Date | Panel | Item | Activity | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Genomic newborn screening: BabyScreen+ v1.87 | PSTPIP1 |
Zornitza Stark gene: PSTPIP1 was added gene: PSTPIP1 was added to BabyScreen+ newborn screening. Sources: Expert list treatable, immunological tags were added to gene: PSTPIP1. Mode of inheritance for gene: PSTPIP1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: PSTPIP1 were set to Pyogenic sterile arthritis, pyoderma gangrenosum, and acne, MIM# 604416 Review for gene: PSTPIP1 was set to GREEN Added comment: Established gene-disease association. Onset in childhood. Treatment: adalimumab and tacrolimus, NSAIDs, corticosteroids, BMT non-genetic confirmatory testing: no Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.2161 | NLRP3 |
Zornitza Stark gene: NLRP3 was added gene: NLRP3 was added to Baby Screen+ newborn screening. Sources: Expert Review Mode of inheritance for gene: NLRP3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: NLRP3 were set to 25038238 Phenotypes for gene: NLRP3 were set to Familial cold inflammatory syndrome 1, MIM#120100 Muckle-Wells syndrome, MIM#191900 CINCA syndrome, MIM#607115 Deafness, autosomal dominant 34, with or without inflammation, MIM#617772 Keratoendothelitis fugax hereditaria, MIM#148200 Review for gene: NLRP3 was set to AMBER Added comment: Established gene-disease associations. Variants in this gene cause a spectrum of clinical phenotypes, ranging from onset in infancy to adult-onset, with variable severity. Genotype-phenotype correlation is unclear, hence not suitable for inclusion at this time. Treatment: corticosteroids, anakinra, rilonacept and canakinumab. Non-genetic confirmatory testing: no. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.2124 | CALM3 |
Zornitza Stark changed review comment from: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2. Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. For review: age of onset and penetrance. Sources: ClinGen; to: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2. Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. Exclude for CPVT: association has moderate evidence, there are issues with penetrance, and treatment is generally only recommended in symptomatic individuals. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.2123 | CALM2 |
Zornitza Stark changed review comment from: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2. Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. For review: age of onset and penetrance. Sources: ClinGen; to: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2. Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. Reviewed with paediatric cardiologist: not for inclusion due to issues with penetrance, plus guidelines only generally recommend treatment is symptomatic individuals. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.2123 | CALM1 |
Zornitza Stark changed review comment from: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2. Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. For review: age of onset and penetrance. Sources: ClinGen; to: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2. Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. Reviewed with paediatric cardiologist: not for inclusion due to issues with penetrance, plus guidelines only generally recommend treatment is symptomatic individuals. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.2042 | OTULIN |
Zornitza Stark gene: OTULIN was added gene: OTULIN was added to Baby Screen+ newborn screening. Sources: Expert list treatable, immunological tags were added to gene: OTULIN. Mode of inheritance for gene: OTULIN was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: OTULIN were set to Autoinflammation, panniculitis, and dermatosis syndrome, MIM# 617099 Review for gene: OTULIN was set to GREEN Added comment: Autoinflammation, panniculitis, and dermatosis syndrome (AIPDS) is an autosomal recessive autoinflammatory disease characterized by neonatal onset of recurrent fever, erythematous rash with painful nodules, painful joints, and lipodystrophy. Additional features may include diarrhea, increased serum C-reactive protein (CRP), leukocytosis, and neutrophilia in the absence of any infection. Onset is generally in infancy. Treatment: inflixiimab, anakinra, etanercept, corticosteroids. Non-genetic confirmatory testing: no. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1993 | IFITM5 |
