinned corpus callosum. Axonal neuropathy suggested.
- K/I heterozygous mice died perinatally.
- Functional studies on missense variant show plasma membrane lipid content impairment, reduced ATPase activity etc.

gnomAD: some NMD PTCs present, good quality variants found with 4-5 hets.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4104 PRICKLE2 Hazel Phillimore gene: PRICKLE2 was added
gene: PRICKLE2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PRICKLE2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PRICKLE2 were set to PMID: 34092786
Phenotypes for gene: PRICKLE2 were set to Neurodevelopmental disorder; global developmental delay; behavioural difficulties ± epilepsy; autistic features; attention deficit hyperactive disorder; psychiatric symptoms
Review for gene: PRICKLE2 was set to GREEN
Added comment: Six subjects from four unrelated families with neurodevelopmental delay, behavioural difficulties and epilepsy had heterozygous variants, either de novo or segregating with disease.

Two missense were de novo, c.122 C>T; p.(Pro41Leu) and c.680C>G; p.(Thr227Arg); one nonsense variant was de novo (c.214 C>T; p.(Arg72*); and one frameshift variant segregated with the disorder in three affected females (c.1286_1287delGT; p.(Ser429Thrfs*56)).

Loss-of-function (homozygous) variants have been shown to cause seizures in flies; and both heterozygous and homozygous mice have shown behavioral abnormalities including altered social interaction, learning abnormalities, and behavioral inflexibility (PMID: 21276947).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4093 CHRM1 Bryony Thompson gene: CHRM1 was added
gene: CHRM1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CHRM1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CHRM1 were set to 34212451; 31981491; 12483218
Phenotypes for gene: CHRM1 were set to Neurodevelopmental delay; intellectual disability; autism
Review for gene: CHRM1 was set to AMBER
Added comment: PMID: 34212451 - 2 unrelated cases with de novo missense variants (p.Pro380Leu and p.Phe425Ser), one case with early-onset refractory epilepsy, severe disability, and progressive cerebral and cerebellar atrophy, and the second case with mild dysmorphism, global developmental delay, and moderate intellectual disability. In vitro biochemical analyses of p.Pro380Leu demonstrated a reduction in protein levels, impaired cellular trafficking, and defective activation of intracellular signaling pathways.
PMID: 31981491 - an autism spectrum disorder (no other information on phenotype, except ascertained to have severe neurodevelopmental delay) case with a de novo missense variant p.(Arg210Leu)
PMID: 12483218 - null mouse model assessing memory demonstrated selective cognitive dysfunction.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4059 RNF220 Konstantinos Varvagiannis changed review comment from: Sferra et al (2021 - PMID: 33964137) provide extensive evidence that biallelic RNF220 mutations cause a disorder characterized by hypomyelinating leukodystrophy, ataxia (9/9 - onset 1-5y), borderline intellectual functioning (3/9) / intellectual disability (5/9 - in most cases mild), sensorineural deafness (9/9) with complete hearing loss in the first decade of life, hepatopathy (9/9) with associated periportal fibrosis, and dilated cardiomyopathy (9/9) which was fatal.

Other neurologic manifestations apart from ataxia incl. hyperreflexia (8/8), spastic paraplegia (9/9), dysarthria (9/9), peripheral neuropathy (4/9), seizures in one case (1/9). Upon brain MRI there was thin corpus callosum (9/9) or cerebellar atrophy in some (2/9).

The authors identified homozygosity for 2 recurrent missense RNF220 variants in affected members belonging to these 5 broad consanguineous pedigrees (7 families), namely NM_018150.4:c.1094G>A / p.Arg365Gly in 4 Roma families in the context of a shared haplotype (/founder effect) as well as c.1088G>A / p.Arg363Gly in a large pedigree from southern Italy initially reported by Leuzzi et al (2000 - PMID: 10881263).

Extensive segregation analyses were carried out including several affected and unaffected members.

RNF220 encodes ring finger protein 220, which functions as an E3 ubiquitin ligase. Previous studies have shown among others a role in modulation of Sonic hedgehog/GLI signaling and cerebellar development

Evidence for the role of RNF220 included relevant expression, localization within the cell, interaction partners (lamin B1, 20S proteasome), similarities with other laminopathies in terms of phenotype, etc :
*RNF220 has a relevant expression pattern in CNS (based on qRT-PCR analyses in human brain, cerebellum, cerebral cortex / mRNA levels in human fetal CNS with higher expression in cerebellum, spinal cord and cortex / previous GTEx data / protein levels in mouse CNS)
*The protein displays nuclear localization based on iPSC cells differentiated to motor neurons (also supported by data from the Human Protein Atlas). Transfection of COS-1 cells demonstrated localization primarily to the nucleus (as also previously demonstrated in HEK293T cells) in vesicle like structures with ASF2/SF2 colocalization suggesting enrichment in nuclear speckles. There was also partial co-distribution with the 20S proteasome. R363Q and R365Q additionally coalesced in the cytoplasm forming protein aggregates/inclusions.
*Immunofluorescence studies in patient fibroblasts also confirmed abnormal increase of the protein in the cytoplasm and increased fluorescence with the 20S proteasome.
*Proteomic identification of RNF220-interacting proteins in transfected HEK293T cells demonstrated enrichment for all members of the lamin protein family (incl . lamin B1, AC, B2).
*RNAi-mediated downregulation of RNF222 in Drosophila suggested altered subcellular localization and accumulation of the fly orthologue for human lamin B1.
*Immunoprecipitation of lamin B1 from the nuclear matrix of cerebellar cells suggested significant interaction of endogenous lamin B1 with RNF220, while transfection studies in HEK293T cells for wt/mt suggested reduced binding to endogenous lamin B1 for RNF220 mt compared to wt (more prominent for R365Q). RNF220 mutants also reduced ubiquitination of nuclear lamin B1 compared to wt.
*Patient fibroblasts immunostained with different nuclear envelope markers displayed abnormal nuclear shapes with multiple invaginations and lobulations, findings also observed in laminopathies.

There is currently no associated phenotype in OMIM or G2P. SysID includes RNF220 among the current primary ID genes.
Sources: Literature, Other; to: Sferra et al (2021 - PMID: 33964137) provide extensive evidence that biallelic RNF220 mutations cause a disorder characterized by hypomyelinating leukodystrophy, ataxia (9/9 - onset 1-5y), borderline intellectual functioning (3/9) / intellectual disability (5/9 - in most cases mild), sensorineural deafness (9/9) with complete hearing loss in the first decade of life, hepatopathy (9/9) with associated periportal fibrosis, and dilated cardiomyopathy (9/9) which was fatal.

Other neurologic manifestations apart from ataxia incl. hyperreflexia (8/8), spastic paraplegia (9/9), dysarthria (9/9), peripheral neuropathy (4/9), seizures in one case (1/9). Upon brain MRI there was thin corpus callosum (9/9) or cerebellar atrophy in some (2/9).

The authors identified homozygosity for 2 recurrent missense RNF220 variants in affected members belonging to these 5 broad consanguineous pedigrees (7 families), namely NM_018150.4:c.1094G>A / p.Arg365Gly in 4 Roma families in the context of a shared haplotype (/founder effect) as well as c.1088G>A / p.Arg363Gly in a large pedigree from southern Italy initially reported by Leuzzi et al (2000 - PMID: 10881263).

Extensive segregation analyses were carried out including several affected and unaffected members.

RNF220 encodes ring finger protein 220, which functions as an E3 ubiquitin ligase. Previous studies have shown among others a role in modulation of Sonic hedgehog/GLI signaling and cerebellar development

Evidence for the role of RNF220 included relevant expression, localization within the cell, interaction partners (lamin B1, 20S proteasome), similarities with other laminopathies in terms of phenotype, etc :
*RNF220 has a relevant expression pattern in CNS (based on qRT-PCR analyses in human brain, cerebellum, cerebral cortex / mRNA levels in human fetal CNS with higher expression in cerebellum, spinal cord and cortex / previous GTEx data / protein levels in mouse CNS)
*The protein displays nuclear localization based on iPSC cells differentiated to motor neurons (also supported by data from the Human Protein Atlas). Transfection of COS-1 cells demonstrated localization primarily to the nucleus (as also previously demonstrated in HEK293T cells) in vesicle like structures with ASF2/SF2 colocalization suggesting enrichment in nuclear speckles. There was also partial co-distribution with the 20S proteasome. R363Q and R365Q additionally coalesced in the cytoplasm forming protein aggregates/inclusions.
*Immunofluorescence studies in patient fibroblasts also confirmed abnormal increase of the protein in the cytoplasm and increased fluorescence with the 20S proteasome.
*Proteomic identification of RNF220-interacting proteins in transfected HEK293T cells demonstrated enrichment for all members of the lamin protein family (incl . lamin B1, AC, B2).
*RNAi-mediated downregulation of RNF222 in Drosophila suggested altered subcellular localization and accumulation of the fly orthologue for human lamin B1.
*Immunoprecipitation of lamin B1 from the nuclear matrix of cerebellar cells suggested significant interaction of endogenous lamin B1 with RNF220, while transfection studies in HEK293T cells for wt/mt suggested reduced binding to endogenous lamin B1 for RNF220 mt compared to wt (more prominent for R365Q). RNF220 mutants also reduced ubiquitination of nuclear lamin B1 compared to wt.
*Patient fibroblasts immunostained with different nuclear envelope markers displayed abnormal nuclear shapes with multiple invaginations and lobulations, findings also observed in laminopathies.

There is currently no associated phenotype in OMIM or G2P. SysID includes RNF220 among the current primary ID genes.

Consider inclusion in panels for leukodystrophies, childhood onset ataxia, sensorineural hearing loss, corpus callosum anomalies, cardiomyopathies, hepatopathies, etc in all cases with green rating.

Sources: Literature, Other
Intellectual disability syndromic and non-syndromic v0.4059 RNF220 Konstantinos Varvagiannis gene: RNF220 was added
gene: RNF220 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature,Other
Mode of inheritance for gene: RNF220 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RNF220 were set to 33964137; 10881263
Phenotypes for gene: RNF220 were set to Leukodystrophy; CNS hypomyelination; Ataxia; Intellectual disability; Sensorineural hearing impairment; Elevated hepatic transaminases; Hepatic fibrosis; Dilated cardiomyopathy; Spastic paraplegia; Dysarthria; Abnormality of the corpus callosum
Penetrance for gene: RNF220 were set to Complete
Review for gene: RNF220 was set to GREEN
Added comment: Sferra et al (2021 - PMID: 33964137) provide extensive evidence that biallelic RNF220 mutations cause a disorder characterized by hypomyelinating leukodystrophy, ataxia (9/9 - onset 1-5y), borderline intellectual functioning (3/9) / intellectual disability (5/9 - in most cases mild), sensorineural deafness (9/9) with complete hearing loss in the first decade of life, hepatopathy (9/9) with associated periportal fibrosis, and dilated cardiomyopathy (9/9) which was fatal.

Other neurologic manifestations apart from ataxia incl. hyperreflexia (8/8), spastic paraplegia (9/9), dysarthria (9/9), peripheral neuropathy (4/9), seizures in one case (1/9). Upon brain MRI there was thin corpus callosum (9/9) or cerebellar atrophy in some (2/9).

The authors identified homozygosity for 2 recurrent missense RNF220 variants in affected members belonging to these 5 broad consanguineous pedigrees (7 families), namely NM_018150.4:c.1094G>A / p.Arg365Gly in 4 Roma families in the context of a shared haplotype (/founder effect) as well as c.1088G>A / p.Arg363Gly in a large pedigree from southern Italy initially reported by Leuzzi et al (2000 - PMID: 10881263).

Extensive segregation analyses were carried out including several affected and unaffected members.

RNF220 encodes ring finger protein 220, which functions as an E3 ubiquitin ligase. Previous studies have shown among others a role in modulation of Sonic hedgehog/GLI signaling and cerebellar development

Evidence for the role of RNF220 included relevant expression, localization within the cell, interaction partners (lamin B1, 20S proteasome), similarities with other laminopathies in terms of phenotype, etc :
*RNF220 has a relevant expression pattern in CNS (based on qRT-PCR analyses in human brain, cerebellum, cerebral cortex / mRNA levels in human fetal CNS with higher expression in cerebellum, spinal cord and cortex / previous GTEx data / protein levels in mouse CNS)
*The protein displays nuclear localization based on iPSC cells differentiated to motor neurons (also supported by data from the Human Protein Atlas). Transfection of COS-1 cells demonstrated localization primarily to the nucleus (as also previously demonstrated in HEK293T cells) in vesicle like structures with ASF2/SF2 colocalization suggesting enrichment in nuclear speckles. There was also partial co-distribution with the 20S proteasome. R363Q and R365Q additionally coalesced in the cytoplasm forming protein aggregates/inclusions.
*Immunofluorescence studies in patient fibroblasts also confirmed abnormal increase of the protein in the cytoplasm and increased fluorescence with the 20S proteasome.
*Proteomic identification of RNF220-interacting proteins in transfected HEK293T cells demonstrated enrichment for all members of the lamin protein family (incl . lamin B1, AC, B2).
*RNAi-mediated downregulation of RNF222 in Drosophila suggested altered subcellular localization and accumulation of the fly orthologue for human lamin B1.
*Immunoprecipitation of lamin B1 from the nuclear matrix of cerebellar cells suggested significant interaction of endogenous lamin B1 with RNF220, while transfection studies in HEK293T cells for wt/mt suggested reduced binding to endogenous lamin B1 for RNF220 mt compared to wt (more prominent for R365Q). RNF220 mutants also reduced ubiquitination of nuclear lamin B1 compared to wt.
*Patient fibroblasts immunostained with different nuclear envelope markers displayed abnormal nuclear shapes with multiple invaginations and lobulations, findings also observed in laminopathies.

There is currently no associated phenotype in OMIM or G2P. SysID includes RNF220 among the current primary ID genes.
Sources: Literature, Other
Intellectual disability syndromic and non-syndromic v0.4058 ARF3 Konstantinos Varvagiannis gene: ARF3 was added
gene: ARF3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ARF3 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: ARF3 were set to 34346499
Phenotypes for gene: ARF3 were set to Global developmental delay; Intellectual disability; Seizures; Morphological abnormality of the central nervous system
Penetrance for gene: ARF3 were set to unknown
Added comment: Sakamoto et al (2021 - PMID: 34346499) provide some evidence that monoallelic ARF3 pathogenic variants may be associated with a NDD with brain abnormality.

Using trio exome sequencing, the authors identified 2 individuals with NDD harboring de novo ARF3 variants, namely: NM_001659.2:c.200A>T / p.Asp67Val and c.296G>T / p.Arg99Leu.

Individual 1 (with Asp67Val / age : 4y10m), appeared to be more severelely affected with prenatal onset progressive microcephaly, severe global DD, epilepsy. Upon MRI there was cerebellar and brainstem atrophy. Individual 2 (Arg99Leu / 14y) had severe DD and ID (IQ of 23), epilepsy and upon MRI cerebellar hypoplasia. This subject did not exhibit microcephaly. Common facial features incl. broad nose, full cheeks, small philtrum, strabismus, thin upper lips and abnormal jaw. There was no evidence of systemic involvement in both.

ARF3 encodes ADP-ribosylation factor 3. Adenosine diphosphate ribosylation factors (ARFs) are key proteins for regulation of cargo sorting at the Golgi network, with ARF3 mainly working at the trans-Golgi network. ARFs belong to the small GTP-binding protein (G protein) superfamily. ARF3 switches between an active GTP-bound form and an inactive GDP-bound form, regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) respectively.

Members of the ARF superfamily regulate various aspects of membrane traffic, among others in neurons.

There are 5 homologs of ARF families, divided in 3 classes. ARF3 and ARF1 belong to class I. Monoallelic ARF1 mutations are associated with Periventricular nodular heterotopia 8 (MIM 618185).

In vivo, in vitro and in silico studies for the 2 variants suggest that both impair the Golgi transport system although each variant most likely exerts a different effect (gain-of-function for Arg99Leu vs loss-of-function/dominant-negative for Asp67Val).

This was also reflected in somewhat different phenotype of the subjects with the respective variants. Common features included severe DD, epilepsy and brain abnormalities although Asp67Val was associated with diffuse brain atrophy as well as congenital microcephaly and Arg99Leu with cerebellar hypoplasia.

Evidence to support the effect of each variant include:

Arg99Leu:
Had identical Golgi localization to that of wt
Had increased binding activity with GGA1, a protein recruited by the GTP-bound active form of ARF3 to the TGN membrane (supporting GoF)
In silico structural analysis suggested it may fail to stabilize the conformation of Asp26, resulting in impaired GTP hydrolysis (GoF).
In transgenic fruit flies, evaluation of the ARF3 variant toxicity using the rough eye phenotype this variant was associated with increased severity of the r-e phenotype similar to a previously studied GoF variant (Gln71Leu)

Asp67Val:
Did not show a Golgi-like pattern of localization (similar to Thr31Asn a previously studied dominant-negative variant)
Displayed decreased protein stability
In silico structural analysis suggested that Asp67Val may lead to compromised binding of GTP or GDP (suggestive of LoF)
In transgenic Drosophila eye-specific expression of Asp67Val (similar to Thr31Asn, a known dominant-negative variant) was lethal possibly due to high toxicity in very small amounts in tissues outside the eye.

There is no associated phenotype in OMIM, G2P or SysID.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4040 PIDD1 Konstantinos Varvagiannis gene: PIDD1 was added
gene: PIDD1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PIDD1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PIDD1 were set to 28397838; 29302074; 33414379; 34163010
Phenotypes for gene: PIDD1 were set to Global developmental delay; Intellectual disability; Seizures; Autism; Behavioral abnormality; Psychosis; Pachygyria; Lissencephaly; Abnormality of the corpus callosum
Penetrance for gene: PIDD1 were set to Complete
Review for gene: PIDD1 was set to GREEN
Added comment: There is enough evidence to include this gene in the current panel with green rating.

Biallelic PIDD1 pathogenic variants have been reported in 26 individuals (11 families) with DD (all), variable degrees of ID (mild to severe), behavioral (eg. aggression/self-mutilation in several, ADHD) and/or psychiatric abnormalities (ASD, psychosis in 5 belonging to 3 families), well-controlled epilepsy is some (9 subjects from 6 families) and MRI abnormalities notably abnormal gyration pattern (pachygyria with predominant anterior gradient) as well as corpus callosum anomalies (commonly thinning) in several. Dysmorphic features have been reported in almost all, although there has been no specific feature suggested.

The first reports on the phenotype associated with biallelic PIDD1 mutations were made by Harripaul et al (2018 - PMID: 28397838) and Hu et al (2019 - PMID: 29302074) [both studies investigating large cohorts of individuals with ID from consanguineous families].

Sheikh et al (2021 - PMID: 33414379) provided details on the phenotype of 15 individuals from 5 families including those from the previous 2 reports and studied provided evidence on the role of PIDD1 and the effect of variants.

Zaki et al (2021 - PMID: 34163010) reported 11 additional individuals from 6 consanguineous families, summarize the features of all subjects published in the literature and review the neuroradiological features of the disorder.

PIDD1 encodes p53-induced death domain protein 1. The protein is part of the PIDDosome, a multiprotein complex also composed of the bipartite linker protein CRADD (also known as RAIDD) and the proform of caspase-2 and induces apoptosis in response to DNA damage.

There are 5 potential PIDD1 mRNA transcript variants with NM_145886.4 corresponding to the longest. Similar to the protein encoded by CRADD, PIDD1 contains a death domain (DD - aa 774-893). Constitutive post-translational processing gives PIDD1-N, PIDD1-C the latter further processed into PIDD1-CC (by auto-cleavage). Serine residues at pos. 446 and 588 are involved in this autoprocessing generating PIDD1-C (aa 446-910) and PIDD1-CC (aa 774-893). The latter is needed for caspase-2 activation.

Most (if not all) individuals belonged to consanguineous families of different origins and harbored pLoF or missense variants.

Variants reported so far include : c.2587C>T; p.Gln863* / c.1909C>T ; p.Arg637* / c.2443C>T / p.Arg815Trp / c.2275-1G>A which upon trap assay was shown to lead to skipping of ex15 with direct splicing form exon14 to the terminal exon 16 (resulting to p.Arg759Glyfs*1 with exlcusion of the entire DD) / c.2584C>T; p.Arg862Trp / c.1340G>A; p.Trp447* / c.2116_2120del; p.Val706His*, c.1564_1565del; p.Gly602fs*26

Evidence so far provided includes:
- Biallelic CRADD variants cause a NDD disorder and a highly similar gyration pattern.
- Confirmation of splicing effect (eg. for c.2275-1G>A premature stop in position 760) or poor expression (NM_145886.3:c.2587C>T; p.Gln863*). Arg815Trp did not affect autoprocessing or protein stability.
- Abnormal localization pattern, loss of interaction with CRADD and failure to activate caspase-2 (MDM2 cleavage assay) [p.Gln863* and Arg815Trp]
- Available expression data from GTEx (PIDD1 having broad expression in multiple tissues, but higher in brain cerebellum) as well as BrainSpan and PsychEncode studies suggesting high coexpression of PIDD1, CRADD and CASP2 in many regions in the developing human brain.
- Variants in other genes encoding proteins interacting with PIDD1 (MADD, FADD, DNAJ, etc) are associated with NDD.

Pidd-1 ko mice (ex3-15 removal) lack however CNS-related phenotypes. These show decreased anxiety but no motor anomalies. This has also been the case with Cradd-/- mice displaying no significant CNS phenotypes without lamination defects.

There is currently no associated phenotype in OMIM, PanelApp Australia. PIDD1 is listed in the DD panel of G2P (PIDD1-related NDD / biallelic / loss of function / probable) . SysID includes PIDD1 among the current primary ID genes.

Overall the gene appears to be relevant for the epilepsy panel, panels for gyration and/or corpus callosum anomalies etc.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4001 CAMK4 Konstantinos Varvagiannis gene: CAMK4 was added
gene: CAMK4 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature,Other
Mode of inheritance for gene: CAMK4 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: CAMK4 were set to 30262571; 33098801; 33211350
Phenotypes for gene: CAMK4 were set to Global developmental delay; Intellectual disability; Autism; Behavioral abnormality; Abnormality of movement; Dystonia; Ataxia; Chorea; Myoclonus
Penetrance for gene: CAMK4 were set to Complete
Review for gene: CAMK4 was set to GREEN
Added comment: 3 publications by Zech et al (2018, 2020 - PMIDs : 30262571, 33098801, 33211350) provide clinical details on 3 individuals, each harboring a private de novo CAMK4 variant.

Overlapping features included DD, ID, behavoral issues, autism and abnormal hyperkinetic movements. Dystonia and chorea in all 3 appeared 3-20 years after initial symptoms.

CAMK4 encodes Calcium/Calmodulin-dependent protein kinase IV, an important mediator of calcium-mediated activity and dynamics, particularly in the brain. It is involved in neuronal transmission, synaptic plasticity, and neuronal gene expression required for brain development and neuronal homeostasis (summary by OMIM based on Zech et al, 2018).