Zornitza Stark gene: IFITM5 was added gene: IFITM5 was added to Baby Screen+ newborn screening. Sources: Expert list 5'UTR, treatable, skeletal tags were added to gene: IFITM5. Mode of inheritance for gene: IFITM5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: IFITM5 were set to 22863190; 22863195; 32383316; 24519609 Phenotypes for gene: IFITM5 were set to Osteogenesis imperfecta, type V MIM#610967 Review for gene: IFITM5 was set to GREEN Added comment: A recurrent c.-14C>T variant has been reported in many patients with type V OI. It introduces an alternative in-frame start codon upstream that is stronger than the reference start codon in transfected HEK cells (PMIDs: 22863190, 22863195). However, the effect of mutant protein (5 amino acids longer) remains unknown but neomorphic mechanism is a widely accepted hypothesis (PMIDs: 25251575, 32383316). Variable severity, including within families. However, severe perinatal presentations reported. Treatment: bisphosphanates. Non-genetic confirmatory testing: skeletal survey. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1982 | TNFRSF1A |
Lilian Downie gene: TNFRSF1A was added gene: TNFRSF1A was added to Baby Screen+ newborn screening. Sources: Expert list Mode of inheritance for gene: TNFRSF1A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: TNFRSF1A were set to PMID: 11175303, PMID: 32066461, PMID: 29773275, PMID: 32831641 Phenotypes for gene: TNFRSF1A were set to Periodic fever, familial MIM#142680 Penetrance for gene: TNFRSF1A were set to Incomplete Review for gene: TNFRSF1A was set to RED Added comment: Strong gene disease association Childhood onset but age not consistently under 5 and cases of adult onset reports of variable penetrance Rx NSAIDs, corticosteroids, Etanercept , anakinra, canakinumab, tocilizumab because there is no non-molecular confirmatory test I think should be red for variability of age of onset and severity of symptoms. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1753 | OAT |
Zornitza Stark gene: OAT was added gene: OAT was added to gNBS. Sources: ClinGen for review, treatable, metabolic tags were added to gene: OAT. Mode of inheritance for gene: OAT was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: OAT were set to Gyrate atrophy of choroid and retina with or without ornithinemia MIM#258870 Review for gene: OAT was set to GREEN Added comment: Rated as 'moderate actionability' in paediatric patients by ClinGen. GA due to deficiency of the enzyme ornithine aminotransferase (OAT) is characterized by a triad of progressive chorioretinal degeneration, early cataract formation, and type II muscle fiber atrophy. GA first presents as night blindness and constriction of the visual field caused by sharply demarcated circular areas of chorioretinal atrophy in the periphery. Atrophic areas progressively increase, coalesce, and spread towards the macula leading to central visual loss and blindness (vision less than 20/200). Age at diagnosis ranges from 1 month to 44 years. The condition is characterized by the development of chorioretinal atrophic patches that start in the mid-peripheral retina in the first decade of life. Myopia, night blindness, changes in the macula (including cystic changes), and visual field affection usually start in the first or second decade. Most patients with GA have posterior subcapsular cataracts by the end of the second decade. Irreversible loss of vision and blindness generally occurs between 40 and 55 years of age but is highly variable. Treatment of GA consists mainly of dietary modifications to help lower elevated systemic ornithine levels. Restriction of dietary arginine, a precursor of ornithine, appears to have therapeutic value. Pediatric patients undergoing arginine restriction should receive enough calories in their diet supplemented by essential amino acids, vitamins, and minerals to avoid malnutrition and excessive break down of endogenous proteins. A long-term observational study of 27 patients with GA, 17 who complied with the arginine-restricted diet and 10 who were noncompliant, found that at 14 years follow-up the rates of vision loss were significantly slower in the compliant group for 3 of the 4 outcome measures, when adjusted for age. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1734 | CALM3 |
Zornitza Stark gene: CALM3 was added gene: CALM3 was added to gNBS. Sources: ClinGen for review, cardiac, treatable tags were added to gene: CALM3. Mode of inheritance for gene: CALM3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: CALM3 were set to Ventricular tachycardia, catecholaminergic polymorphic 6 , MIM# 618782 Penetrance for gene: CALM3 were set to Incomplete Review for gene: CALM3 was set to GREEN Added comment: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2. Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. For review: age of onset and penetrance. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1732 | CALM2 |