The 473 aa enzyme has a protein kinase domain (aa 46-300) and a C-terminal autoregulatory domain (aa 305-341) the latter comprising an autoinhibitory domain (AID / aa 305-321) and a calmodulin-binding domain (CBD / aa 322-341) [NP_001735.1 / NM_001744.4 - also used below].

Variants in all 3 subjects were identified following trio-WES and were in all cases protein-truncating, mapping to exon 10 or exon 10-intron 10 junction, expected to escape NMD and cause selective abrogation of the autoinhibitory domain (aa 305-321) leading overall to gain-of-function.

Variation databases include pLoF CAMK4 variants albeit in all cases usptream or downstream of this region (pLI of this gene in gnomAD: 0.51). Variants leading to selective abrogation of the autoregulatory domain have not been reported.

Extensive evidence for the GoF effect of the variant has been provided in the first publication. Several previous studies have demonstrated that abrogation of the AID domain leads to consitutive activation (details below).

Mouse models - though corresponding to homozygous loss of function - support a role for CAMKIV in cognitive and motor symptoms. Null mice display tremulous and ataxic movements, deficiencies in balance and sensorimotor performance associated with reduced number of Purkinje neurons (Ribar et al 2000, PMID: 11069976 - not reviewed). Wei et al (2002, PMID: 12006982 - not reviewed) provided evidence for alteration in hippocampal physiology and memory function.

Heterozygous mutations in other genes for calcium/calmodulin-dependent protein kinases (CAMKs) e.g. CAMK2A/CAMK2B (encoding subunits of CAMKII) have been reported in individuals with ID.

---

The proband in the first publication (PMID: 30262571) was a male with DD, ID, behavioral difficulties (ASD, autoaggression, stereotypies) and hyperkinetic movement disorder (myoclonus, chorea, ataxia) with severe generalized dystonia (onset at the age of 13y). Brain MRI demonstrated cerebellar atrophy.

Extensive work-up incl. karyotyping, CMA, DYT-TOR1A, THAP1, GCH1, SCA1/2/3/6/7/8/12/17, Friedreich's ataxia and FMR1 analysis was negative.F

Trio WES identified a dn splice site variant (c.981+1G>A) in the last exon-intron junction. RT-PCR followed by gel electrophoresis and Sanger in fibroblasts from an affected and control subject revealed that the proband had - as predicted by the type/location of the variant - in equal amount 2 cDNA products, a normal as well as a truncated one.

Sequencing of the shortest revealed utilization of a cryptic donor splice site upstream of the mutated donor leading to a 77bp out-of-frame deletion and introduction of a premature stop codon in the last codon (p.Lys303Serfs*28). Western blot in fibroblast cell lines revealed 2 bands corresponding to the normal protein product as well as to the p.Lys303Serfs*28 although expression of the latter was lower than that of the full length protein.

Several previous studies have shown that mutant CAMKIV species that lack the autoinhibitory domain are consitutively active (several Refs provided). Among others Chatila et al (1996, PMID: 8702940) studied an in vitro-engineered truncation mutant (Δ1-317 - truncation at position 317 of the protein) with functionally validated gain-of-function effect.

To prove enhanced activity of the splicing variant, Zech et al assessed phosphorylation of CREB (cyclic AMP-responsive element binding protein), a downstream substrate of CAMKIV. Immunobloting revealed significant increase of CREB phosphorylation in patient fibroblasts compared to controls. Overactivation of CAMKIV signaling was reversed when cells were treated with STO-609 an inhibitor of CAMKK, the ustream activator of CAMKIV.

Overall the authors demonstrated that loss of CAMKIV autoregulatory domain due to this splice variant had a gain-of-function effect.

----

Following trio-WES, Zech et al (2020 - PMID: 33098801) identified another relevant subject within cohort of 764 individuals with dystonia. This 12-y.o. male, harboring a different variant affecting the same donor site (c.981+1G>T), presented DD, ID, dystonia (onset at 3y) and additional movement disorders (myoclonus, ataxia) as well as similar behavior (ASD, autoaggression, stereotypies). [Details in suppl. p20].

----

Finally Zech et al (2020 - PMID: 33211350) reported on a 24-y.o. woman with adolescence onset choreodystonia. Other features included DD, moderate ID, absence seizures in infancy, OCD with anxiety and later diagnosis of ASD. Trio WES revealed a dn stopgain variant (c.940C>T; p.Gln314*).

----

There is no associated phenotype in OMIM, G2P.

In SysID CAMK4 is listed among the current primary ID genes.

----

Please consider inclusion in other relevant panels.
Sources: Literature, Other
Intellectual disability syndromic and non-syndromic v0.3978 ATG7 Zornitza Stark changed review comment from: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The more severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature; to: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The more severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3978 ATG7 Zornitza Stark changed review comment from: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The ore severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature; to: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The more severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3977 ATG7 Zornitza Stark gene: ATG7 was added
gene: ATG7 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ATG7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ATG7 were set to 34161705
Phenotypes for gene: ATG7 were set to Spinocerebellar ataxia, SCAR31, MIM#619422
Review for gene: ATG7 was set to GREEN
Added comment: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The ore severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3955 HID1 Zornitza Stark gene: HID1 was added
gene: HID1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: HID1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HID1 were set to 33999436
Phenotypes for gene: HID1 were set to Syndromic infantile encephalopathy; Hypopituitarism
Review for gene: HID1 was set to GREEN
Added comment: 7 individuals from 6 unrelated families reported. Clinical features included: hypopituitarism in combination with brain atrophy, thin corpus callosum, severe developmental delay, visual impairment, and epilepsy
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3950 HEATR5B Seb Lunke Marked gene: HEATR5B as ready
Intellectual disability syndromic and non-syndromic v0.3950 HEATR5B Seb Lunke Gene: heatr5b has been classified as Amber List (Moderate Evidence).
Intellectual disability syndromic and non-syndromic v0.3950 HEATR5B Seb Lunke Classified gene: HEATR5B as Amber List (moderate evidence)
Intellectual disability syndromic and non-syndromic v0.3950 HEATR5B Seb Lunke Gene: heatr5b has been classified as Amber List (Moderate Evidence).
Intellectual disability syndromic and non-syndromic v0.3947 HEATR5B Seb Lunke gene: HEATR5B was added
gene: HEATR5B was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: HEATR5B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HEATR5B were set to 33824466
Phenotypes for gene: HEATR5B were set to pontocerebellar hypoplasia; intellectual disability; seizures
Review for gene: HEATR5B was set to AMBER
Added comment: Four affected children from two families presenting with pontocerebellar hypoplasiawith neonatal seizures, severe ID and motor delay. Two homozygous splice variants were reported (c.5051–1G>A and c.5050+4A>G) in intron 31 of HEATR5B gene. Aberrant splicing was found in patient fibroblasts, which correlated with reduced levels of HEATR5B protein. Homozygous knockout mice were not viable. *NOTE: gene (and alias) not found in OMIM
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3844 UBTF Zornitza Stark Phenotypes for gene: UBTF were changed from to Neurodegeneration, childhood-onset, with brain atrophy, MIM# 617672; MONDO:0044701
Intellectual disability syndromic and non-syndromic v0.3841 UBTF Zornitza Stark reviewed gene: UBTF: Rating: GREEN; Mode of pathogenicity: None; Publications: 28777933, 29300972; Phenotypes: Neurodegeneration, childhood-onset, with brain atrophy, MIM# 617672, MONDO:0044701; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Intellectual disability syndromic and non-syndromic v0.3800 GEMIN5 Zornitza Stark gene: GEMIN5 was added
gene: GEMIN5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: GEMIN5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GEMIN5 were set to 33963192
Phenotypes for gene: GEMIN5 were set to Neurodevelopmental disorder with cerebellar atrophy and motor dysfunction, MIM# 619333
Review for gene: GEMIN5 was set to GREEN
Added comment: Neurodevelopmental disorder with cerebellar atrophy and motor dysfunction (NEDCAM) is an autosomal recessive disorder characterized by global developmental delay with prominent motor abnormalities, mainly axial hypotonia, gait ataxia, and appendicular spasticity. Affected individuals have cognitive impairment and speech delay; brain imaging shows cerebellar atrophy.

30 individuals from 22 unrelated families reported.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3668 FAR1 Zornitza Stark edited their review of gene: FAR1: Added comment: PMID 33239752: 12 patients with paediatric onset spastic paraparesis and bilateral congenital/juvenile cataracts. Most also had speech and gross motor developmental delay and truncal hypotonia. Exome sequencing identified de novo variants affecting the Arg480 residue in FAR1 (p.Arg480Cys/His/Leu). Further functional studies in fibroblasts showed that these variants cause a disruption of the plasmalogen-dependent feedback regulation of FAR1 protein levels leading to uncontrolled ether lipid production.; Changed rating: GREEN; Changed publications: 25439727, 33239752; Changed phenotypes: Peroxisomal fatty acyl-CoA reductase 1 disorder, MIM#616154, spastic paraparesis and bilateral cataracts; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.3664 MAPKAPK5 Chirag Patel gene: MAPKAPK5 was added
gene: MAPKAPK5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: MAPKAPK5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MAPKAPK5 were set to PMID: 3344202
Phenotypes for gene: MAPKAPK5 were set to Developmental delay, variable brain anomalies, congenital heart defects, dysmorphic
Review for gene: MAPKAPK5 was set to GREEN
Added comment: 3 individuals from 2 families with severe developmental delay, variable brain anomalies, congenital heart defects, dysmorphic facial features, and a distinctive type of synpolydactyly with an additional hypoplastic digit between the fourth and fifth digits of hands and/or feet. Exome sequencing identified different homozygous truncating variants in MAPKAPK5 in both families, segregating with disease and unaffected parents as carriers.

Patient-derived cells showed no expression of MAPKAPK5 protein isoforms and reduced levels of the MAPKAPK5-interacting protein ERK3. F-actin recovery after latrunculin B treatment was found to be less efficient in patient-derived fibroblasts than in control cells, supporting a role of MAPKAPK5 in F-actin polymerization.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3642 TSPOAP1 Ain Roesley gene: TSPOAP1 was added
gene: TSPOAP1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TSPOAP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TSPOAP1 were set to 33539324
Phenotypes for gene: TSPOAP1 were set to Dystonia, intellectual disability and cerebellar atrophy
Penetrance for gene: TSPOAP1 were set to unknown
Review for gene: TSPOAP1 was set to GREEN
Added comment: 7 affecteds from 3 families (1 consanguineous)
2x null, 1x missense