Zornitza Stark gene: CALM2 was added gene: CALM2 was added to gNBS. Sources: ClinGen for review, cardiac, treatable tags were added to gene: CALM2. Mode of inheritance for gene: CALM2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: CALM2 were set to Catecholaminergic polymorphic ventricular tachycardia MONDO:0017990 Review for gene: CALM2 was set to GREEN Added comment: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2. Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. For review: age of onset and penetrance. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1730 | CALM1 |
Zornitza Stark gene: CALM1 was added gene: CALM1 was added to gNBS. Sources: ClinGen for review, cardiac, treatable tags were added to gene: CALM1. Mode of inheritance for gene: CALM1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: CALM1 were set to Ventricular tachycardia, catecholaminergic polymorphic, 4, MIM# 614916 Penetrance for gene: CALM1 were set to Incomplete Review for gene: CALM1 was set to GREEN Added comment: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2. Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. For review: age of onset and penetrance. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1710 | ABCC8 |
David Amor commented on gene: ABCC8: Gene-disease association: strong. Note sporadic cases of Familial hyperinsulinemic hypoglycemiawith focal adenomatous hyperplasia due to paternally inherited variants focal loss of maternal allele. ABCC8 associated permanent neonatal diabetes mellitus typically due to GoF missense variants. Fathers are at increased risk of T2DM also. Severity: severe Age of onset: congenital Non-molecular confirmatory testing: yes For hyperinsulinaemic hypoglycaemia: glucose, insulin, free fatty acid levels For neonatal diabetes: glucose tolerance test, hemoglobin A1C, insulin level, glucose level Treatment: as per rx-genes For hyperinsulinaemic hypoglycaemia: Diazoxide, somatostatin analogs, nifedipine, glucagon, IGF-1, glucocorticoids, growth hormone, pancreatic resection, mTOR inhibitors, GLP-1 receptor antagonists, sirolimus For neonatal diabetes: Insulin, glibenclamide, oral pancreatic enzymes |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1710 | ABCC8 |
David Amor commented on gene: ABCC8: Gene-disease association: strong. Note sporadic cases of Familial hyperinsulinemic hypoglycemiawith focal adenomatous hyperplasia due to paternally inherited variants focal loss of maternal allele. ABCC8 associated permanent neonatal diabetes mellitus typically due to GoF missense variants. Fathers are at increased risk of T2DM also. Severity: severe Age of onset: congenital Non-molecular confirmatory testing: yes For hyperinsulinaemic hypoglycaemia: glucose, insulin, free fatty acid levels For neonatal diabetes: glucose tolerance test, hemoglobin A1C, insulin level, glucose level Treatment: as per rx-genes For hyperinsulinaemic hypoglycaemia: Diazoxide, somatostatin analogs, nifedipine, glucagon, IGF-1, glucocorticoids, growth hormone, pancreatic resection, mTOR inhibitors, GLP-1 receptor antagonists, sirolimus For neonatal diabetes: Insulin, glibenclamide, oral pancreatic enzymes |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1710 | ABCC8 |
David Amor changed review comment from: Gene-disease association: strong. Note sporadic cases of Familial hyperinsulinemic hypoglycemiawith focal adenomatous hyperplasia due to paternally inherited variants focal loss of maternal allele. ABCC8 associated permanent neonatal diabetes mellitus typically due to GoF missense variants. Fathers are at increased risk of T2DM also. Severity: severe Age of onset: congenital Non-molecular confirmatory testing: yes For hyperinsulinaemic hypoglycaemia: glucose, insulin, free fatty acid levels For neonatal diabetes: glucose tolerance test, hemoglobin A1C, insulin level, glucose level Treatment: as per rx-genes For hyperinsulinaemic hypoglycaemia: Diazoxide, somatostatin analogs, nifedipine, glucagon, IGF-1, glucocorticoids, growth hormone, pancreatic resection, mTOR inhibitors, GLP-1 receptor antagonists, sirolimus For neonatal diabetes: Insulin, glibenclamide, oral pancreatic enzymes ; to: Gene-disease association: strong. Note sporadic cases of Familial hyperinsulinemic hypoglycemiawith focal adenomatous hyperplasia due to paternally inherited variants focal loss of maternal allele. ABCC8 associated permanent neonatal diabetes mellitus typically due to GoF missense variants. Fathers are at increased risk of T2DM also. Severity: severe Age of onset: congenital Non-molecular confirmatory testing: yes For hyperinsulinaemic hypoglycaemia: glucose, insulin, free fatty acid levels For neonatal diabetes: glucose tolerance test, hemoglobin A1C, insulin level, glucose level Treatment: as per rx-genes For hyperinsulinaemic hypoglycaemia: Diazoxide, somatostatin analogs, nifedipine, glucagon, IGF-1, glucocorticoids, growth hormone, pancreatic resection, mTOR inhibitors, GLP-1 receptor antagonists, sirolimus For neonatal diabetes: Insulin, glibenclamide, oral pancreatic enzymes |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1710 | ABCC8 |