Affecteds with the null variants presented with juvenile-onset progressive generalized dystonia, associated with intellectual disability and cerebellar atrophy while those with the missense p.(Gly1808Ser) presented with isolated adult-onset focal dystonia (mild cognitive impairment noted)

mice KO models were investigated
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3636 SLC45A1 Zornitza Stark Phenotypes for gene: SLC45A1 were changed from to Intellectual developmental disorder with neuropsychiatric features, MIM# 617532
Intellectual disability syndromic and non-syndromic v0.3632 SLC45A1 Zornitza Stark reviewed gene: SLC45A1: Rating: AMBER; Mode of pathogenicity: None; Publications: 28434495; Phenotypes: Intellectual developmental disorder with neuropsychiatric features, MIM# 617532; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.3596 TTC5 Zornitza Stark Phenotypes for gene: TTC5 were changed from Central hypotonia; Global developmental delay; Intellectual disability; Abnormality of nervous system morphology; Microcephaly; Abnormality of the face; Behavioral abnormality; Abnormality of the genitourinary system to Neurodevelopmental disorder with cerebral atrophy and variable facial dysmorphism , MIM#619244; Central hypotonia; Global developmental delay; Intellectual disability; Abnormality of nervous system morphology; Microcephaly; Abnormality of the face; Behavioral abnormality; Abnormality of the genitourinary system
Intellectual disability syndromic and non-syndromic v0.3595 TTC5 Zornitza Stark reviewed gene: TTC5: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with cerebral atrophy and variable facial dysmorphism , MIM#619244; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.3376 UBR7 Zornitza Stark gene: UBR7 was added
gene: UBR7 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: UBR7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UBR7 were set to 33340455
Phenotypes for gene: UBR7 were set to Intellectual disability; epilepsy; hypothyroidism; congenital anomalies; dysmorphic features
Review for gene: UBR7 was set to GREEN
Added comment: Seven individuals from 6 unrelated families. All had developmental delay, and all males had urogenital anomalies, namely cryptorchidism in 5/6 and small penis in 1/6. Six individuals had seizures and hypotonia. Hypothyroidism was present in 4/7 individuals, and ptosis was noted in 6/7 individuals. Five individuals exhibited cardiac abnormalities: two had ventricular septal defect, one had atrial septal defect, one had a patent ductus arteriosus requiring surgery, and the other had a patent ductus arteriosus and a patent foramen ovale that both closed spontaneously. Five individuals had short stature (height < 3rd percentile). Physical examination revealed various dysmorphic features, including prominent forehead (3/7), hypertelorism (4/7), telecanthus (1/7), epicanthus(1/7), downslanting palpebral fissures (3/7), thick eyebrow (1/7), low-set ears (3/7), long philtrum (2/7), unilateral single transverse palmar crease (1/7), and hypertrichosis (1/7).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3361 PRKACB Zornitza Stark Phenotypes for gene: PRKACB were changed from Postaxial hand polydactyly; Postaxial foot polydactyly; Common atrium; Atrioventricular canal defect; Narrow chest; Abnormality of the teeth; Intellectual disability to Cardioacrofacial dysplasia 2, MIM# 619143; Postaxial hand polydactyly; Postaxial foot polydactyly; Common atrium; Atrioventricular canal defect; Narrow chest; Abnormality of the teeth; Intellectual disability
Intellectual disability syndromic and non-syndromic v0.3263 EMC10 Chirag Patel gene: EMC10 was added
gene: EMC10 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: EMC10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EMC10 were set to PMID: 32869858
Phenotypes for gene: EMC10 were set to Developmental delay and intellectual disability, no OMIM#
Review for gene: EMC10 was set to RED
Added comment: Homozygous variants of EMC1 are associated with GDD, scoliosis, and cerebellar atrophy, indicating the relevance of this pathway for neurogenetic disorders.

One Saudi family with 2 affected individuals with mild ID, speech delay, and GDD.
WES and Sanger sequencing revealed a homozygous splice acceptor site variant (c.679‐1G>A) in EMC10 . Variant segregated within the family. RT‐qPCR showed a substantial decrease in the relative EMC10 gene expression in the patients.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3251 VPS4A Elena Savva changed review comment from: Comment when marking as ready: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain. 1x homozygous missense in the MIT domain (milder phenotype and unaffected parents - possibly just a simple LoF mechanism for AR inheritance). Demonstrated defective CD71 trafficking in all 3 patients. PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly). Demonstrated that the variants had a dominant-negative effect on VPS4A function. "The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."; to: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain. 1x homozygous missense in the MIT domain (milder phenotype and unaffected parents - possibly just a simple LoF mechanism for AR inheritance). Demonstrated defective CD71 trafficking in all 3 patients.

PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly). Demonstrated that the variants had a dominant-negative effect on VPS4A function. "The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Intellectual disability syndromic and non-syndromic v0.3251 VPS4A Elena Savva Added comment: Comment when marking as ready: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain. 1x homozygous missense in the MIT domain (milder phenotype and unaffected parents - possibly just a simple LoF mechanism for AR inheritance). Demonstrated defective CD71 trafficking in all 3 patients. PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly). Demonstrated that the variants had a dominant-negative effect on VPS4A function. "The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Intellectual disability syndromic and non-syndromic v0.3250 VPS4A Kristin Rigbye gene: VPS4A was added
gene: VPS4A was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: VPS4A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: VPS4A were set to 33186543; 33186545
Phenotypes for gene: VPS4A were set to Neurodevelopmental disorder
Review for gene: VPS4A was set to GREEN
Added comment: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain.
1x homozygous missense in the MIT domain (milder phenotype and unaffected parents - possibly just a simple LoF mechanism for AR inheritance).
Demonstrated defective CD71 trafficking in all 3 patients.

PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly).
Demonstrated that the variants had a dominant-negative effect on VPS4A function.

"The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3227 PIGK Zornitza Stark Phenotypes for gene: PIGK were changed from Intellectual disability; seizures; cerebellar atrophy to Neurodevelopmental disorder with hypotonia and cerebellar atrophy, with or without seizures, MIM# 618879
Intellectual disability syndromic and non-syndromic v0.3226 PIGK Zornitza Stark edited their review of gene: PIGK: Changed phenotypes: Neurodevelopmental disorder with hypotonia and cerebellar atrophy, with or without seizures, MIM# 618879
Intellectual disability syndromic and non-syndromic v0.3102 PRKACB Konstantinos Varvagiannis gene: PRKACB was added
gene: PRKACB was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PRKACB was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PRKACB were set to 33058759
Phenotypes for gene: PRKACB were set to Postaxial hand polydactyly; Postaxial foot polydactyly; Common atrium; Atrioventricular canal defect; Narrow chest; Abnormality of the teeth; Intellectual disability
Penetrance for gene: PRKACB were set to Complete
Review for gene: PRKACB was set to AMBER
Added comment: ID was a feature in 2/4 individuals with PRKACB pathogenic variant reported to date.
------
Palencia-Campos et al (2020 - PMID: 33058759) report on the phenotype of 3 individuals heterozygous for PRKACA and 4 individuals heterozygous for PRKACB pathogenic variants.

The most characteristic features in all individuals with PRKACA/PRKACB mutation, included postaxial polydactyly of hands (6/7 bilateral, 1/7 unilateral) and feet (4/7 bilateral, 1/7 unilateral), brachydactyly and congenital heart defects (CHD 5/7) namely a common atrium or AVSD. Two individuals with PRKACA variant who did not have CHD had offspring with the same variant and an AVSD.

Other variably occurring features included short stature, limbs, narrow chest, abnormal teeth, oral frenula, nail dysplasia. One individual with PRKACB variant presented tumors.

Intellectual disability was reported in 2/4 individuals with PRKACB variant (1/4: mild, 1/4: severe). The 3 individuals with PRKACA variant did not present ID.

As the phenotype was overall suggestive of Ellis-van Creveld syndrome (or the allelic Weyers acrofacial dysostosis), although these diagnoses were ruled out following analysis of EVC and EVC2 genes.

WES was carried out in all.

PRKACA : A single heterozygous missense variant was identified in 3 individuals from 3 families (NM_002730.4:c.409G>A / p.Gly137Arg) with 1 of the probands harboring the variant in mosaic state (28% of reads) and having 2 similarly affected offspring. The variant was de novo in one individual and inherited in a third one having a similarly affected fetus (narrow thorax, postaxial polyd, AVSD).

PRKACB : 4 different variants were identified (NM_002731.3: p.His88Arg/Asn, p.Gly235Arg, c.161C>T - p.Ser54Leu). One of the individuals was mosaic for the latter variant, while in all other cases the variant had occurred de novo.

Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes.

The authors provide evidence that the variants confer increased sensitivity of PKA holoenzymes to activation by cAMP (compared to wt).

By performing ectopic expression of wt or mt PRKACA/B (variants studied : PRKACA p.Gly137Arg / PRKACB p.Gly235Arg) in NIH 3T3 fibroblasts, the authors demonstrate that inhibition of hedgehog signaling likely underlyies the developmental defects observed in affected individuals.

As for PRKACA, the authors cite another study where a 31-month old female with EvC syndrome diagnosis was found to harbor the aforementioned variant (NM_001304349.1:c.637G>A:p.Gly213Arg corresponding to NM_002730.4:c.409G>A / p.Gly137Arg) as a de novo event. Without additional evidence at the time, the variant was considered to be a candidate for this subject's phenotype (Monies et al 2019 – PMID: 31130284).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3062 SHMT2 Konstantinos Varvagiannis gene: SHMT2 was added
gene: SHMT2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SHMT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SHMT2 were set to 33015733
Phenotypes for gene: SHMT2 were set to Congenital microcephaly; Infantile axial hypotonia; Spastic paraparesis; Global developmental delay; Intellectual disability; Abnormality of the corpus callosum; Abnormal cortical gyration; Hypertrophic cardiomyopathy; Abnormality of the face; Proximal placement of thumb; 2-3 toe syndactyly
Penetrance for gene: SHMT2 were set to Complete
Review for gene: SHMT2 was set to GREEN
Added comment: García‑Cazorla et al. (2020 - PMID: 33015733) report 5 individuals (from 4 families) with a novel brain and heart developmental syndrome caused by biallelic SHMT2 pathogenic variants.

All affected subjects presented similar phenotype incl. microcephaly at birth (5/5 with OFC < -2 SD though in 2/5 cases N OFC was observed later), DD and ID (1/5 mild-moderate, 1/5 moderate, 3/5 severe), motor dysfunction in the form of spastic (5/5) paraparesis, ataxia/dysmetria (3/4), intention tremor (in 3/?) and/or peripheral neuropathy (2 sibs). They exhibited corpus callosum hypoplasia (5/5) and perisylvian microgyria-like pattern (4/5). Cardiac problems were reported in all, with hypertrophic cardiomyopathy in 4/5 (from 3 families) and atrial-SD in the 5th individual (1/5). Common dysmorphic features incl. long palpebral/fissures, eversion of lateral third of lower eylids, arched eyebrows, long eyelashes, thin upper lip, short Vth finger, fetal pads, mild 2-3 toe syndactyly, proximally placed thumbs.

Biallelic variants were identified following exome sequencing in all (other investigations not mentioned). Identified variants were in all cases missense SNVs or in-frame del, which together with evidence from population databases and mouse model might suggest a hypomorphic effect of variants and intolerance/embryonic lethality for homozygous LoF ones.

SHMT2 encodes the mitohondrial form of serine hydroxymethyltransferase. The enzyme transfers one-carbon units from serine to tetrahydrofolate (THF) and generates glycine and 5,10,methylene-THF.

Mitochondrial defect was suggested by presence of ragged red fibers in myocardial biopsy of one patient. Quadriceps and myocardial biopsies of the same individual were overall suggestive of myopathic changes.

While plasma metabolites were within N range and SHMT2 protein levels not significantly altered in patient fibroblasts, the authors provide evidence for impaired enzymatic function eg. presence of the SHMT2 substrate (THF) in patient but not control (mitochondria-enriched) fibroblasts , decrease in glycine/serine ratios, impared folate metabolism. Patient fibroblasts displayed impaired oxidative capacity (reduced ATP levels in a medium without glucose, diminished oxygen consumption rates). Mitochondrial membrane potential and ROS levels were also suggestive of redox malfunction.

Shmt2 ko in mice was previously shown to be embryonically lethal attributed to severe mitochondrial respiration defects, although there was no observed brain metabolic defect.

The authors performed Shmt2 knockdown in motoneurons in Drosophila, demonstrating neuromuscular junction (# of satellite boutons) and motility defects (climbing distance/velocity).