David Amor changed review comment from: Gene-disease association: strong. Note sporadic cases with focal adenomatous hyperplasia due to paternally inherited variants focal loss of maternal allele Severity: severe Age of onset: congenital Non-molecular confirmatory testing: yes, glucose, insulin, free fatty acid levels Treatment: as per rx-genes, Diazoxide, somatostatin analogs, nifedipine, glucagon, IGF-1, glucocorticoids, growth hormone, pancreatic resection, mTOR inhibitors, GLP-1 receptor antagonists, sirolimus; to: Gene-disease association: strong. Note sporadic cases of Familial hyperinsulinemic hypoglycemiawith focal adenomatous hyperplasia due to paternally inherited variants focal loss of maternal allele. ABCC8 associated permanent neonatal diabetes mellitus typically due to GoF missense variants. Fathers are at increased risk of T2DM also. Severity: severe Age of onset: congenital Non-molecular confirmatory testing: yes For hyperinsulinaemic hypoglycaemia: glucose, insulin, free fatty acid levels For neonatal diabetes: glucose tolerance test, hemoglobin A1C, insulin level, glucose level Treatment: as per rx-genes For hyperinsulinaemic hypoglycaemia: Diazoxide, somatostatin analogs, nifedipine, glucagon, IGF-1, glucocorticoids, growth hormone, pancreatic resection, mTOR inhibitors, GLP-1 receptor antagonists, sirolimus For neonatal diabetes: Insulin, glibenclamide, oral pancreatic enzymes |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1708 | KCNJ11 |
Zornitza Stark changed review comment from: Association with hyperinsulinism is well established. Onset is congenital. Treatment: Diazoxide, somatostatin analogs, nifedipine, glucagon, IGF-1, glucocorticoids, growth hormone, pancreatic resection, mTOR inhibitors, GLP-1 receptor antagonists, sirolimus Association with neonatal diabetes is also well established. Treatment: Insulin, glibenclamide, oral pancreatic enzymes. Phenotypes are expected to be distinguishable clinically.; to: Association with hyperinsulinism is well established, mono-allelic variants. Onset is congenital. Treatment: Diazoxide, somatostatin analogs, nifedipine, glucagon, IGF-1, glucocorticoids, growth hormone, pancreatic resection, mTOR inhibitors, GLP-1 receptor antagonists, sirolimus Association with neonatal diabetes is also well established, bi-allelic variants. Treatment: Insulin, glibenclamide, oral pancreatic enzymes. Phenotypes are expected to be distinguishable clinically. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1697 | FGF23 |
Zornitza Stark gene: FGF23 was added gene: FGF23 was added to gNBS. Sources: Expert list Mode of inheritance for gene: FGF23 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Phenotypes for gene: FGF23 were set to autosomal dominant hypophosphatemic rickets MONDO:0008660; familial hyperphosphatemic tumoral calcinosis/hyperphosphatemic hyperostosis syndrome MONDO:0100251 Review for gene: FGF23 was set to GREEN Added comment: Mono-allelic GoF variants are associated with hypophosphataemic rickets. Onset in some is in infancy (others adolescence). Treatment: phosphate supplementation and calcitriol Non-genetic confirmatory testing: serum phosphate, calcium, PTH, alkaline phosphatase levels, urine calcium level Bi-allelic LoF variants are associated with tumoral calcinosis. Age of onset and severity are variable, but include early childhood. Treatment: dietary restriction, antacids, phosphate binders, acetazolamide, hemodialysis Non-genetic confirmatory testing: serum phosphate, calcium, PTH, alkaline phosphatase, vitamin D serum levels, urine calcium, phosphate levels, plasma levels of the C-terminal portion of the phosphate-regulating hormone, fibroblast growth factor 23 Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1384 | RPS28 |
Zornitza Stark changed review comment from: Congenital onset. DBA is a treatable disorder: corticosteroids, red blood cell transfusion, BMT.; to: Two individuals reported in 2014, none since. Congenital onset. DBA is a treatable disorder: corticosteroids, red blood cell transfusion, BMT. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1359 | SLC7A7 |