Overall this gene can be considered for inclusion with (probably) green rating in gene panels for ID, metabolic / mitochondrial disorders, cardiomyopathy, congenital microcephaly, corpus callosum anomalies, etc.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3062 VPS41 Zornitza Stark gene: VPS41 was added
gene: VPS41 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: VPS41 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: VPS41 were set to 32808683
Phenotypes for gene: VPS41 were set to Dystonia; intellectual disability
Review for gene: VPS41 was set to RED
Added comment: Single individual reported with homozygous canonical splice site variant resulting in exon 7 skipping, and global developmental delay and generalized dystonia. He attained a few words and voluntary limb movements but never sat unsupported. He had pale optic discs and an axonal neuropathy. From 6 years of age, his condition began to deteriorate, with reduced motor abilities and alertness. An MRI of the brain showed atrophy of the superior cerebellar vermis and slimming of the posterior limb of the corpus callosum. VPS41 is component of the HOPS complex and other genes in the complex have been implicated in movement disorders.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3061 ALG14 Zornitza Stark Phenotypes for gene: ALG14 were changed from Intellectual developmental disorder with epilepsy, behavioral abnormalities, and coarse facies (IDDEBF), MIM#619031 to Intellectual developmental disorder with epilepsy, behavioral abnormalities, and coarse facies (IDDEBF), MIM#619031; Myopathy, epilepsy, and progressive cerebral atrophy, MIM# 619036
Intellectual disability syndromic and non-syndromic v0.3060 ALG14 Zornitza Stark edited their review of gene: ALG14: Changed phenotypes: intellectual developmental disorder with epilepsy, behavioral abnormalities, and coarse facies (IDDEBF), MIM#619031, Myopathy, epilepsy, and progressive cerebral atrophy, MIM# 619036
Intellectual disability syndromic and non-syndromic v0.3053 NEMF Konstantinos Varvagiannis changed review comment from: Biallelic (and possibly monoallelic) pathogenic variants in this gene are associated with DD/ID.

Martin et al (2020 - PMID:32934225) report on 8 individuals from 6 families with a juvenile neuromuscular disease due to biallelic NEMF variants. (In one of these 8 cases it could not be ruled out that a de novo and maternally inherited variant were on the same allele, as phase was not determined). A ninth individual with similar presentation was found to harbor a single NEMF missense SNV as de novo event (due to a speculated dominant-negative effect). This individual had a similar presentation.

Features incl. hypotonia (4/8 with biallelic variant (B) | 1/1 monoallelic (M) ), DD/ID (7/8B | 0/1M) with speech delay as universal feature (8/8B | 1/1M), axonal neuropathy (3/3B | 1/1M), ataxia (3/8B | 0/1M). Other findings included tremor (1/7B | 1/1M), abnormal brain imaging (2/6B / ?/1M), kyphosis/scoliosis (4/8B | 0/1M), respiratory distress (1/8B | 0/1M).

NEMF (Rqc2 in yeast) encodes the nuclear export mediator factor, a component of the Ribosome-associated Quality Control (RCQ) complex which is involved in proteolytic targeting of incomplete polypeptides prodduced by ribosome stalling. NEMF facilitates the recruitment of E3 ligase Listerin (LTN1) which ubiquitinates nascent polypeptide chains for subsequent proteasomal degradation.

The author provide evidence that mice homozygous for Nemf missense mutations display progressive motor phenotypes, exhibit neurogenic atrophy and progressive axonal degeneration. A further NEMF-null mouse model displayed more severe phenotype (with heterozygous mice being unaffected).

Equivalent mutations (of those in the above mouse model) in yeast (Rqc2) were shown to interfere with its ability to modify aberrant translation products with C-terminal tails which assist RQC-mediated protein degradation.

Mutation of Ltn1 (belonging to the same protein control pathway) has been also shown to lead to neurodegeneration im mice.

Overall NEMF is thought to play a role in neuronal translational homeostasis and the disorder to be mediated by dysfunction of the RQC pathway (normally protecting neurons against degeneration).; to: Biallelic (and possibly monoallelic) pathogenic variants in this gene are associated with DD/ID.

Martin et al (2020 - PMID:32934225) report on 8 individuals from 6 families with a juvenile neuromuscular disease due to biallelic NEMF variants. (In one of these 8 cases it could not be ruled out that a de novo and maternally inherited variant were on the same allele, as phase was not determined). A ninth individual with similar presentation was found to harbor a single NEMF missense SNV as de novo event (due to a speculated dominant-negative effect). This individual had a similar presentation.

Features incl. hypotonia (4/8 with biallelic variant (B) | 1/1 monoallelic (M) ), DD/ID (7/8B | 0/1M) with speech delay as universal feature (8/8B | 1/1M), axonal neuropathy (3/3B | 1/1M), ataxia (3/8B | 0/1M). Other findings included tremor (1/7B | 1/1M), abnormal brain imaging (2/6B / ?/1M), kyphosis/scoliosis (4/8B | 0/1M), respiratory distress (1/8B | 0/1M).

NEMF (Rqc2 in yeast) encodes the nuclear export mediator factor, a component of the Ribosome-associated Quality Control (RCQ) complex which is involved in proteolytic targeting of incomplete polypeptides produced by ribosome stalling. NEMF facilitates the recruitment of E3 ligase Listerin (LTN1) which ubiquitinates nascent polypeptide chains for subsequent proteasomal degradation.

The author provide evidence that mice homozygous for Nemf missense mutations display progressive motor phenotypes, exhibit neurogenic atrophy and progressive axonal degeneration. A further NEMF-null mouse model displayed more severe phenotype (with heterozygous mice being unaffected).

Equivalent mutations (of those in the above mouse model) in yeast (Rqc2) were shown to interfere with its ability to modify aberrant translation products with C-terminal tails which assist RQC-mediated protein degradation.

Mutation of Ltn1 (belonging to the same protein control pathway) has been also shown to lead to neurodegeneration in mice.

Overall NEMF is thought to play a role in neuronal translational homeostasis and the disorder to be mediated by dysfunction of the RQC pathway (normally protecting neurons against degeneration).
Intellectual disability syndromic and non-syndromic v0.3053 NEMF Konstantinos Varvagiannis changed review comment from: Biallelic (and possibly monoallelic) pathogenic variants in this gene are associated with DD/ID.

Martin et al (2020 - PMID:32934225) report on 8 individuals from 6 families with a juvenile neuromuscular disease due to biallelic NEMF variants. (In one of these 8 cases it could not be ruled out that a de novo and maternally inherited variants were on the same allele, as phase was not been determined). A ninth individual with similar presentation was found to harbor a single NEMF missense SNV as de novo event (due to a speculated dominant-negative effect). This individual had a similar presentation.

Features incl. hypotonia (4/8 with biallelic variant (B) | 1/1 monoallelic (M) ), DD/ID (7/8B | 0/1M) with speech delay as universal feature (8/8B | 1/1M), axonal neuropathy (3/3B | 1/1M), ataxia (3/8B | 0/1M). Other findings included tremor (1/7B | 1/1M), abnormal brain imaging (2/6B / ?/1M), kyphosis/scoliosis (4/8B | 0/1M), respiratory distress (1/8B | 0/1M).

NEMF (Rqc2 in yeast) encodes the nuclear export mediator factor, a component of the Ribosome-associated Quality Control (RCQ) complex which is involved in proteolytic targeting of incomplete polypeptides prodduced by ribosome stalling. NEMF facilitates the recruitment of E3 ligase Listerin (LTN1) which ubiquitinates nascent polypeptide chains for subsequent proteasomal degradation.

The author provide evidence that mice homozygous for Nemf missense mutations display progressive motor phenotypes, exhibit neurogenic atrophy and progressive axonal degeneration. A further NEMF-null mouse model displayed more severe phenotype (with heterozygous mice being unaffected).

Equivalent mutations (of those in the above mouse model) in yeast (Rqc2) were shown to interfere with its ability to modify aberrant translation products with C-terminal tails which assist RQC-mediated protein degradation.

Mutation of Ltn1 (belonging to the same protein control pathway) has been also shown to lead to neurodegeneration im mice.

Overall NEMF is thought to play a role in neuronal translational homeostasis and the disorder to be mediated by dysfunction of the RQC pathway (normally protecting neurons against degeneration).; to: Biallelic (and possibly monoallelic) pathogenic variants in this gene are associated with DD/ID.

Martin et al (2020 - PMID:32934225) report on 8 individuals from 6 families with a juvenile neuromuscular disease due to biallelic NEMF variants. (In one of these 8 cases it could not be ruled out that a de novo and maternally inherited variant were on the same allele, as phase was not determined). A ninth individual with similar presentation was found to harbor a single NEMF missense SNV as de novo event (due to a speculated dominant-negative effect). This individual had a similar presentation.

Features incl. hypotonia (4/8 with biallelic variant (B) | 1/1 monoallelic (M) ), DD/ID (7/8B | 0/1M) with speech delay as universal feature (8/8B | 1/1M), axonal neuropathy (3/3B | 1/1M), ataxia (3/8B | 0/1M). Other findings included tremor (1/7B | 1/1M), abnormal brain imaging (2/6B / ?/1M), kyphosis/scoliosis (4/8B | 0/1M), respiratory distress (1/8B | 0/1M).

NEMF (Rqc2 in yeast) encodes the nuclear export mediator factor, a component of the Ribosome-associated Quality Control (RCQ) complex which is involved in proteolytic targeting of incomplete polypeptides prodduced by ribosome stalling. NEMF facilitates the recruitment of E3 ligase Listerin (LTN1) which ubiquitinates nascent polypeptide chains for subsequent proteasomal degradation.

The author provide evidence that mice homozygous for Nemf missense mutations display progressive motor phenotypes, exhibit neurogenic atrophy and progressive axonal degeneration. A further NEMF-null mouse model displayed more severe phenotype (with heterozygous mice being unaffected).

Equivalent mutations (of those in the above mouse model) in yeast (Rqc2) were shown to interfere with its ability to modify aberrant translation products with C-terminal tails which assist RQC-mediated protein degradation.

Mutation of Ltn1 (belonging to the same protein control pathway) has been also shown to lead to neurodegeneration im mice.

Overall NEMF is thought to play a role in neuronal translational homeostasis and the disorder to be mediated by dysfunction of the RQC pathway (normally protecting neurons against degeneration).
Intellectual disability syndromic and non-syndromic v0.3053 NEMF Konstantinos Varvagiannis changed review comment from: Biallelic (and possibly monoallelic) pathogenic variants in this gene are associated with DD/ID.

Martin et al (2020 - PMID:32934225) report on 8 individuals from 6 families with a juvenile neuromuscular disease due to biallelic NEMF variants. (In one of these 8 cases it could be ruled out that the de novo and maternally inherited variants were on the same allele, as phase was not been determined). A ninth individual with similar presentation was found to harbor a single NEMF missense SNV as de novo event (due to a speculated dominant-negative effect). This individual had a similar presentation.

Features incl. hypotonia (4/8 with biallelic variant (B) | 1/1 monoallelic (M) ), DD/ID (7/8B | 0/1M) with speech delay as universal feature (8/8B | 1/1M), axonal neuropathy (3/3B | 1/1M), ataxia (3/8B | 0/1M). Other findings included tremor (1/7B | 1/1M), abnormal brain imaging (2/6B / ?/1M), kyphosis/scoliosis (4/8B | 0/1M), respiratory distress (1/8B | 0/1M).

NEMF (Rqc2 in yeast) encodes the nuclear export mediator factor, a component of the Ribosome-associated Quality Control (RCQ) complex which is involved in proteolytic targeting of incomplete polypeptides prodduced by ribosome stalling. NEMF facilitates the recruitment of E3 ligase Listerin (LTN1) which ubiquitinates nascent polypeptide chains for subsequent proteasomal degradation.

The author provide evidence that mice homozygous for Nemf missense mutations display progressive motor phenotypes, exhibit neurogenic atrophy and progressive axonal degeneration. A further NEMF-null mouse model displayed more severe phenotype (with heterozygous mice being unaffected).

Equivalent mutations (of those in the above mouse model) in yeast (Rqc2) were shown to interfere with its ability to modify aberrant translation products with C-terminal tails which assist RQC-mediated protein degradation.

Mutation of Ltn1 (belonging to the same protein control pathway) has been also shown to lead to neurodegeneration im mice.

Overall NEMF is thought to play a role in neuronal translational homeostasis and the disorder to be mediated by dysfunction of the RQC pathway (normally protecting neurons against degeneration).; to: Biallelic (and possibly monoallelic) pathogenic variants in this gene are associated with DD/ID.

Martin et al (2020 - PMID:32934225) report on 8 individuals from 6 families with a juvenile neuromuscular disease due to biallelic NEMF variants. (In one of these 8 cases it could not be ruled out that a de novo and maternally inherited variants were on the same allele, as phase was not been determined). A ninth individual with similar presentation was found to harbor a single NEMF missense SNV as de novo event (due to a speculated dominant-negative effect). This individual had a similar presentation.

Features incl. hypotonia (4/8 with biallelic variant (B) | 1/1 monoallelic (M) ), DD/ID (7/8B | 0/1M) with speech delay as universal feature (8/8B | 1/1M), axonal neuropathy (3/3B | 1/1M), ataxia (3/8B | 0/1M). Other findings included tremor (1/7B | 1/1M), abnormal brain imaging (2/6B / ?/1M), kyphosis/scoliosis (4/8B | 0/1M), respiratory distress (1/8B | 0/1M).

NEMF (Rqc2 in yeast) encodes the nuclear export mediator factor, a component of the Ribosome-associated Quality Control (RCQ) complex which is involved in proteolytic targeting of incomplete polypeptides prodduced by ribosome stalling. NEMF facilitates the recruitment of E3 ligase Listerin (LTN1) which ubiquitinates nascent polypeptide chains for subsequent proteasomal degradation.

The author provide evidence that mice homozygous for Nemf missense mutations display progressive motor phenotypes, exhibit neurogenic atrophy and progressive axonal degeneration. A further NEMF-null mouse model displayed more severe phenotype (with heterozygous mice being unaffected).

Equivalent mutations (of those in the above mouse model) in yeast (Rqc2) were shown to interfere with its ability to modify aberrant translation products with C-terminal tails which assist RQC-mediated protein degradation.

Mutation of Ltn1 (belonging to the same protein control pathway) has been also shown to lead to neurodegeneration im mice.

Overall NEMF is thought to play a role in neuronal translational homeostasis and the disorder to be mediated by dysfunction of the RQC pathway (normally protecting neurons against degeneration).
Intellectual disability syndromic and non-syndromic v0.3012 NEMF Zornitza Stark gene: NEMF was added
gene: NEMF was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: NEMF was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NEMF were set to 32934225
Phenotypes for gene: NEMF were set to Intellectual disability; neuropathy
Review for gene: NEMF was set to GREEN
Added comment: Nine individuals from 7 unrelated families reported with a mixed CNS/PNS phenotype. 7/9 had ID, 4/9 had formal assessments demonstrating axonal neuropathy, 3/9 had ataxia; muscular atrophy, hypotonia, respiratory distress, scoliosis also described in some. Three independently generated mouse models had progressive motor neuron degeneration.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2982 SLC16A2 Zornitza Stark changed review comment from: Allan-Herndon-Dudley syndrome (AHDS) is an X-linked condition characterized by severely impaired intellectual development, dysarthria, athetoid movements, muscle hypoplasia, and spastic paraplegia. There is large phenotypic interfamilial and intrafamilial variability.; to: Allan-Herndon-Dudley syndrome (AHDS) is an X-linked condition characterized by severely impaired intellectual development, dysarthria, athetoid movements, muscle hypoplasia, and spastic paraplegia. There is large phenotypic interfamilial and intrafamilial variability. In a recent review of 24 affected individuals (PMID 31410843), 16 presented with profound developmental delay, three had severe intellectual disability with poor language and walking with an aid, four had moderate intellectual disability with language and walking abilities, and one had mild intellectual disability with hypotonia. Overall, eight had learned to walk, all had hypotonia, 17 had spasticity, 18 had dystonia, 12 had choreoathetosis, 19 had hypomyelination, and 10 had brain atrophy. Kyphoscoliosis (n=12), seizures (n=7), and pneumopathies (n=5) were the most severe complications.
Intellectual disability syndromic and non-syndromic v0.2976 NR2F1 Zornitza Stark Phenotypes for gene: NR2F1 were changed from to Bosch-Boonstra-Schaaf optic atrophy syndrome, MIM# 615722
Intellectual disability syndromic and non-syndromic v0.2973 NR2F1 Zornitza Stark reviewed gene: NR2F1: Rating: GREEN; Mode of pathogenicity: None; Publications: 32275123; Phenotypes: Bosch-Boonstra-Schaaf optic atrophy syndrome, MIM# 615722; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Intellectual disability syndromic and non-syndromic v0.2954 TRAPPC6B Zornitza Stark Phenotypes for gene: TRAPPC6B were changed from to Neurodevelopmental disorder with microcephaly, epilepsy, and brain atrophy, MIM# 617862
Intellectual disability syndromic and non-syndromic v0.2951 TRAPPC6B Zornitza Stark reviewed gene: TRAPPC6B: Rating: GREEN; Mode of pathogenicity: None; Publications: 28626029, 28397838, 31687267; Phenotypes: Neurodevelopmental disorder with microcephaly, epilepsy, and brain atrophy, MIM# 617862; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.2949 DHX37 Naomi Baker gene: DHX37 was added
gene: DHX37 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: DHX37 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: DHX37 were set to PMID: 26539891; 31256877
Phenotypes for gene: DHX37 were set to Neurodevelopmental disorder with brain anomalies and with or without vertebral or cardiac anomalies, MIM#618731
Review for gene: DHX37 was set to GREEN
Added comment: Two unrelated patients from consanguineous families reported with biallelic missense variants. Clinical presentation included severe microcephaly, DD/ID, and cortical atrophy (PMID: 26539891).

Five individuals who share a phenotype of DD and/or ID and CNS dysfunction. Three out of five individuals also have scoliosis, and two have cardiac phenotypes (PMID: 31256877). Three of the patients had bialleleic missense variants, while two patients had a de novo monoallelic missense variant.

Note that OMIM lists inheritance as biallelic, however two monoallelic cases reportes.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2920 CTNND1 Zornitza Stark gene: CTNND1 was added
gene: CTNND1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CTNND1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CTNND1 were set to 28301459; 32196547
Phenotypes for gene: CTNND1 were set to Blepharocheilodontic syndrome 2, MIM# 617681
Review for gene: CTNND1 was set to AMBER
Added comment: 4 individuals from 3 unrelated families with blepharocheilodontic syndrome and mutations in the CTNND1 gene reported originally in PMID 28301459. All had eyelid anomalies, including ectropion of the lower lids, euryblepharon, lagophthalmia, and distichiasis. In addition, all 4 showed typical facial dysmorphism with hypertelorism, flat face, and high forehead, and all had conical teeth and tooth agenesis. Three had cleft lip and palate, 3 had hair anomalies, and 1 had hypothyroidism due to hypoplasia or aplasia of the thyroid gland. None of the patients exhibited anal atresia or neural tube defects.

PMID: 32196547 - Alharatani et al 2020 - report an expanded phenotype for CTNND1 patients. They report 13 individuals from nine families with novel protein-truncating variants in CTNND1 identified by WES. The mutations were not previously described in blepharocheilodontic (BCD), orofacial cleft cases nor in gnomAD. 8 patients had de novo variants, 2 inherited from affected parents, 2 participants inherited a variant from a parent with a mild phenotype. 8/13 patients showed cleft palate. Additional phenotypic features seen include mild limb phenotypes (9/13), cardiovascular anomalies (6/13) and Developmental delay and other neurodevelopmental problems (8/13).

This more recent publication suggests a broader phenotype associated with CTNND1 variants including dev delay, ADHD/ASD, behavioural issues. Unclear from description whether significant ID present.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2836 TAF1C Konstantinos Varvagiannis gene: TAF1C was added
gene: TAF1C was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TAF1C was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TAF1C were set to 32779182
Phenotypes for gene: TAF1C were set to Global developmental delay; Intellectual disability; Spasticity; Strabismus; Seizures; Abnormality of nervous system morphology
Penetrance for gene: TAF1C were set to Complete
Review for gene: TAF1C was set to AMBER
Added comment: Knuutinen et al (2020 - PMID: 32779182) report on 2 individuals from 2 consanguineous families, homozygous for TAF1C missense variants.

Both presented with an early onset neurological phenotype with severe global DD, ID (2/2 - moderate and profound), spasticity (2/2), ophthalmic findings (strabismus 2/2, nystagmus 1/2). Epilepsy, abnormal brain MRI (cerebral and cerebellar atrophy and white matter hyperintensities) as well and additional findings were reported in one (always the same individual).

Following a normal CMA, exome in the first case revealed a homozygous missense SNV (NM_005679.3:c.1165C>T / p.Arg389Cys) supported by in silico predictions. mRNA and protein levels were substantially reduced in fibroblasts from this subject. Only the patient and parents were tested for the variant but not 3 unaffected sibs (fig1).

The second individual was homozygous for another missense variant (p.Arg405Cys) also supported by in silico predictions. The girl was the single affected person within the family with an unaffected sib and parents heterozygous for the variant. Several other unaffected relatives in the extended pedigree were either carriers for this variant or homozygous for the wt allele.

TAF1C encodes the TATA-box binding protein associated factor (TAF) RNA polymerase I subunit.

RNA polymerase I (Pol I) transcribes genes to produce rRNA. For Pol I to initiate transcription, two transcription factors are required : UBF (upstream binding factor encoded by UBTF) and SL1 (selectivity factor 1). The latter is formed by TBP (TATA-binding protein) and 3 Pol I-specific TBP-associated factors (TAFs).

A recurrent de novo missense variant in UBTF (encoding the other Pol I transcription factor) causes a disorder with highly similar features. The specific variant acts through a gain-of-function mechanism (and not by LoF which appears to apply for TAF1C based on expression data).

The authors hypothesize that altered Pol I activity and resulting ribosomal stress could cause the microcephaly and leukodystrophy (both reported in 1 - the same - individual).

As a result, TAF1C may be considered for inclusion in the ID panel with amber rating pending further evidence.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2804 ZNF407 Konstantinos Varvagiannis gene: ZNF407 was added
gene: ZNF407 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ZNF407 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: ZNF407 were set to 24907849; 32737394; 23195952
Phenotypes for gene: ZNF407 were set to Global developmental delay; Intellectual disability
Penetrance for gene: ZNF407 were set to unknown
Review for gene: ZNF407 was set to AMBER
Added comment: You may consider inclusion of this gene probably with amber rating (or green if the evidence for biallelic variants is considered sufficient).