Seb Lunke edited their review of gene: SLC7A7: Added comment: Established gene-disease association. Childhood onset, multi-system disorder Treatment: protein restriction, carnitine, citrulline, lysine supplementation, sodium benzoate Non-genetic confirmatory test: 24-hour urinary excretion of cationic amino acids; Changed publications: 20301535 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1272 | IDS | John Christodoulou reviewed gene: IDS: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 30143438, PMID: 33004112; Phenotypes: coarse facial features, cardiac valve involvement, hepatosplenomegaly, cardiomyopathy, airway obstruction, hydrocephalus, SNHL, dysostosis multiplex, kyphoscoliosis, progressive cognitive decline; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1244 | IDS | Zornitza Stark Marked gene: IDS as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1244 | IDS | Zornitza Stark Gene: ids has been classified as Green List (High Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1244 | IDS | Zornitza Stark Phenotypes for gene: IDS were changed from Mucopolysaccharidosis II to Mucopolysaccharidosis II (MPS2, Hunter syndrome) 309900 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1243 | IDS |
Zornitza Stark Tag treatable tag was added to gene: IDS. Tag metabolic tag was added to gene: IDS. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1243 | IDS | Zornitza Stark edited their review of gene: IDS: Changed mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.1243 | IDS | Zornitza Stark reviewed gene: IDS: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Mucopolysaccharidosis II (MPS2, Hunter syndrome) 309900; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.869 | DFNB59 |
Zornitza Stark commented on gene: DFNB59: DEFINITIVE by ClinGen, over 50 affected individuals from more than 10 families reported, supportive functional data including animal models. New HGNC name is PJVK. Hearing loss is pre-lingual, therefore include. Treatment: hearing aids/cochlear implant. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.664 | ETFB |
Zornitza Stark changed review comment from: Well established gene-disease association. Glutaric aciduria II (GA2) is an autosomal recessively inherited disorder of fatty acid, amino acid, and choline metabolism. It differs from GA I in that multiple acyl-CoA dehydrogenase deficiencies result in large excretion not only of glutaric acid, but also of lactic, ethylmalonic, butyric, isobutyric, 2-methyl-butyric, and isovaleric acids. The heterogeneous clinical features of MADD fall into 3 classes: a neonatal-onset form with congenital anomalies (type I), a neonatal-onset form without congenital anomalies (type II), and a late-onset form (type III). The neonatal-onset forms are usually fatal and are characterized by severe nonketotic hypoglycemia, metabolic acidosis, multisystem involvement, and excretion of large amounts of fatty acid- and amino acid-derived metabolites. Symptoms and age at presentation of late-onset MADD are highly variable and characterized by recurrent episodes of lethargy, vomiting, hypoglycemia, metabolic acidosis, and hepatomegaly often preceded by metabolic stress. Muscle involvement in the form of pain, weakness, and lipid storage myopathy also occurs. The organic aciduria in those with the late-onset form of MADD is often intermittent and only evident during periods of illness or catabolic stress. Treatment: riboflavin, carnitine, glycine, Coenzyme Q10 supplementation, fat restriction, avoidance of fasting, and a diet rich in carbohydrates Non-genetic confirmatory tests: plasma acylcarnitine profile, urine organic acid analysis; to: Well established gene-disease association. Glutaric aciduria II (GA2) is an autosomal recessively inherited disorder of fatty acid, amino acid, and choline metabolism. It differs from GA I in that multiple acyl-CoA dehydrogenase deficiencies result in large excretion not only of glutaric acid, but also of lactic, ethylmalonic, butyric, isobutyric, 2-methyl-butyric, and isovaleric acids. The heterogeneous clinical features of MADD fall into 3 classes: a neonatal-onset form with congenital anomalies (type I), a neonatal-onset form without congenital anomalies (type II), and a late-onset form (type III). The neonatal-onset forms are usually fatal and are characterized by severe nonketotic hypoglycemia, metabolic acidosis, multisystem involvement, and excretion of large amounts of fatty acid- and amino acid-derived metabolites. Symptoms and age at presentation of late-onset MADD are highly variable and characterized by recurrent episodes of lethargy, vomiting, hypoglycemia, metabolic acidosis, and hepatomegaly often preceded by metabolic stress. Muscle involvement in the form of pain, weakness, and lipid storage myopathy also occurs. The organic aciduria in those with the late-onset form of MADD is often intermittent and only evident during periods of illness or catabolic stress. Treatment: riboflavin, carnitine, glycine, Coenzyme Q10 supplementation, fat restriction, avoidance of fasting, and a diet rich in carbohydrates Non-genetic confirmatory tests: plasma acylcarnitine profile, urine organic acid analysis Predominantly neonatal onset. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.585 | CBS |