Biallelic variants:

- Kambouris et al. (2014 - PMID: 24907849) described 2 brothers with severe DD and ID, born to first cousin parents. Homozygosity mapping, following other non-diagnostic investigations (incl. aCGH), revealed 4 major homozygosity intervals. Exome sequencing in one identified 5 variants within these intervals, ZNF407 (c.5054C>G, p.Ser1685Trp) being the best candidate, supported also by segregation studies. The authors commented that zinc finger proteins act as transcriptional regulators, with mutations in genes encoding for other zinc finger proteins interfering with normal brain development.

- Zahra et al. (2020 - PMID: 32737394) report on 7 affected individuals (from 3 families) homozygous or compound heterozygous for ZNF407 variants. Features included hypotonia, DD and ID (in all) and variable occurrence of short stature (6/6), microcephaly (in at least 5), behavioural, visual problems and deafness. Linkage analysis in the first family revealed a 4.4 Mb shared homozygosity region and exome (30x) revealed a 3-bp duplication, confirmed by Sanger sequencing and segregating with the disease (NM_001146189:c.2814_2816dup, p.Val939dup). Affected subjects from the 2 other families were each found to be homozygous (c.2405G>T) or compound heterozygous (c.2884C>G, c.3642G>C) for other variants. Segregation was compatible in all families. Other studies were not performed. The authors comment than only the 3-bp duplication fullfilled ACMG criteria for classification as LP, the other variants being all formally classified as VUS (also due to in silico predictions predicting a LB effect). In addition, while several features such as DD/ID and short stature appeared to be frequent among all patients reported, Zahra et all comment that there was partial clinical overlap with the sibs described by Kambouris et al (additional variants?).


Monoallelic disruption of ZNF407:

- Ren et al (2013 - PMID: 23195952) described an 8 y.o. boy with ID and ASD. The boy was found to harbor a de novo translocation between chromosomes 3 and 18 [46,XY,t(3;18)(p13;q22.3)]. Array CGH did not reveal any P/LP CNV. Delineation of the breakpoints (FISH, long-range PCR) revealed that the chr18 breakpoint disrupted intron 3 of ZNF407 (isoform 1) with the other breakpoint within a gene-free region of exon 3. There was a loss of 4-8 nt in chr18 and 2-6 in chr3. Sequencing of ZNF407 did not reveal additional variants. RNA isolation in blood followed by RT-PCR studied expression of all 3 ZNF407 isoforms (the intronic region being shared by isoforms 1 and 2). Expression of isoform 1 was shown to be significantly reduced compared to controls. Isoform 2 was undetectable (in blood) while isoform 3 expression was similar to controls. Sequencing of 105 additional patients with similar clinical presentation (ID & ASD) revealed 2 further individuals with de novo missense variants.

- Based on the discussion by Kambouris et al (PMID: 24907849 - cited literature not here reviewed) ZNF407 may be deleted in patients with congenital aural atresia due to deletion of a critical region of 18q22.3 (though TSHZ1 is responsible for this phenotype) or 18q- although such deletions span several other genes (cited PMID: 16639285). In one case the breakpoint was shown to be disrupting ZNF407 (cited PMID: 24092497).

- The denovo db and Decipher (research variant tab) list few individuals with de novo ZNF407 SNVs although these do not seem to allow conclusions.

https://denovo-db.gs.washington.edu/denovo-db/QueryVariantServlet?searchBy=Gene&target=ZNF407
https://decipher.sanger.ac.uk/search/ddd-research-variants/results?q=znf407
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2726 CAPZA2 Zornitza Stark gene: CAPZA2 was added
gene: CAPZA2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CAPZA2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CAPZA2 were set to 32338762
Phenotypes for gene: CAPZA2 were set to Intellectual disability
Review for gene: CAPZA2 was set to AMBER
Added comment: PMID: 32338762 - Huang et al 2020 - report 2 unrelated families (Chinese and European) in which a de novo heterozygous variant has been identified in CAPZA2 in paediatric probands that present with global motor development delay, speech delay, intellectual disability, hypotonia. One proband had seizures at 7 months but these were controlled with medication and did not repeat. The other proband at age one had an atypical febrile seizure that was controlled without medication. Functional studies in Drosophila suggest that these variants are mild loss of function mutations but that they can act as dominant negative variants in actin polymerization in bristles.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2722 EXOC7 Chirag Patel gene: EXOC7 was added
gene: EXOC7 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: EXOC7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EXOC7 were set to PMID: 32103185
Phenotypes for gene: EXOC7 were set to brain atrophy; seizures; developmental delay; microcephaly
Review for gene: EXOC7 was set to GREEN
Added comment: 4 families with 8 affected individuals with brain atrophy, seizures, and developmental delay, and in more severe cases microcephaly and infantile death. Four novel homozygous or comp.heterozygous variants found in EXOC7, which segregated with disease in the families. They showed that EXOC7, a member of the mammalian exocyst complex, is highly expressed in developing human cortex. In addition, a zebrafish model of Exoc7 deficiency recapitulates the human disorder with increased apoptosis and decreased progenitor cells during telencephalon development, suggesting that the brain atrophy in human cases reflects neuronal degeneration.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2703 GOLGA2 Elena Savva gene: GOLGA2 was added
gene: GOLGA2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: GOLGA2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GOLGA2 were set to PMID: 30237576; 26742501
Phenotypes for gene: GOLGA2 were set to Neuromuscular disorder
Review for gene: GOLGA2 was set to AMBER
Added comment: PMID: 30237576 - One 11 year old patient with a homozygous PTC.
Patient had global dev delay, microcephaly, distal muscle weakness with joint contractures and elevated CK levels. Muscle biopsy showed dystrophin changes. MRI at 2 years old showed brain atrophy with thin corpus callosum and hypomyelination. No seizures or regression.

PMID: 26742501 - One infant with a homozygous PTC.
Patient had dev delay, seizures, microcephaly and muscular dystrophy. Zebrafish null model recapitulates the human phenotype with microcephaly and skeletal muscle disorganization.

Summary: 2 patients
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2663 KMT2D Chirag Patel changed review comment from: KMT2D missense variants located in a specific region spanning exons 38 and 39 and affecting highly conserved residues cause a novel multiple malformations syndrome distinct from Kabuki syndrome, through a dominant negative mechanism.; to: KMT2D missense variants located in a specific region spanning exons 38 and 39 and affecting highly conserved residues cause a novel multiple malformations syndrome distinct from Kabuki syndrome, through a dominant negative mechanism.
- 7 unrelated families with choanal atresia, athelia or hypoplastic nipples, branchial sinus abnormalities, neck pits, lacrimal duct anomalies, hearing loss, external ear malformations, and thyroid abnormalities. None of the individuals had intellectual disability.
Intellectual disability syndromic and non-syndromic v0.2599 VPS51 Zornitza Stark gene: VPS51 was added
gene: VPS51 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: VPS51 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: VPS51 were set to 30624672; 31207318
Phenotypes for gene: VPS51 were set to Pontocerebellar hypoplasia, type 13, MIM# 618606
Review for gene: VPS51 was set to AMBER
Added comment: Two families reported with bi-allelic variants in this gene and global developmental delay, impaired intellectual development with absent speech, microcephaly, and progressive atrophy of the cerebellar vermis and brainstem. Additional features, including seizures and visual impairment, are variable.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2594 PTPN23 Zornitza Stark Phenotypes for gene: PTPN23 were changed from to Intellectual disability; brain abnormalities; seizures; optic atrophy; microcephaly
Intellectual disability syndromic and non-syndromic v0.2593 PTPN23 Zornitza Stark reviewed gene: PTPN23: Rating: GREEN; Mode of pathogenicity: None; Publications: 31395947; Phenotypes: Intellectual disability, brain abnormalities, seizures, optic atrophy, microcephaly; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.2575 GAD1 Zornitza Stark changed review comment from: Single family reported with bi-allelic variants. Association studies linking with neuropsychiatric issues.; to: Single family reported with bi-allelic variants and CP phenotype. Association studies linking with neuropsychiatric issues.
Intellectual disability syndromic and non-syndromic v0.2536 SLC44A1 Sebastian Lunke gene: SLC44A1 was added
gene: SLC44A1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SLC44A1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC44A1 were set to 31855247
Phenotypes for gene: SLC44A1 were set to progressive ataxia; tremor; cognitive decline; dysphagia; optic atrophy; dysarthria
Review for gene: SLC44A1 was set to GREEN
gene: SLC44A1 was marked as current diagnostic
Added comment: Four affected individuals from three families with homozygous frameshift variants. Functional evidence points to impaired choline transporter function yet unchanged membrane phosphatidylcholine content. Choline treatments may be beneficial.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2525 CACNB4 Bryony Thompson gene: CACNB4 was added
gene: CACNB4 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CACNB4 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CACNB4 were set to 32176688
Phenotypes for gene: CACNB4 were set to intellectual disability; psychomotor retardation; blindness; epilepsy; movement disorder; cerebellar atrophy
Review for gene: CACNB4 was set to AMBER
Added comment: A homozygous missense variant (Leu126Pro) was identified in two siblings with intellectual disability, psychomotor retardation, blindness, epilepsy, movement disorder and cerebellar atrophy. In vitro functional assays of the variant identify three potential pathomechanisms: impairs the formation of synaptic P/Q-type calcium channel complexes; prevents activity-dependent nuclear targeting and thus β4-dependent nuclear functions; disturbs complex formation between β4b and the TRAF2 and NCK interacting kinase TNIK.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2518 AP3B2 Zornitza Stark Phenotypes for gene: AP3B2 were changed from to Early-onset epileptic encephalopathy with optic atrophy, MIM#617276
Intellectual disability syndromic and non-syndromic v0.2515 AP3B2 Zornitza Stark reviewed gene: AP3B2: Rating: GREEN; Mode of pathogenicity: None; Publications: 27889060; Phenotypes: Early-onset epileptic encephalopathy with optic atrophy, MIM#617276; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.2502 PIGK Zornitza Stark gene: PIGK was added
gene: PIGK was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PIGK was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PIGK were set to 32220290
Phenotypes for gene: PIGK were set to Intellectual disability; seizures; cerebellar atrophy
Review for gene: PIGK was set to GREEN
Added comment: 12 individuals from 9 unrelated families reported.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2491 AGTPBP1 Zornitza Stark gene: AGTPBP1 was added
gene: AGTPBP1 was added to Intellectual disability syndromic and non-syndromic. Sources: NHS GMS
Mode of inheritance for gene: AGTPBP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: AGTPBP1 were set to 30420557
Phenotypes for gene: AGTPBP1 were set to Early onset cerebellar atrophy, developmental delay, and feeding and respiratory difficulties, severe motor neuronopathy; Neurodegeneration, childhood-onset, with cerebellar atrophy, 618276
Review for gene: AGTPBP1 was set to GREEN
Added comment: Thirteen individuals reported, clinical presentation was with developmental delay, though six went on to have a progressive neurological course. Other features include cerebellar atrophy and neuropathy.
Sources: NHS GMS
Intellectual disability syndromic and non-syndromic v0.2476 QARS Zornitza Stark Phenotypes for gene: QARS were changed from to Microcephaly, progressive, seizures, and cerebral and cerebellar atrophy, MIM# 615760
Intellectual disability syndromic and non-syndromic v0.2473 QARS Zornitza Stark reviewed gene: QARS: Rating: GREEN; Mode of pathogenicity: None; Publications: 28620870, 25471517, 25432320, 25041233, 24656866, 32042906; Phenotypes: Microcephaly, progressive, seizures, and cerebral and cerebellar atrophy, MIM# 615760; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.2439 MRPS34 Zornitza Stark gene: MRPS34 was added
gene: MRPS34 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: MRPS34 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MRPS34 were set to 28777931
Phenotypes for gene: MRPS34 were set to Combined oxidative phosphorylation deficiency 32, MIM# 617664
Review for gene: MRPS34 was set to GREEN
gene: MRPS34 was marked as current diagnostic
Added comment: Six individuals from 4 unrelated families; clinical presentation is with developmental delay/regression. More variable features include movement disorders, microcephaly, strabismus, nystagmus, optic atrophy.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2379 NDUFAF2 Zornitza Stark changed review comment from: At least four unrelated families reported.; to: At least four unrelated families reported, complex neurological presentation with optic atrophy, nystagmus, ataxia in some, others described as ventilator-dependent. ID is unlikely to be the presenting or main feature.
Intellectual disability syndromic and non-syndromic v0.2139 VARS Chirag Patel gene: VARS was added
gene: VARS was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: VARS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: VARS were set to PubMed: 30755616, 30755602, 26539891, 29691655, 30275004
Phenotypes for gene: VARS were set to Neurodevelopmental disorder with microcephaly, seizures, and cortical atrophy; OMIM #617802
Review for gene: VARS was set to GREEN
Added comment: 14 families with 20 affected individuals
- homozygous missense or compound heterozygous mutations in VARS
- mutations segregated with the disorder in the families
- functional studies in some cases
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1936 FDXR Zornitza Stark Phenotypes for gene: FDXR were changed from to Auditory neuropathy and optic atrophy, MIM# 617717
Intellectual disability syndromic and non-syndromic v0.1933 FDXR Zornitza Stark reviewed gene: FDXR: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Auditory neuropathy and optic atrophy, MIM# 617717; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.1920 EMC1 Zornitza Stark gene: EMC1 was added
gene: EMC1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: EMC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EMC1 were set to 26942288; 29271071
Phenotypes for gene: EMC1 were set to Cerebellar atrophy, visual impairment, and psychomotor retardation, MIM# 616875
Review for gene: EMC1 was set to GREEN
gene: EMC1 was marked as current diagnostic
Added comment: Four unrelated families with bi-allelic variants in this gene reported. Single individual with heterozygous variant: insufficient evidence at present for mono allelic variants causing disease.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1779 CACNA2D2 Zornitza Stark gene: CACNA2D2 was added
gene: CACNA2D2 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: CACNA2D2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CACNA2D2 were set to 23339110; 24358150; 30410802; 29997391; 31402629; 11487633; 11756448; 4177347; 14660671; 15331424
Phenotypes for gene: CACNA2D2 were set to Cerebellar atrophy with seizures and variable developmental delay, MIM#618501
Review for gene: CACNA2D2 was set to GREEN
Added comment: Multiple affected individuals reported; DD/ID is variable but present in most.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1749 AR Zornitza Stark Phenotypes for gene: AR were changed from to Spinal and bulbar muscular atrophy of Kennedy, MIM# 313200
Intellectual disability syndromic and non-syndromic v0.1745 AR Zornitza Stark reviewed gene: AR: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Spinal and bulbar muscular atrophy of Kennedy, MIM# 313200; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Intellectual disability syndromic and non-syndromic v0.1681 TRAPPC12 Zornitza Stark Phenotypes for gene: TRAPPC12 were changed from to Encephalopathy, progressive, early-onset, with brain atrophy and spasticity, MIM#617669
Intellectual disability syndromic and non-syndromic v0.1679 TRAPPC12 Zornitza Stark reviewed gene: TRAPPC12: Rating: AMBER; Mode of pathogenicity: None; Publications: 28777934; Phenotypes: Encephalopathy, progressive, early-onset, with brain atrophy and spasticity, MIM#617669; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.1624 ICE1 Zornitza Stark gene: ICE1 was added
gene: ICE1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ICE1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ICE1 were set to 31130284
Phenotypes for gene: ICE1 were set to Intellectual disability, cerebral atrophy
Review for gene: ICE1 was set to AMBER
Added comment: Two unrelated families reported, no functional data; part of large consanguineous cohort, mixed phenotypes.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1571 MED17 Zornitza Stark Phenotypes for gene: MED17 were changed from to Microcephaly, postnatal progressive, with seizures and brain atrophy, MIM#613668
Intellectual disability syndromic and non-syndromic v0.1548 TBCD Zornitza Stark Phenotypes for gene: TBCD were changed from Encephalopathy, progressive, early-onset, with brain atrophy and thin corpus callosum, MIM#617193 to Encephalopathy, progressive, early-onset, with brain atrophy and thin corpus callosum, MIM#617193
Intellectual disability syndromic and non-syndromic v0.1548 TBCD Zornitza Stark Phenotypes for gene: TBCD were changed from to Encephalopathy, progressive, early-onset, with brain atrophy and thin corpus callosum, MIM#617193
Intellectual disability syndromic and non-syndromic v0.1408 SEC31A Tiong Tan gene: SEC31A was added
gene: SEC31A was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: SEC31A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SEC31A were set to 30464055
Phenotypes for gene: SEC31A were set to ?Neurodevelopmental disorder with spastic quadriplegia, optic atrophy, seizures, and structural brain anomalies, OMIM #618651
Review for gene: SEC31A was set to AMBER
Added comment: Single family with two affected sibs with functional data (drosophila)
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1287 TANC2 Chirag Patel gene: TANC2 was added
gene: TANC2 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: TANC2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TANC2 were set to PMID: 31616000
Phenotypes for gene: TANC2 were set to no OMIM number yet
Review for gene: TANC2 was set to GREEN
Added comment: 19 families with potentially disruptive heterozygous TANC2 variants, including 16 likely gene-disrupting mutations and three intragenic microdeletions. Patients presented with autism, intellectual disability, delayed language and motor development, epilepsy, facial dysmorphism, with complex psychiatric dysfunction or behavioral problems in adult probands or carrier parents. No functional evidence of specific variants, but they show TANC2 is expressed broadly in the human developing brain, especially in excitatory neurons and glial cells, and shows a more restricted pattern in Drosophila glial cells where its disruption affects behavioral outcomes.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1255 TTI1 Zornitza Stark Phenotypes for gene: TTI1 were changed from intellectual disability; seizures; cerebellar atrophy to Intellectual disability
Intellectual disability syndromic and non-syndromic v0.1253 TTI1 Zornitza Stark gene: TTI1 was added
gene: TTI1 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Expert list
Mode of inheritance for gene: TTI1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TTI1 were set to 26539891; 30315573
Phenotypes for gene: TTI1 were set to intellectual disability; seizures; cerebellar atrophy
Review for gene: TTI1 was set to AMBER
Added comment: Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1106 RTN4IP1 Zornitza Stark Phenotypes for gene: RTN4IP1 were changed from to Optic atrophy 10 with or without ataxia, mental retardation, and seizures, MIM#616732
Intellectual disability syndromic and non-syndromic v0.1103 RTN4IP1 Zornitza Stark reviewed gene: RTN4IP1: Rating: GREEN; Mode of pathogenicity: None; Publications: 26593267; Phenotypes: Optic atrophy 10 with or without ataxia, mental retardation, and seizures, MIM#616732; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.933 OXR1 Zornitza Stark gene: OXR1 was added
gene: OXR1 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: OXR1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: OXR1 were set to 31785787
Phenotypes for gene: OXR1 were set to Intellectual disability; seizures; cerebellar atrophy
Review for gene: OXR1 was set to GREEN
Added comment: Five individuals from three families.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.926 PCYT2 Zornitza Stark gene: PCYT2 was added
gene: PCYT2 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Expert Review
Mode of inheritance for gene: PCYT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PCYT2 were set to 31637422
Phenotypes for gene: PCYT2 were set to Global developmental delay with regression; spastic para- or tetra paresis; epilepsy; progressive cerebral and cerebellar atrophy
Review for gene: PCYT2 was set to GREEN
Added comment: Five unrelated individuals. Variants are hypomorphic.
Sources: Expert Review
Intellectual disability syndromic and non-syndromic v0.743 BRAT1 Zornitza Stark Phenotypes for gene: BRAT1 were changed from to Neurodevelopmental disorder with cerebellar atrophy and with or without seizures, MIM#618056
Intellectual disability syndromic and non-syndromic v0.738 BICD2 Zornitza Stark Phenotypes for gene: BICD2 were changed from to Spinal muscular atrophy, lower extremity-predominant, 2A, autosomal dominant, MIM#615290
Intellectual disability syndromic and non-syndromic v0.548 KCNMA1 Zornitza Stark Phenotypes for gene: KCNMA1 were changed from to Cerebellar atrophy, developmental delay, and seizures, MIM# 617643; Paroxysmal nonkinesigenic dyskinesia, 3, with or without generalized epilepsy, MIM#609446
Intellectual disability syndromic and non-syndromic v0.545 KCNMA1 Zornitza Stark reviewed gene: KCNMA1: Rating: GREEN; Mode of pathogenicity: Other; Publications: 27567911, 29545233, 26195193, 31427379; Phenotypes: Cerebellar atrophy, developmental delay, and seizures, MIM# 617643, Paroxysmal nonkinesigenic dyskinesia, 3, with or without generalized epilepsy, MIM#609446; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.282 GJA1 Zornitza Stark Phenotypes for gene: GJA1 were changed from to Atrioventricular septal defect 3, MIM#600309; Craniometaphyseal dysplasia, autosomal recessive, MIM#218400; Erythrokeratodermia variabilis et progressiva 3, MIM#617525; Hypoplastic left heart syndrome 1, MIM#241550; Oculodentodigital dysplasia, MIM#164200; Oculodentodigital dysplasia, autosomal recessive, MIM#257850; Palmoplantar keratoderma with congenital alopecia, MIM#104100; Syndactyly, type III, MIM# 186100
Intellectual disability syndromic and non-syndromic v0.279 GJA1 Zornitza Stark reviewed gene: GJA1: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Atrioventricular septal defect 3, MIM#600309, Craniometaphyseal dysplasia, autosomal recessive, MIM#218400, Erythrokeratodermia variabilis et progressiva 3, MIM#617525, Hypoplastic left heart syndrome 1, MIM#241550, Oculodentodigital dysplasia, MIM#164200, Oculodentodigital dysplasia, autosomal recessive, MIM#257850, Palmoplantar keratoderma with congenital alopecia, MIM#104100, Syndactyly, type III, MIM# 186100; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.208 FAAH2 Zornitza Stark Phenotypes for gene: FAAH2 were changed from to Neuropsychiatric disorder
Intellectual disability syndromic and non-syndromic v0.204 FAAH2 Zornitza Stark reviewed gene: FAAH2: Rating: RED; Mode of pathogenicity: None; Publications: 25885783; Phenotypes: Neuropsychiatric disorder; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Intellectual disability syndromic and non-syndromic v0.5 BRAT1 Zornitza Stark reviewed gene: BRAT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 26483087, 26494257, 27282546; Phenotypes: Neurodevelopmental disorder with cerebellar atrophy and with or without seizures, MIM#618056; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.5 BICD2 Zornitza Stark reviewed gene: BICD2: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Spinal muscular atrophy, lower extremity-predominant, 2A, autosomal dominant, MIM#615290; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Intellectual disability syndromic and non-syndromic v0.0 ATRX Zornitza Stark gene: ATRX was added
gene: ATRX was added to Intellectual disability, syndromic and non-syndromic_GHQ. Sources: Expert Review Green,Genetic Health Queensland
Mode of inheritance for gene: ATRX was set to Unknown
Intellectual disability syndromic and non-syndromic v0.0 ATR Zornitza Stark gene: ATR was added
gene: ATR was added to Intellectual disability, syndromic and non-syndromic_GHQ. Sources: Expert Review Green,Genetic Health Queensland
Mode of inheritance for gene: ATR was set to Unknown