Zornitza Stark changed review comment from: Well established gene-disease association. Multi-system disorder, onset in infancy. In general, individuals appear normal at birth but have a progressive disease course if untreated. Clinical features typically manifest in the first or second decade of life. Intellectual disability may be the first recognizable sign and may present as developmental delay after the first to second year of life. Myopia typically occurs after age one with the majority of untreated individuals developing ectopia lentis by age 8. Roughly half of patients show signs of osteoporosis by their teens. Cerebrovascular events typically manifest during young adulthood, though they have been reported earlier. Thromboembolism is the major cause of early death and morbidity. Among B₆-responsive individuals, a vascular event in adolescence or adulthood is often the presenting feature. Treatment: vitamin B6 (pyridoxine), methionine-restricted diet, folate, vitamin B12, betaine. Management guidelines PMID 27778219. Non-genetic confirmatory testing: plasma total homocysteine and plasma amino acids Paediatric actionable gene by ClinGen. Note excluded from reproductive carrier screening tests due to poor mappability, for review.; to: Well established gene-disease association. Multi-system disorder, onset in infancy. In general, individuals appear normal at birth but have a progressive disease course if untreated. Clinical features typically manifest in the first or second decade of life. Intellectual disability may be the first recognizable sign and may present as developmental delay after the first to second year of life. Myopia typically occurs after age one with the majority of untreated individuals developing ectopia lentis by age 8. Roughly half of patients show signs of osteoporosis by their teens. Cerebrovascular events typically manifest during young adulthood, though they have been reported earlier. Thromboembolism is the major cause of early death and morbidity. Among B₆-responsive individuals, a vascular event in adolescence or adulthood is often the presenting feature. Treatment: vitamin B6 (pyridoxine), methionine-restricted diet, folate, vitamin B12, betaine. Management guidelines PMID 27778219. Non-genetic confirmatory testing: plasma total homocysteine and plasma amino acids Paediatric actionable gene by ClinGen. Note excluded from reproductive carrier screening tests due to poor mappability: downgraded to Amber for now. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.286 | BCKDK | Zornitza Stark commented on gene: BCKDK: Confirmatory non-genetic testing: serum amino acids, urine organic acids | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.274 | ETFA |
Zornitza Stark changed review comment from: Well established gene-disease association. Glutaric aciduria II (GA2) is an autosomal recessively inherited disorder of fatty acid, amino acid, and choline metabolism. It differs from GA I in that multiple acyl-CoA dehydrogenase deficiencies result in large excretion not only of glutaric acid, but also of lactic, ethylmalonic, butyric, isobutyric, 2-methyl-butyric, and isovaleric acids. The heterogeneous clinical features of MADD fall into 3 classes: a neonatal-onset form with congenital anomalies (type I), a neonatal-onset form without congenital anomalies (type II), and a late-onset form (type III). The neonatal-onset forms are usually fatal and are characterized by severe nonketotic hypoglycemia, metabolic acidosis, multisystem involvement, and excretion of large amounts of fatty acid- and amino acid-derived metabolites. Symptoms and age at presentation of late-onset MADD are highly variable and characterized by recurrent episodes of lethargy, vomiting, hypoglycemia, metabolic acidosis, and hepatomegaly often preceded by metabolic stress. Muscle involvement in the form of pain, weakness, and lipid storage myopathy also occurs. The organic aciduria in those with the late-onset form of MADD is often intermittent and only evident during periods of illness or catabolic stress. Treatment: riboflavin, carnitine, glycine, Coenzyme Q10 supplementation, fat restriction, avoidance of fasting, and a diet rich in carbohydrates, D,L-3-hydroxybutyrate Non-genetic confirmatory tests: plasma acylcarnitine profile, urine organic acid analysis; to: Well established gene-disease association. Glutaric aciduria II (GA2) is an autosomal recessively inherited disorder of fatty acid, amino acid, and choline metabolism. It differs from GA I in that multiple acyl-CoA dehydrogenase deficiencies result in large excretion not only of glutaric acid, but also of lactic, ethylmalonic, butyric, isobutyric, 2-methyl-butyric, and isovaleric acids. The heterogeneous clinical features of MADD fall into 3 classes: a neonatal-onset form with congenital anomalies (type I), a neonatal-onset form without congenital anomalies (type II), and a late-onset form (type III). The neonatal-onset forms are usually fatal and are characterized by severe nonketotic hypoglycemia, metabolic acidosis, multisystem involvement, and excretion of large amounts of fatty acid- and amino acid-derived metabolites. Symptoms and age at presentation of late-onset MADD are highly variable and characterized by recurrent episodes of lethargy, vomiting, hypoglycemia, metabolic acidosis, and hepatomegaly often preceded by metabolic stress. Muscle involvement in the form of pain, weakness, and lipid storage myopathy also occurs. The organic aciduria in those with the late-onset form of MADD is often intermittent and only evident during periods of illness or catabolic stress. Treatment: riboflavin, carnitine, glycine, Coenzyme Q10 supplementation, fat restriction, avoidance of fasting, and a diet rich in carbohydrates, D,L-3-hydroxybutyrate (PMID 31904027) Non-genetic confirmatory tests: plasma acylcarnitine profile, urine organic acid analysis |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.270 | CBS |
Zornitza Stark changed review comment from: Well established gene-disease association. Multi-system disorder, onset in infancy. In general, individuals appear normal at birth but have a progressive disease course if untreated. Clinical features typically manifest in the first or second decade of life. Intellectual disability may be the first recognizable sign and may present as developmental delay after the first to second year of life. Myopia typically occurs after age one with the majority of untreated individuals developing ectopia lentis by age 8. Roughly half of patients show signs of osteoporosis by their teens. Cerebrovascular events typically manifest during young adulthood, though they have been reported earlier. Thromboembolism is the major cause of early death and morbidity. Among B₆-responsive individuals, a vascular event in adolescence or adulthood is often the presenting feature. Treatment: vitamin B6 (pyridoxine), methionine-restricted diet, folate, vitamin B12, betaine. Management guidelines PMID 27778219. Non-genetic confirmatory testing: plasma total homocysteine and plasma amino acids Paediatric actionable gene by ClinGen.; to: Well established gene-disease association. Multi-system disorder, onset in infancy. In general, individuals appear normal at birth but have a progressive disease course if untreated. Clinical features typically manifest in the first or second decade of life. Intellectual disability may be the first recognizable sign and may present as developmental delay after the first to second year of life. Myopia typically occurs after age one with the majority of untreated individuals developing ectopia lentis by age 8. Roughly half of patients show signs of osteoporosis by their teens. Cerebrovascular events typically manifest during young adulthood, though they have been reported earlier. Thromboembolism is the major cause of early death and morbidity. Among B₆-responsive individuals, a vascular event in adolescence or adulthood is often the presenting feature. Treatment: vitamin B6 (pyridoxine), methionine-restricted diet, folate, vitamin B12, betaine. Management guidelines PMID 27778219. Non-genetic confirmatory testing: plasma total homocysteine and plasma amino acids Paediatric actionable gene by ClinGen. Note excluded from reproductive carrier screening tests due to poor mappability, for review. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.0 | CSF1R |
Zornitza Stark gene: CSF1R was added gene: CSF1R was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene Mode of inheritance for gene: CSF1R was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: CSF1R were set to Leukoencephalopathy, diffuse hereditary, with spheroids |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genomic newborn screening: BabyScreen+ v0.0 | IDS |
Zornitza Stark gene: IDS was added gene: IDS was added to gNBS. Sources: BabySeq Category A gene,Expert Review Green Mode of inheritance for gene: IDS was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Phenotypes for gene: IDS were set to Mucopolysaccharidosis II |